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Topic Overview 

• Definitions and Representation 

• Minimum Spanning Tree: Prim's Algorithm 

• Single-Source Shortest Paths: Dijkstra's Algorithm 

• All-Pairs Shortest Paths 

• Connected Components 

• Algorithms for Sparse Graphs 

2



Definitions and Representation 

• An undirected graph G is a pair (V,E), where V is a finite 

set of points called vertices and E is a finite set of edges. 

• An edge e ∈ E is an unordered pair (u,v), where u,v ∈
V. 

• In a directed graph, the edge e is an ordered pair (u,v). 

An edge (u,v) is incident from vertex u and is incident to

vertex v. 

• A path from a vertex v to a vertex u is a sequence 

<v0,v1,v2,…,vk> of vertices where v0 = v, vk = u, and (vi, 

vi+1) ∈ E for i = 0, 1,…, k-1. 

• The length of a path is defined as the number of edges 

in the path. 
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Definitions and Representation 

a) An undirected graph and (b) a directed graph.
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Definitions and Representation 

• An undirected graph is connected if every pair of 

vertices is connected by a path. 

• A forest is an acyclic graph, and a tree is a connected 

acyclic graph. 

• A graph that has weights associated with each edge is 

called a weighted graph. 

5



Definitions and Representation 

• Graphs can be represented by their adjacency matrix 

or an edge (or vertex) list.

• Adjacency matrices have a value ai,j = 1 if nodes i and j

share an edge; 0 otherwise. In case of a weighted graph, 

ai,j = wi,j, the weight of the edge. 

• The adjacency list representation of a graph G = (V,E)

consists of an array Adj[1..|V|] of lists. Each list Adj[v] is 

a list of all vertices adjacent to v. 

• For a graph with n nodes, adjacency matrices take Θ(n2) 

space and adjacency list takes Θ(|E|) space. 
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Definitions and Representation 

An undirected graph and its adjacency matrix representation.

An undirected graph and its adjacency list representation. 
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Minimum Spanning Tree 

• A spanning tree of an undirected graph G is a subgraph 

of G that is a tree containing all the vertices of G. 

• In a weighted graph, the weight of a subgraph is the sum 

of the weights of the edges in the subgraph. 

• A minimum spanning tree (MST) for a weighted 

undirected graph is a spanning tree with minimum 

weight. 
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Minimum Spanning Tree 

An undirected graph and its minimum spanning tree.
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Minimum Spanning Tree: Prim's 

Algorithm

• Prim's algorithm for finding an MST is a greedy 

algorithm. 

• Start by selecting an arbitrary vertex, include it into 

the current MST. 

• Grow the current MST by inserting into it the vertex 

closest to one of the vertices already in current MST. 
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Minimum Spanning Tree: Prim's Algorithm

Prim's minimum spanning tree algorithm.
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Minimum Spanning Tree: Prim's 

Algorithm

Prim's sequential minimum spanning tree algorithm.
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Prim's Algorithm: Parallel Formulation 

• The algorithm works in n outer iterations - it is hard to execute 

these iterations concurrently. 

• The inner loop is relatively easy to parallelize. Let p be the number 

of processes, and let n be the number of vertices. 

• The adjacency matrix is partitioned in a 1-D block fashion, with 

distance vector d partitioned accordingly. 

• In each step, a processor selects the locally closest node, 

followed by a global reduction to select globally closest node. 

• This node is inserted into MST, and the choice broadcast to all 

processors. 

• Each processor updates its part of the d vector locally. 
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Prim's Algorithm: Parallel Formulation 

The partitioning of the distance array d and the adjacency matrix A
among p processes. 
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Prim's Algorithm: Parallel Formulation 

• The cost to select the minimum entry is O(n/p + log p). 

• The cost of a broadcast is O(log p). 

• The cost of local updation of the d vector is O(n/p). 

• The parallel time per iteration is O(n/p + log p). 

• The total parallel time is given by O(n2/p + n log p). 

• The corresponding isoefficiency is O(p2log2p). 
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Single-Source Shortest Paths 

• For a weighted graph G = (V,E,w), the single-source 

shortest paths problem is to find the shortest paths 

from a vertex v ∈ V to all other vertices in V. 

• Dijkstra's algorithm is similar to Prim's algorithm. It 

maintains a set of nodes for which the shortest paths are 

known. 

• It grows this set based on the node closest to source 

using one of the nodes in the current shortest path set. 
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Single-Source Shortest Paths: Dijkstra's 

Algorithm

Dijkstra's sequential single-source shortest paths algorithm.
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Dijkstra's Algorithm: Parallel Formulation

• Very similar to the parallel formulation of Prim's

algorithm for minimum spanning trees. 

• The weighted adjacency matrix is partitioned using the 1-

D block mapping. 

• Each process selects, locally, the node closest to the 

source, followed by a global reduction to select next 

node. 

• The node is broadcast to all processors and the l-vector 

updated. 

• The parallel performance of Dijkstra's algorithm is 

identical to that of Prim's algorithm. 
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All-Pairs Shortest Paths 

• Given a weighted graph G(V,E,w), the all-pairs shortest 

paths problem is to find the shortest paths between all 

pairs of vertices vi, vj ∈ V. 

• A number of algorithms are known for solving this 

problem. 
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All-Pairs Shortest Paths: Matrix-

Multiplication Based Algorithm 

• Consider the multiplication of the weighted adjacency 

matrix with itself - except, in this case, we replace the 

multiplication operation in matrix multiplication by 

addition, and the addition operation by minimization. 

• Notice that the product of weighted adjacency matrix 

with itself returns a matrix that contains shortest paths 

of length 2 between any pair of nodes. 

• It follows from this argument that An contains all 

shortest paths.
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Matrix-Multiplication Based Algorithm 
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Matrix-Multiplication Based Algorithm 

• An is computed by doubling powers - i.e., as A, A2, A4, 

A8, and so on. 

• We need log n matrix multiplications, each taking time 

O(n3). 

• The serial complexity of this procedure is O(n3log n). 

• This algorithm is not optimal, since the best known 

algorithms have complexity O(n3). 
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Matrix-Multiplication Based Algorithm: 

Parallel Formulation 

• Each of the log n matrix multiplications can be 

performed in parallel. 

• We can use n3/log n processors to compute each 

matrix-matrix product in time log n. 

• The entire process takes O(log2n) time. 
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Dijkstra's Algorithm 

• Execute n instances of the single-source shortest 

path problem, one for each of the n source vertices. 

• Complexity is O(n3). 
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Dijkstra's Algorithm: Parallel Formulation 

• Two parallelization strategies - execute each of the n

shortest path problems on a different processor (source 

partitioned), or use a parallel formulation of the shortest 

path problem to increase concurrency (source parallel). 
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Dijkstra's Algorithm: Source Partitioned 

Formulation 

• Use n processors, each processor Pi finds the 

shortest paths from vertex vi to all other vertices by 

executing Dijkstra's sequential single-source shortest 

paths algorithm. 

• It requires no interprocess communication (provided 

that the adjacency matrix is replicated at all processes). 

• The parallel run time of this formulation is: Θ(n2). 

• While the algorithm is cost optimal, it can only use n

processors. Therefore, the isoefficiency due to 

concurrency is p3. 
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Dijkstra's Algorithm: Source Parallel 

Formulation

• In this case, each of the shortest path problems is 

further executed in parallel. We can therefore use up 

to n2 processors. 

• Given p processors (p > n), each single source 

shortest path problem is executed by p/n processors. 

• Using previous results, this takes time: 

• For cost optimality, we have p = O(n2/log n) and the 

isoefficiency is Θ((p log p)1.5).
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Floyd's Algorithm 

• For any pair of vertices vi, vj ∈ V, consider all paths from 

vi to vj whose intermediate vertices belong to the set 

{v1,v2,…,vk}. Let pi
(
,
k
j
) (of weight di

(
,
k
j
) be the minimum-

weight path among them. 

• If vertex vk is not in the shortest path from vi to vj, then 

pi
(
,
k
j
) is the same as pi

(
,
k
j
-1). 

• If vk is in pi
(
,
k

j
), then we can break pi

(
,
k

j
) into two paths -

one from vi to vk and one from vk to vj . Each of these 

paths uses vertices from {v1,v2,…,vk-1}. 
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Floyd's Algorithm 

From our observations, the following recurrence 

relation follows: 

This equation must be computed for each pair of 

nodes and for k = [1, n]. The serial complexity is O(n3). 
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Floyd's Algorithm 

Floyd's all-pairs shortest paths algorithm. This program 

computes the all-pairs shortest paths of the graph G = 

(V,E) with adjacency matrix A. 
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Floyd's Algorithm: Parallel Formulation 

Using 2-D Block Mapping 

• Matrix D(k) is divided into p blocks of size (n / √p) x (n / 
√p). 

• Each processor updates its part of the matrix during 
each iteration. 

• To compute dl
(
,
k
k
-1) processor Pi,j must get dl

(
,
k

k
-1) and 

dk
(
,
k

r
-1). 

• In general, during the kth iteration, each of the √p
processes containing part of the kth row send it to the √p
- 1 processes in the same column. 

• Similarly, each of the √p processes containing part of the 
kth column sends it to the √p - 1 processes in the same 
row. 
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Floyd's Algorithm: Parallel Formulation 

Using 2-D Block Mapping 

(a) Matrix D(k) distributed by 2-D block mapping into √p  x √p subblocks, 

and (b) the subblock of D(k) assigned to process Pi,j. 
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Floyd's Algorithm: Parallel Formulation 

Using 2-D Block Mapping 

(a) Communication patterns used in the 2-D block mapping. When computing di
(
,
k
j
), 

information must be sent to the highlighted process from two other processes along 
the same row and column. (b) The row and column of √p processes that contain the 

kth row and column send them along process columns and rows. 33



Floyd's Algorithm: Parallel Formulation 

Using 2-D Block Mapping 

Floyd's parallel formulation using the 2-D block mapping. P*,j denotes 
all the processes in the jth column, and Pi,* denotes all the processes 

in the ith row. The matrix D(0) is the adjacency matrix. 
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Floyd's Algorithm: Parallel Formulation 

Using 2-D Block Mapping 

• During each iteration of the algorithm, the kth row and kth

column of processors perform a one-to-all broadcast 

along their rows/columns. 

• The size of this broadcast is n/√p elements, taking time 

Θ((n log p)/ √p). 

• The synchronization step takes time Θ(log p). 

• The computation time is Θ(n2/p). 

• The parallel run time of the 2-D block mapping 

formulation of Floyd's algorithm is 
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• The above formulation can use O(n2 / log2 n)

processors cost-optimally. 

• The isoefficiency of this formulation is Θ(p1.5 log3 p). 

• This algorithm can be further improved by relaxing the 

strict synchronization after each iteration. 

Floyd's Algorithm: Parallel Formulation 

Using 2-D Block Mapping 
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Floyd's Algorithm: Speeding Things Up 

by Pipelining 

• The synchronization step in parallel Floyd's algorithm 

can be removed without affecting the correctness of the 

algorithm. 

• A process starts working on the kth iteration as soon 

as it has computed the (k-1)th iteration and has the 

relevant parts of the D(k-1) matrix. 
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Floyd's Algorithm: Speeding Things Up 

by Pipelining 

• The overall parallel run time of this formulation is 

• The pipelined formulation of Floyd's algorithm uses up 

to O(n2) processes efficiently. 

• The corresponding isoefficiency is Θ(p1.5). 
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All-pairs Shortest Path: Comparison 

• The performance and scalability of the all-pairs shortest 
paths algorithms on various architectures with bisection 
bandwidth. Similar run times apply to all cube 
architectures, provided that processes are properly 
mapped to the underlying processors. 
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Connected Components 

• The connected components of an undirected graph 

are the equivalence classes of vertices under the ``is 

reachable from'' relation. 

A graph with three connected components: {1,2,3,4}, 

{5,6,7}, and {8,9}. 
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Connected Components: Depth-First 

Search Based Algorithm 

• Perform DFS on the graph to get a forest - arc tree in 

the forest corresponds to a separate connected 

component. 

Part (b) is a depth-first forest obtained from depth-first 

traversal of the graph in part (a). Each of these trees is 

a connected component of the graph in part (a). 44



Connected Components: Parallel 

Formulation 

• Partition the graph across processors and run 

independent connected component algorithms on 

each processor. At this point, we have p spanning 

forests. 

• In the second step, spanning forests are merged 

pairwise until only one spanning forest remains. 
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Connected Components: Parallel 

Formulation    

Computing connected components in parallel. The adjacency matrix of the graph G in (a) 
is partitioned into two parts (b). Each process gets a subgraph of G ((c) and (e)). 
Each process then computes the spanning forest of the subgraph ((d) and (f)). 

Finally, the two spanning trees are merged to form the solution. 
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Connected Components: Parallel 

Formulation 

• To merge pairs of spanning forests efficiently, the 

algorithm uses disjoint sets of edges. 

• We define the following operations on the disjoint 

sets: 

• find(x)

– returns a pointer to the representative element of the set 

containing x . Each set has its own unique representative. 

• union(x, y)

– unites the sets containing the elements x and y. The two sets are 

assumed to be disjoint prior to the operation. 
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Connected Components: Parallel 

Formulation 

• For merging forest A into forest B, for each edge (u,v)

of A, a find operation is performed to determine if the 

vertices are in the same tree of B. 

• If not, then the two trees (sets) of B containing u and 

v are united by a union operation. 

• Otherwise, no union operation is necessary. 

• Hence, merging A and B requires at most 2(n-1) find

operations and (n-1) union operations. 
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Connected Components: Parallel 1-D 

Block Mapping 

• The n x n adjacency matrix is partitioned into p blocks

(1-D).

• Each processor can compute its local spanning forest 

in time Θ(n2/p). 

• Merging is done by embedding a logical tree into the 

topology. There are log p merging stages, and each 

takes time Θ(n). Thus, the cost due to merging is Θ(n 

log p). 

• During each merging stage, spanning forests are sent 

between nearest neighbors. Recall that Θ(n) edges of 

the spanning forest are transmitted. 
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Connected Components: Parallel 1-D 

Block Mapping 

• The parallel run time of the connected-component 

algorithm is 

• For a cost-optimal formulation p = O(n / log n). The 

corresponding isoefficiency is Θ(p2 log2 p). 
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Algorithms for Sparse Graphs 

• A graph G = (V,E) is sparse if |E| is much smaller than 

|V|2.

Examples of sparse graphs: (a) a linear graph, in which each vertex has two incident 

edges; (b) a grid graph, in which each vertex has four incident vertices; and (c) a 

random sparse graph.
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Algorithms for Sparse Graphs 

• Dense algorithms can be improved significantly if we 

make use of the sparseness. For example, the run time 

of Prim's minimum spanning tree algorithm can be 

reduced from Θ(n2) to Θ(|E| log n). 

• Sparse algorithms use adjacency list instead of an 

adjacency matrix. 

• Partitioning adjacency lists is more difficult for 

sparse graphs - do we balance number of vertices or 

edges? 

• Parallel algorithms typically make use of graph 

structure or degree information for performance. 
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Finding a Maximal Independent Set 

• A set of vertices I ⊂ V is called independent if no pair 
of vertices in I is connected via an edge in G. An 
independent set is called maximal if by including any 
other vertex not in I, the independence property is 
violated. 

Examples of independent and maximal independent sets.
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Finding a Maximal Independent Set (MIS) 

• Simple algorithms start by MIS I to be empty, and 

assigning all vertices to a candidate set C. 

• Vertex v from C is moved into I and all vertices 

adjacent to v are removed from C. 

• This process is repeated until C is empty. 

• This process is inherently serial! 
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Finding a Maximal Independent Set (MIS) 

• Parallel MIS algorithms use randimization to gain 

concurrency (Luby's algorithm for graph coloring). 

• Initially, each node is in the candidate set C. Each node 

generates a (unique) random number and 

communicates it to its neighbors. 

• If a nodes number is smalests out of all its neighbors, 

it joins set I. All of its neighbors are removed from C. 

• This process continues until C is empty. 

• On average, this algorithm converges after O(log|V|)

such steps. 
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Finding a Maximal Independent Set (MIS) 

The different augmentation steps of Luby's randomized maximal 
independent set algorithm. The numbers inside each vertex 
correspond to the random number assigned to the vertex.
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Finding a Maximal Independent Set 

(MIS): Parallel Formulation 

• We use three arrays, each of length n. Array I, which 

stores nodes in MIS, C, which stores the candidate set, 

and R, the random numbers. 

• Partition C across p processors. Each processor 

generates the corresponding values in the R array, 

and from this, computes which candidate vertices can 

enter MIS. 

• The C array is updated by deleting all the neighbors 

of vertices that entered MIS. 

• The performance of this algorithm is dependent on the 

structure of the graph. 
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