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Definitions and Representation

An undirected graph G is a pair (V,E), where V is a finite
set of points called vertices and E is a finite set of edges.

An edge e € E is an unordered pair (u,v), where u,v €
V.

In a directed graph, the edge e is an ordered pair (u,v).
An edge (u,v) is incident from vertex u and is incident to
vertex v.

A path from a vertex v to a vertex u is a sequence
<Vqy,V1,Vs, ..., V> Of vertices where v, = v, v, = u, and (v,
Vi,;) € Efori =0, 1,..., k-1.

The length of a path is defined as the number of edges
In the path.
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Definitions and Representation

(a) (b)

a) An undirected graph and (b) a directed graph.



Definitions and Representation

« An undirected graph is connected if every pair of
vertices is connected by a path.

« Aforest is an acyclic graph, and a tree is a connected
acyclic graph.

« Agraph that has weights associated with each edge is
called a weighted graph.



Definitions and Representation

Graphs can be represented by their adjacency matrix
or an edge (or vertex) list.

Adjacency matrices have a value a;; = 1 if nodes | and |
share an edge; O otherwise. In case of a weighted graph,

a;; = W;;, the weight of the edge.

The adjacency list representation of a graph G = (V,E)
consists of an array Adj[1..|V|] of lists. Each list Adj[v] Is

a list of all vertices adjacent to v.

For a graph with n nodes, adjacency matrices take @(n?)
space and adjacency list takes O(|E|) space.



Definitions and Representation
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An undirected graph and its adjacency matrix representation.
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An undirected graph and its adjacency list representatiog.



Minimum Spanning Tree

 Aspanning tree of an undirected graph G is a subgraph
of G that Is a tree containing all the vertices of G.

* In a weighted graph, the weight of a subgraph is the sum
of the weights of the edges in the subgraph.

« Aminimum spanning tree (MST) for a weighted
undirected graph is a spanning tree with minimum
weight.



Minimum Spanning Tree

An undirected graph and its minimum spanning tree.



Minimum Spanning Tree: Prim's
Algorithm

 Prim's algorithm for finding an MST Is a greedy
algorithm.

« Start by selecting an arbitrary vertex, include it into
the current MST.

« Grow the current MST by inserting into it the vertex
closest to one of the vertices already in current MST.
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Minimum Spanning Tree: Prim's Algorithm
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Minimum Spanning Tree: Prim's

Algorithm
procedure PRIM_MST(V, E, w, r)
begin
= {r};
d.[ ] :=0;

forallv € (V — Vp)do
if edge (r, v) exists set d[v] := w(r, v);
else set d[v] := oc;
while Vi £ V do
begin
find a vertex w such that d[u] := min{d[v]|v € (V — V) };
Vi .= Vp U {u};
forallv € (V — Vr) do
dlv] := min{d[v],
endwhile
end PRIM_MST

w(u, v)};

Prim's sequential minimum spanning tree algorithm.
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Prim's Algorithm: Parallel Formulation

The algorithm works in n outer iterations - it is hard to execute
these iterations concurrently.

The inner loop is relatively easy to parallelize. Let p be the number
of processes, and let n be the number of vertices.

The adjacency matrix is partitioned in a 1-D block fashion, with
distance vector d partitioned accordingly.

In each step, a processor selects the locally closest node,
followed by a global reduction to select globally closest node.

This node is inserted into MST, and the choice broadcast to all
Processors.

Each processor updates its part of the d vector locally.

13



Parallel Formulation

Prim's Algorithm

(a)

d[1..n]

0

Processors

The partitioning of the distance array d and the adjacency matrix A
among p processes.
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Prim's Algorithm: Parallel Formulation

The cost to select the minimum entry is O(n/p + log p).
The cost of a broadcast is O(log p).
The cost of local updation of the d vector is O(n/p).

The parallel time per iteration is O(n/p + log p).
The total parallel time is given by O(n?/p + n log p).

The corresponding isoefficiency is O(p?4log?p).
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Single-Source Shortest Paths

* For a weighted graph G = (V,E,w), the single-source
shortest paths problem is to find the shortest paths
from a vertex v €V to all other vertices in V.

* Dijkstra's algorithm is similar to Prim's algorithm. It
maintains a set of nodes for which the shortest paths are
Known.

e Itgrows this set based on the node closest to source
using one of the nodes in the current shortest path set.
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Single-Source Shortest Paths: Dijkstra's
Algorithm

procedure DIJKSTRA_SINGLE_SOURCE_SP(V, E, w, s)
begin
V= {s}.
forallv € (V — V) do
if (s,v)existsset l[v] := w(s,v);
else set [[v] := oc;
while Vi £ V do
begin
find a vertex w such that i [u] := min{l[v]|v € (V — V) };
Vp = Vi U{u};
forallv € (V — V) do
[[v] := min{l[v], l[u] +w(u, v)}
endwhile
end DIJKSTRA_SINGLE_SOURCE_SP

T oSS0 N0 OALND -~
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Dijkstra's sequential single-source shortest paths algorithm.
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Dijkstra's Algorithm: Parallel Formulation

« Very similar to the parallel formulation of Prim's
algorithm for minimum spanning trees.

« The weighted adjacency matrix is partitioned using the 1-
D block mapping.

« Each process selects, locally, the node closest to the
source, followed by a global reduction to select next
node.

 The node is broadcast to all processors and the |-vector
updated.

* The parallel performance of Dijkstra's algorithm is
Identical to that of Prim's algorithm.
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All-Pairs Shortest Paths

* Given a weighted graph G(V,E,w), the all-pairs shortest
paths problem is to find the shortest paths between all

pairs of vertices v;, v; € V.

« A number of algorithms are known for solving this
problem.
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All-Pairs Shortest Paths: Matrix-
Multiplication Based Algorithm

« Consider the multiplication of the weighted adjacency
matrix with itself - except, in this case, we replace the
multiplication operation in matrix multiplication by
addition, and the addition operation by minimization.

* Notice that the product of weighted adjacency matrix
with itself returns a matrix that contains shortest paths
of length 2 between any pair of nodes.

« It follows from this argument that A" contains all
shortest paths.
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Matrix-Multiplication Based Algorithm
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Matrix-Multiplication Based Algorithm

A" is computed by doubling powers - i.e., as A, A2, A%,
A8 and so on.

We need log n matrix multiplications, each taking time
O(n3).

The serial complexity of this procedure is O(n3log n).

This algorithm is not optimal, since the best known
algorithms have complexity O(n3).
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Matrix-Multiplication Based Algorithm:

Parallel Formulation

Each of the log n matrix multiplications can be
performed in parallel.

We can use n3/log n processors to compute each
matrix-matrix product in time log n.

The entire process takes O(log?n) time.
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Dijkstra's Algorithm

« EXecute n instances of the single-source shortest
path problem, one for each of the n source vertices.

« Complexity is O(n3).
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Dijkstra's Algorithm: Parallel Formulation

 Two parallelization strategies - execute each of the n
shortest path problems on a different processor (source
partitioned), or use a parallel formulation of the shortest
path problem to increase concurrency (source parallel).
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Dijkstra's Algorithm: Source Partitioned
Formulation

Use n processors, each processor P; finds the
shortest paths from vertex v, to all other vertices by
executing Dijkstra's sequential single-source shortest
paths algorithm.

It requires no interprocess communication (provided
that the adjacency matrix is replicated at all processes).

The parallel run time of this formulation is: ©(n?).

While the algorithm is cost optimal, it can only use n
processors. Therefore, the isoefficiency due to
concurrency is p*.
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Dijkstra's Algorithm: Source Parallel
Formulation

In this case, each of the shortest path problems is
further executed in parallel. We can therefore use up
to n? processors.

Given p processors (p > n), each single source
shortest path problem is executed by p/n processors.

Using previous results, this takes time:

compﬂaﬁon

~ communication
P et

d 3
Tp = © (%) + O(nlogp).

For cost optimality, we have p = O(n?/log n) and the
Isoefficiency is O((p log p)*»)
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Floyd's Algorithm

* For any pair of vertices v;, v; €V, consider all paths from
v; to v; whose intermediate vertices belong to the set
{V1.Vy...,vi}. Let p¥) (of weight d,(%) be the minimum-
weight path among them

* If vertex v, is not in the shortest path from v; to v;, then
p,(k) is the same as p;(kD.

* Ifviisinp;(¥), then we can break p;(¥) into two paths -
one from v, to Vi, and one from v, to v; . Each of these
paths uses vertices from {vl,vz,...,vk_l}.

28



Floyd's Algorithm

From our observations, the following recurrence
relation follows:

(k) TU(UE:, Uj) Tk =0
%5 7\ min {d® D, dkD 1 af DY i k>

This equation must be computed for each pair of
nodes and for k =[1, n]. The serial complexity is O(n3).
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Floyd's Algorithm

procedure FLOYD_ALL_PAIRS_SP(A)
begin
DY = A;

fork := 1ton do
for: := 1ton do
forj :=1tondo
" _ T, e
d;_j} ‘= min (dij 1']._ di:.ﬁ.: D4 d':?l-.j lj):
end FLOYD_ALL_PAIRS_SP

© N OO W~

Floyd's all-pairs shortest paths algorithm. This program
computes the all-pairs shortest paths of the graph G =
(V,E) with adjacency matrix A.
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Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping

I\\//Iatrix DX is divided into p blocks of size (n/Vp) x (n /
p).

Each processor updates its part of the matrix during
each iteration.

To compute d(}-Y) processor P;; must get d,(¥ ) and
d, (kD

T
In general, during the ki iteration, each of the \p
processes containing part of the kh row send it to the \p
- 1 processes in the same column.

Similarly, each of the Vp processes containing part of the
kth column sends it to the \p - 1 processes in the same
row.
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Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping
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(a) Matrix D® distributed by 2-D block mapping into Vp x Vp subblocks,
and (b) the subblock of D® assigned to process P;;.
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Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping
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(a) Communication patterns used in the 2-D block mapping. When computing d(k)
information must be sent to the highlighted process from two other processes along
the same row and column. (b) The row and column of \Vp processes that contain the

ki row and column send them along process columns and rows. 33



Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping

procedure FLOYD _2DBLOCK(D™)

1.

2. begin

3. fork :=1tondo

4, begin

5. each process P, ; that has a segment of the k™ row of D=1
broadcasts if o the P, ; processes;

6. each process P; ; that has a segment of the k" column of D*~Y;
broadcasts it 1o the P; . processes;

/. each process waits to receive the needed segments;

8. each process P; ; computes its part of the D™ matrix;

Q. end

]

0. end FLOYD_2DBLOCK

Floyd's parallel formulation using the 2-D block mapping. P.; denotes
all the processes in the j" column, and Pi,. denotes all the processes

in the i" row. The matrix D© is the adjacency matrix. "



Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping

During each iteration of the algorithm, the k" row and k®
column of processors perform a one-to-all broadcast
along their rows/columns.

The size of this broadcast is n/\p elements, taking time

O((n log p)/ \p).
The synchronization step takes time ©(log p).

The computation time is O(n?/p).

The parallel run time of the 2-D block mapping
formulation of Floyd's algorithm is

computation communication

.- e 2
I'p= O (i) + 6 (L_logp) .
p VP 35




Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping

The above formulation can use O(n?/log? n)
processors cost-optimally.

The isoefficiency of this formulation is @(p!> log? p).

This algorithm can be further improved by relaxing the
strict synchronization after each iteration.
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Floyd's Algorithm: Speeding Things Up
by Pipelining

 The synchronization step in parallel Floyd's algorithm
can be removed without affecting the correctness of the
algorithm.

« A process starts working on the k" iteration as soon
as it has computed the (k-1)t" iteration and has the
relevant parts of the DY) matrix.
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Floyd's Algorithm: Speeding Things Up
by Pipelining

« The overall parallel run time of this formulation is

computation
e N communication

ey
Tp = e(i) + ©(n).
P

« The pipelined formulation of Floyd's algorithm uses up
to O(n?) processes efficiently.

* The corresponding isoefficiency is O(pi>).
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All-pairs Shortest Path: Comparison

« The performance and scalability of the all-pairs shortest
paths algorithms on various architectures with bisection
bandwidth. Similar run times apply to all cube
architectures, provided that processes are properly
mapped to the underlying processors.

Maximum Number

of Processes Corresponding Isoefficiency
for B = ©(1) Parallel Run Time  Function
Dijkstra source-partitioned ©(n) O(n?) e (p”)
Dijkstra source-parallel (ﬂ‘:"ﬁ log n) O(n log nj O((plog pj )
Floyd 2-D block (ﬂzﬁ log?n ) O(n log? n) (—}(pl 2 lr:nT p)
Floyd pipelined 2-D block ©(n?) O(n) o(p'?®
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Connected Components

« The connected components of an undirected graph
are the equivalence classes of vertices under the is
reachable from" relation.

9‘0

A graph with three connected components: {1,2,3,4},
{5,6,7}, and {8,9}.
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Connected Components: Depth-First
Search Based Algorithm

 Perform DFS on the graph to get a forest - arc tree In
the forest corresponds to a separate connected

component. O—& G (9)
N @4 G
> G (1)
(2)

Part (b) is a depth-first forest obtained from depth-first
traversal of the graph in part (a). Each of these trees is
a connected component of the graph in part (a). 4,




Connected Components: Parallel
Formulation

« Partition the graph across processors and run
Independent connected component algorithms on
each processor. At this point, we have p spanning
forests.

* In the second step, spanning forests are merged
pairwise until only one spanning forest remains.
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Connected Components: Parallel
Formulation
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Computing connected components in parallel. The adjacency matrix of the graph G in (a)
is partitioned into two parts (b). Each process gets a subgraph of G ((c) and (e)).
Each process then computes the spanning forest of the subgraph ((d) and (f)). 46

Finally, the two spanning trees are merged to form the solution.



Connected Components: Parallel
Formulation

To merge pairs of spanning forests efficiently, the
algorithm uses disjoint sets of edges.

We define the following operations on the disjoint
sets:
find(x)

— returns a pointer to the representative element of the set
containing x . Each set has its own unique representative.

union(x, y)

— unites the sets containing the elements x and y. The two sets are
assumed to be disjoint prior to the operation.
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Connected Components: Parallel
Formulation

For merging forest A into forest B, for each edge (u,v)
of A, afind operation is performed to determine if the
vertices are in the same tree of B.

If not, then the two trees (sets) of B containing u and
v are united by a union operation.

Otherwise, no union operation is necessatry.

Hence, merging A and B requires at most 2(n-1) find
operations and (n-1) union operations.
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Connected Components: Parallel 1-D
Block Mapping

The n x n adjacency matrix is partitioned into p blocks
(1-D).

Each processor can compute its local spanning forest
In time ©(n4/p).

Merging is done by embedding a logical tree into the

topology. There are log p merging stages, and each
takes time ©(n). Thus, the cost due to merging is O(n

log p).

During each merging stage, spanning forests are sent
between nearest neighbors. Recall that ©(n) edges of
the spanning forest are transmitted.
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Connected Components: Parallel 1-D
Block Mapping

« The parallel run time of the connected-component
algorithm is

local computation

— forest merging

n- rmmm———

Tp= O (3) + ©(nlogp).
p

* For a cost-optimal formulation p = O(n /log n). The
corresponding isoefficiency is @(p? log? p).
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Algorithms for Sparse Graphs

« Agraph G = (V,E) is sparse if |E| iIs much smaller than

T e

g

Examples of sparse graphs: (a) a linear graph, in which each vertex has two incident
edges; (b) a grid graph, in which each vertex has four incident vertices; and (c) a

random sparse graph. el



Algorithms for Sparse Graphs

Dense algorithms can be improved significantly if we
make use of the sparseness. For example, the run time
of Prim's minimum spanning tree algorithm can be
reduced from ©(n?) to O(|E| log n).

Sparse algorithms use adjacency list instead of an
adjacency matrix.

Partitioning adjacency lists is more difficult for
sparse graphs - do we balance number of vertices or
edges?

Parallel algorithms typically make use of graph
structure or degree information for performance.
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Finding a Maximal Independent Set

 Asetofvertices| CV is called independent if no pair
of vertices in | is connected via an edge in G. An
Independent set is called maximal if by including any

other vertex not in |, the independence property is
violated.

{a. d, 1} 15 an independent set

{a, ¢, ], 1, g} 1s a maximal independent set

{a, d, h, f} 1s a maximal independent set

Examples of independent and maximal independent sets.
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Finding a Maximal Independent Set (MIS)

« Simple algorithms start by MIS | to be empty, and
assigning all vertices to a candidate set C.

« Vertex v from Cis moved into | and all vertices
adjacent to v are removed from C.

« This process is repeated until C is empty.
* This process is inherently serial!
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Finding a Maximal Independent Set (MIS)

« Parallel MIS algorithms use randimization to gain
concurrency (Luby's algorithm for graph coloring).

« Initially, each node is in the candidate set C. Each node
generates a (unique) random number and
communicates it to its neighbors.

« If a nodes number is smalests out of all its neighbors,
It joins set I. All of its neighbors are removed from C.

« This process continues until C is empty.

« On average, this algorithm converges after O(log|V|)
such steps.
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Finding a Maximal Independent Set (MIS)

. Vertex in the independent set

O Vertex adjacent to a vertex
in the independent set

(b) After the 2nd random mumber assignment (c) Final maximal independent set

The different augmentation steps of Luby's randomized maximal
Independent set algorithm. The numbers inside each vertex

correspond to the random number assigned to the vertex. >



Finding a Maximal Independent Set
(MIS): Parallel Formulation

We use three arrays, each of length n. Array I, which
stores nodes in MIS, C, which stores the candidate set,
and R, the random numbers.

Partition C across p processors. Each processor
generates the corresponding values in the R array,
and from this, computes which candidate vertices can
enter MIS.

The C array is updated by deleting all the neighbors
of vertices that entered MIS.

The performance of this algorithm is dependent on the
structure of the graph.
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