
Graph Algorithms

Ananth Grama, Anshul Gupta, George

Karypis, and Vipin Kumar

To accompany the text ``Introduction to Parallel Computing'', Addison Wesley, 2003 1

Topic Overview

• Definitions and Representation

• Minimum Spanning Tree: Prim's Algorithm

• Single-Source Shortest Paths: Dijkstra's Algorithm

• All-Pairs Shortest Paths

• Connected Components

• Algorithms for Sparse Graphs

2

Definitions and Representation

• An undirected graph G is a pair (V,E), where V is a finite

set of points called vertices and E is a finite set of edges.

• An edge e ∈ E is an unordered pair (u,v), where u,v ∈
V.

• In a directed graph, the edge e is an ordered pair (u,v).

An edge (u,v) is incident from vertex u and is incident to

vertex v.

• A path from a vertex v to a vertex u is a sequence

<v0,v1,v2,…,vk> of vertices where v0 = v, vk = u, and (vi,

vi+1) ∈ E for i = 0, 1,…, k-1.

• The length of a path is defined as the number of edges

in the path.
3

Definitions and Representation

a) An undirected graph and (b) a directed graph.

4

Definitions and Representation

• An undirected graph is connected if every pair of

vertices is connected by a path.

• A forest is an acyclic graph, and a tree is a connected

acyclic graph.

• A graph that has weights associated with each edge is

called a weighted graph.

5

Definitions and Representation

• Graphs can be represented by their adjacency matrix

or an edge (or vertex) list.

• Adjacency matrices have a value ai,j = 1 if nodes i and j

share an edge; 0 otherwise. In case of a weighted graph,

ai,j = wi,j, the weight of the edge.

• The adjacency list representation of a graph G = (V,E)

consists of an array Adj[1..|V|] of lists. Each list Adj[v] is

a list of all vertices adjacent to v.

• For a graph with n nodes, adjacency matrices take Θ(n2)

space and adjacency list takes Θ(|E|) space.

6

Definitions and Representation

An undirected graph and its adjacency matrix representation.

An undirected graph and its adjacency list representation.
7

Minimum Spanning Tree

• A spanning tree of an undirected graph G is a subgraph

of G that is a tree containing all the vertices of G.

• In a weighted graph, the weight of a subgraph is the sum

of the weights of the edges in the subgraph.

• A minimum spanning tree (MST) for a weighted

undirected graph is a spanning tree with minimum

weight.

8

Minimum Spanning Tree

An undirected graph and its minimum spanning tree.

9

Minimum Spanning Tree: Prim's

Algorithm

• Prim's algorithm for finding an MST is a greedy

algorithm.

• Start by selecting an arbitrary vertex, include it into

the current MST.

• Grow the current MST by inserting into it the vertex

closest to one of the vertices already in current MST.

10

Minimum Spanning Tree: Prim's Algorithm

Prim's minimum spanning tree algorithm.
11

Minimum Spanning Tree: Prim's

Algorithm

Prim's sequential minimum spanning tree algorithm.

12

Prim's Algorithm: Parallel Formulation

• The algorithm works in n outer iterations - it is hard to execute

these iterations concurrently.

• The inner loop is relatively easy to parallelize. Let p be the number

of processes, and let n be the number of vertices.

• The adjacency matrix is partitioned in a 1-D block fashion, with

distance vector d partitioned accordingly.

• In each step, a processor selects the locally closest node,

followed by a global reduction to select globally closest node.

• This node is inserted into MST, and the choice broadcast to all

processors.

• Each processor updates its part of the d vector locally.

13

Prim's Algorithm: Parallel Formulation

The partitioning of the distance array d and the adjacency matrix A
among p processes.

14

Prim's Algorithm: Parallel Formulation

• The cost to select the minimum entry is O(n/p + log p).

• The cost of a broadcast is O(log p).

• The cost of local updation of the d vector is O(n/p).

• The parallel time per iteration is O(n/p + log p).

• The total parallel time is given by O(n2/p + n log p).

• The corresponding isoefficiency is O(p2log2p).

15

Single-Source Shortest Paths

• For a weighted graph G = (V,E,w), the single-source

shortest paths problem is to find the shortest paths

from a vertex v ∈ V to all other vertices in V.

• Dijkstra's algorithm is similar to Prim's algorithm. It

maintains a set of nodes for which the shortest paths are

known.

• It grows this set based on the node closest to source

using one of the nodes in the current shortest path set.

16

Single-Source Shortest Paths: Dijkstra's

Algorithm

Dijkstra's sequential single-source shortest paths algorithm.

17

Dijkstra's Algorithm: Parallel Formulation

• Very similar to the parallel formulation of Prim's

algorithm for minimum spanning trees.

• The weighted adjacency matrix is partitioned using the 1-

D block mapping.

• Each process selects, locally, the node closest to the

source, followed by a global reduction to select next

node.

• The node is broadcast to all processors and the l-vector

updated.

• The parallel performance of Dijkstra's algorithm is

identical to that of Prim's algorithm.

18

All-Pairs Shortest Paths

• Given a weighted graph G(V,E,w), the all-pairs shortest

paths problem is to find the shortest paths between all

pairs of vertices vi, vj ∈ V.

• A number of algorithms are known for solving this

problem.

19

All-Pairs Shortest Paths: Matrix-

Multiplication Based Algorithm

• Consider the multiplication of the weighted adjacency

matrix with itself - except, in this case, we replace the

multiplication operation in matrix multiplication by

addition, and the addition operation by minimization.

• Notice that the product of weighted adjacency matrix

with itself returns a matrix that contains shortest paths

of length 2 between any pair of nodes.

• It follows from this argument that An contains all

shortest paths.

20

Matrix-Multiplication Based Algorithm

21

Matrix-Multiplication Based Algorithm

• An is computed by doubling powers - i.e., as A, A2, A4,

A8, and so on.

• We need log n matrix multiplications, each taking time

O(n3).

• The serial complexity of this procedure is O(n3log n).

• This algorithm is not optimal, since the best known

algorithms have complexity O(n3).

22

Matrix-Multiplication Based Algorithm:

Parallel Formulation

• Each of the log n matrix multiplications can be

performed in parallel.

• We can use n3/log n processors to compute each

matrix-matrix product in time log n.

• The entire process takes O(log2n) time.

23

Dijkstra's Algorithm

• Execute n instances of the single-source shortest

path problem, one for each of the n source vertices.

• Complexity is O(n3).

24

Dijkstra's Algorithm: Parallel Formulation

• Two parallelization strategies - execute each of the n

shortest path problems on a different processor (source

partitioned), or use a parallel formulation of the shortest

path problem to increase concurrency (source parallel).

25

Dijkstra's Algorithm: Source Partitioned

Formulation

• Use n processors, each processor Pi finds the

shortest paths from vertex vi to all other vertices by

executing Dijkstra's sequential single-source shortest

paths algorithm.

• It requires no interprocess communication (provided

that the adjacency matrix is replicated at all processes).

• The parallel run time of this formulation is: Θ(n2).

• While the algorithm is cost optimal, it can only use n

processors. Therefore, the isoefficiency due to

concurrency is p3.

26

Dijkstra's Algorithm: Source Parallel

Formulation

• In this case, each of the shortest path problems is

further executed in parallel. We can therefore use up

to n2 processors.

• Given p processors (p > n), each single source

shortest path problem is executed by p/n processors.

• Using previous results, this takes time:

• For cost optimality, we have p = O(n2/log n) and the

isoefficiency is Θ((p log p)1.5).

27

Floyd's Algorithm

• For any pair of vertices vi, vj ∈ V, consider all paths from

vi to vj whose intermediate vertices belong to the set

{v1,v2,…,vk}. Let pi
(
,
k
j
) (of weight di

(
,
k
j
) be the minimum-

weight path among them.

• If vertex vk is not in the shortest path from vi to vj, then

pi
(
,
k
j
) is the same as pi

(
,
k
j
-1).

• If vk is in pi
(
,
k

j
), then we can break pi

(
,
k

j
) into two paths -

one from vi to vk and one from vk to vj . Each of these

paths uses vertices from {v1,v2,…,vk-1}.

28

Floyd's Algorithm

From our observations, the following recurrence

relation follows:

This equation must be computed for each pair of

nodes and for k = [1, n]. The serial complexity is O(n3).

29

Floyd's Algorithm

Floyd's all-pairs shortest paths algorithm. This program

computes the all-pairs shortest paths of the graph G =

(V,E) with adjacency matrix A.

30

Floyd's Algorithm: Parallel Formulation

Using 2-D Block Mapping

• Matrix D(k) is divided into p blocks of size (n / √p) x (n /
√p).

• Each processor updates its part of the matrix during
each iteration.

• To compute dl
(
,
k
k
-1) processor Pi,j must get dl

(
,
k

k
-1) and

dk
(
,
k

r
-1).

• In general, during the kth iteration, each of the √p
processes containing part of the kth row send it to the √p
- 1 processes in the same column.

• Similarly, each of the √p processes containing part of the
kth column sends it to the √p - 1 processes in the same
row.

31

Floyd's Algorithm: Parallel Formulation

Using 2-D Block Mapping

(a) Matrix D(k) distributed by 2-D block mapping into √p x √p subblocks,

and (b) the subblock of D(k) assigned to process Pi,j.

32

Floyd's Algorithm: Parallel Formulation

Using 2-D Block Mapping

(a) Communication patterns used in the 2-D block mapping. When computing di
(
,
k
j
),

information must be sent to the highlighted process from two other processes along
the same row and column. (b) The row and column of √p processes that contain the

kth row and column send them along process columns and rows. 33

Floyd's Algorithm: Parallel Formulation

Using 2-D Block Mapping

Floyd's parallel formulation using the 2-D block mapping. P*,j denotes
all the processes in the jth column, and Pi,* denotes all the processes

in the ith row. The matrix D(0) is the adjacency matrix.
34

Floyd's Algorithm: Parallel Formulation

Using 2-D Block Mapping

• During each iteration of the algorithm, the kth row and kth

column of processors perform a one-to-all broadcast

along their rows/columns.

• The size of this broadcast is n/√p elements, taking time

Θ((n log p)/ √p).

• The synchronization step takes time Θ(log p).

• The computation time is Θ(n2/p).

• The parallel run time of the 2-D block mapping

formulation of Floyd's algorithm is

35

• The above formulation can use O(n2 / log2 n)

processors cost-optimally.

• The isoefficiency of this formulation is Θ(p1.5 log3 p).

• This algorithm can be further improved by relaxing the

strict synchronization after each iteration.

Floyd's Algorithm: Parallel Formulation

Using 2-D Block Mapping

36

Floyd's Algorithm: Speeding Things Up

by Pipelining

• The synchronization step in parallel Floyd's algorithm

can be removed without affecting the correctness of the

algorithm.

• A process starts working on the kth iteration as soon

as it has computed the (k-1)th iteration and has the

relevant parts of the D(k-1) matrix.

37

Floyd's Algorithm: Speeding Things Up

by Pipelining

• The overall parallel run time of this formulation is

• The pipelined formulation of Floyd's algorithm uses up

to O(n2) processes efficiently.

• The corresponding isoefficiency is Θ(p1.5).

40

All-pairs Shortest Path: Comparison

• The performance and scalability of the all-pairs shortest
paths algorithms on various architectures with bisection
bandwidth. Similar run times apply to all cube
architectures, provided that processes are properly
mapped to the underlying processors.

41

Connected Components

• The connected components of an undirected graph

are the equivalence classes of vertices under the ``is

reachable from'' relation.

A graph with three connected components: {1,2,3,4},

{5,6,7}, and {8,9}.

43

Connected Components: Depth-First

Search Based Algorithm

• Perform DFS on the graph to get a forest - arc tree in

the forest corresponds to a separate connected

component.

Part (b) is a depth-first forest obtained from depth-first

traversal of the graph in part (a). Each of these trees is

a connected component of the graph in part (a). 44

Connected Components: Parallel

Formulation

• Partition the graph across processors and run

independent connected component algorithms on

each processor. At this point, we have p spanning

forests.

• In the second step, spanning forests are merged

pairwise until only one spanning forest remains.

45

Connected Components: Parallel

Formulation

Computing connected components in parallel. The adjacency matrix of the graph G in (a)
is partitioned into two parts (b). Each process gets a subgraph of G ((c) and (e)).
Each process then computes the spanning forest of the subgraph ((d) and (f)).

Finally, the two spanning trees are merged to form the solution.
46

Connected Components: Parallel

Formulation

• To merge pairs of spanning forests efficiently, the

algorithm uses disjoint sets of edges.

• We define the following operations on the disjoint

sets:

• find(x)

– returns a pointer to the representative element of the set

containing x . Each set has its own unique representative.

• union(x, y)

– unites the sets containing the elements x and y. The two sets are

assumed to be disjoint prior to the operation.

47

Connected Components: Parallel

Formulation

• For merging forest A into forest B, for each edge (u,v)

of A, a find operation is performed to determine if the

vertices are in the same tree of B.

• If not, then the two trees (sets) of B containing u and

v are united by a union operation.

• Otherwise, no union operation is necessary.

• Hence, merging A and B requires at most 2(n-1) find

operations and (n-1) union operations.

48

Connected Components: Parallel 1-D

Block Mapping

• The n x n adjacency matrix is partitioned into p blocks

(1-D).

• Each processor can compute its local spanning forest

in time Θ(n2/p).

• Merging is done by embedding a logical tree into the

topology. There are log p merging stages, and each

takes time Θ(n). Thus, the cost due to merging is Θ(n

log p).

• During each merging stage, spanning forests are sent

between nearest neighbors. Recall that Θ(n) edges of

the spanning forest are transmitted.

49

Connected Components: Parallel 1-D

Block Mapping

• The parallel run time of the connected-component

algorithm is

• For a cost-optimal formulation p = O(n / log n). The

corresponding isoefficiency is Θ(p2 log2 p).

50

Algorithms for Sparse Graphs

• A graph G = (V,E) is sparse if |E| is much smaller than

|V|2.

Examples of sparse graphs: (a) a linear graph, in which each vertex has two incident

edges; (b) a grid graph, in which each vertex has four incident vertices; and (c) a

random sparse graph.
51

Algorithms for Sparse Graphs

• Dense algorithms can be improved significantly if we

make use of the sparseness. For example, the run time

of Prim's minimum spanning tree algorithm can be

reduced from Θ(n2) to Θ(|E| log n).

• Sparse algorithms use adjacency list instead of an

adjacency matrix.

• Partitioning adjacency lists is more difficult for

sparse graphs - do we balance number of vertices or

edges?

• Parallel algorithms typically make use of graph

structure or degree information for performance.

52

Finding a Maximal Independent Set

• A set of vertices I ⊂ V is called independent if no pair
of vertices in I is connected via an edge in G. An
independent set is called maximal if by including any
other vertex not in I, the independence property is
violated.

Examples of independent and maximal independent sets.
54

Finding a Maximal Independent Set (MIS)

• Simple algorithms start by MIS I to be empty, and

assigning all vertices to a candidate set C.

• Vertex v from C is moved into I and all vertices

adjacent to v are removed from C.

• This process is repeated until C is empty.

• This process is inherently serial!

55

Finding a Maximal Independent Set (MIS)

• Parallel MIS algorithms use randimization to gain

concurrency (Luby's algorithm for graph coloring).

• Initially, each node is in the candidate set C. Each node

generates a (unique) random number and

communicates it to its neighbors.

• If a nodes number is smalests out of all its neighbors,

it joins set I. All of its neighbors are removed from C.

• This process continues until C is empty.

• On average, this algorithm converges after O(log|V|)

such steps.

56

Finding a Maximal Independent Set (MIS)

The different augmentation steps of Luby's randomized maximal
independent set algorithm. The numbers inside each vertex
correspond to the random number assigned to the vertex.

57

Finding a Maximal Independent Set

(MIS): Parallel Formulation

• We use three arrays, each of length n. Array I, which

stores nodes in MIS, C, which stores the candidate set,

and R, the random numbers.

• Partition C across p processors. Each processor

generates the corresponding values in the R array,

and from this, computes which candidate vertices can

enter MIS.

• The C array is updated by deleting all the neighbors

of vertices that entered MIS.

• The performance of this algorithm is dependent on the

structure of the graph.

58

