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System input State uncertainty

e State estimator is often called state observer in the context of control systems.
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Tomse Robot's current state

B . .

e e Robot's belief of its current state.
ol cuos e Probability Distribution Function (PDF), often multivariate normal distribution.
4

State
estimators
and Filters , .

iz Robot’'s motion model

Kalman

E"‘e'd ) e Allows to predict robot's future state based on the current state and input.

tende

e e Transforms the current state distribution, based on input.

Unscented -
Kalman

Filter ,
o Robot’s sensor model
estimation . . .y .

e Allows to incorporate measurements into the current state probabilistically.

Odometry . ,
S o Allows to create artificial measurements based on the world model and the robot's state. )
ocalization

Global

localization

R [1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005 )
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Probabilistic generative laws

Robot’s state is complete

e Robot's state at the time step k is all we need to predict the future:
P(X[k] 1X[0:k—1]> U[1:k]5 Z[1:k—1]) — P(X[k]|X[k—1]> Ufk—1])-
e The measurement of robot's state is conditionally independent on the previous states:

P(Z (k] 1X[0:k—1]> U[1:k]> Z[1:k—1]) — P(Z[k]|X[k)-

1)

@ |
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Probabilistic generative laws

e Gauss-Markov assumption states that the future and past states are decorrelated given the current state.
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Gauss-Markov assumption for stochastic systems
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e Gauss-Markov assumption states that the future and past states are decorrelated given the current state.
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Current state at the sample k
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e Current state is all we need to capture the past.
e Current state yields the prediction of the future state.
e The future states is measured.

e The prediction and the measurement are combined to form the estimate of the future state.
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e Current state is all we need to capture the past.
e Current state yields the prediction of the future state.
e The future states is measured.

e The prediction and the measurement are combined to form the estimate of the future state.
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e Current state is all we need to capture the past.
e Current state yields the prediction of the future state.
e The future states is measured.

e The prediction and the measurement are combined to form the estimate of the future state.
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Tomae Models
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e State: Multivariate Gaussian

ey e Sensor model: added noise A(0,R)
:i["::fm,,\ e Motion model: linear model with added noise
and Filters N(O, Q)

Linear v
K.alman

e e Developed in &~ 1960 at NASA. T ——

o . . . wo-stage algorithm

S e Optimal state estimator for linear models. g g

e e Minimum Mean-Square Error estimator. U Pi‘Edlctfon: propagation of robot’s state and its
Filter uncertainty through the model.
Lo e Correction: update of the robot's state and its
o uncertainty using measurements.

dometry v
Localization

- How to derive it?

- e B3M350FD, Estimation, filtering and detection

v
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Estimator for the Linear Time Invariant (LTI) system
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UAV local-
ization o o
o Discrete stochastic LTI System Measurement model
Bica e State at the time step k: x| € R™. e Vector of measurements: z € RP.
Introduction i . m
- e Input at the time step k: up) € R™. 200 = Hx + v, (4)
X(k1] = Axpg] + Bugg) + wie, ®)
and Filters where:
Linear Where X
Kalman . o Measurement-state mapping: H € RP*™,
Filter e System matrix: A € R"*", . PPN ©
Exences o Input matrix: B € RMX™ e Measurement noise: vii ~ N (0, R),
Filter ! . .
U e Process noise wi ~ N(0, Q), e Measurement noise covariance: R € Rz;ép. )
rm::d” . . nxn
_ e Process covariance matrix: Q € R3g™.
Attitude
estimation o
SR Goal of the estimator
Localization
. To estimate the tuple xi‘k],P[k], where
localization
i . xi‘k] is the state vector estimate,

. P[k] € R™*™ is the state covariance.
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s Correction
tate

estimators

e Given Py}, calculate the Kalman gain:

and Filters . .
e Prediction )

A - T T -

Eri o Given xi‘k],P[k],u[k]: K[k] - P[k]H (HP[k]H + R‘) . (7)
Extended

Kalman

Filter xrk-&-l] = AXE}C] + Bu[k] (5)

Kalman P[k+1] = AP[k]AT +Q (6)

Filter

e Given xf‘k],P[k],z[k],K[k], update the state and
its covariance:
L P = (I Ky H) Py, ©)

v
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localization

Tomds Ba¢a (CTU in Prague) Lecture 3: UAV localization October 5th, 2025

Linear Kalman Fier (LKF)

Lecture 3: UAV localization
State estimators and Filters
Linear Kalman Filter
LKF

2025-10-05



Linear Kalman Filter (LKF)

Lecture 3: “ "
Leque®  The “synchronous” LKF cycle
ization
Toma¥ measurement cov. measurement
Béata R[k] Z[k]
e initial conditions l l
State x* , P
e (07 101 Calculate the Kalman gain Correction
——————— >
Linear — * * *
S K = P HT(HP; HT + R)™! X{i) = X{y + Kip (200 — Hxjy)
Extended
Kalman
Filter Py—
Unscented ki=k+1
Kalman
Filter
Attitude Prediction
estimation Calculate the error covariance
Odometry X{ket1) = Axfy + Bug Py = (I1— K H)P
Localization P = (AP AT) +Q o = ( 1 HDP
Global
localization
- The cycle evaluation rate?

e At the mercy of the incoming measurements.
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Linear Kalman Filter (LKF)

Lecture 3:
uaviest The “asynchronous” LKF cycle
Tom33 L )
Bata e Prediction step executed at fixed rate.
Linear
Kalman
Filter
Extended
£ ki=kt1
Unscented /_\
Kalman
Filter
Prediction
X[h41) = AX[y) + Bugy
Pty = (APAT) +Q
Global
localization
Local

localization

current hypothesis
X{i1s Pi)

|

e Correction step executed on demand.

measurement cov.

. R
Calculate the Kalman gain
D —
K[ = P HT(HP; H" + R) ™!
l measurement
Correction 21k]
e
X{p) = X[k + Ky (20 — Hxy)

!

Calculate the error covariance

Py = (1 - Ky H)Py
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o More often, the prediction and correction happen asynchronously.

e Corrections can be even caused by variety of sources at different rate.

October 5th, 2025

Linear Kalman Fier (LKF)

10/54

The “asynchronous” LKF cycle

e The prediction step is often being evaluated at fixed rate. The state obtained at the prediction step is used for control.
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Introduction r . 1.0 0.01 0
State = H ou=[fa] A= {0.0 0.99} B = {0.01]
estimators (11)

and Filters

Tq

- 1
0.9955+1

Linear . *
N i r
0.995s+1

Extended
Filter o

Kalman
Unscented % [k gk

X' = [r", T

y

@ [~

Kalman

e Measurement

Attitude
estimation e Measurement vector: z = [Fmes|T.

ey e Measurement mapping:
Localization

Global z = Hx, where H € RP*™, (12)
v

localization

Local
localization

Tom4s Ba¢a (CTU in Prague) Lecture 3: UAV localization October 5th, 2025

Linear Kalman Fier (LKF) — Example

Lecture 3: UAV localization

Bxample LTI system, A1 =001 | The sytem with LKF

a1 1
mw

State estimators and Filters

<[] ta

Linear Kalman Filter “
Linear Kalman Filter (LKF) — Example

2025-10-05



Linear Kalman Filter (LKF) — Example

Lecture 3:

UAV local-

ization Example LTI system, At = 0.01s The system with LKF

Tomas .
Bita Td 1

r L _ 1.0 o0.01 _ |0 0.9955+1
Introduction X = [r} u=[rg] A= [0,0 0,99} B = [0,01]
State (11)

estimators

Y

and Filters

Tq T r
>

Extended y
Kalman

i * *nk
Filter x* = [7. ST ]T
Unscented y

Kalman Measurement

Filter

Attitude e Measurement vector: z = [Fmes|T.

estimation

Linear

— 1
Kaiman 0995541 >

Filter

® |

o Measurement mapping:

Odometry

Localization z = Hx, where H € RPX", (12)

Global
localization

Local e Measurement mapping matrix:

localization

H=[1 0. (13)
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Example LTI system, At = 0.01s

r . 1.0 0.01 0
= H ou=[fa] A= [0.0 0.99} B = [0.01]

The system with LKF

T4

3| 1
71 0.9955+1

x* = [r*, 7T
v

(14)

(11)
Tq 1 T 1 r
P esT| 2] s > u=[rg
v
Measurement
e Measurement vector: z = [Fmes|T. What if z = [fmes’ rmes]?
o Measurement mapping:
pping e Measurement mapping matrix:
z = Hx, where H € RP*"™. (12)
e Measurement mapping matrix:
H= [1 0] (13)
.
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Example LTI system

f‘d 1 T 1 T
) A'Y _—
e The r state measurement exhibits added noise. 0.1s+1 7l s
N(0,0?)
Tmes
.
v measured
0.4 |- r true value
02 N
ool N
—0.2 |- N
! ! ! ! ! ! ! ! ! ! !
—1 0 1 2 3 4 5 6 7 8 9 10
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Example LTI system

Tq 1

> 0.1s+1

e The r state measurement exhibits added noise.

o LKF can estimate the state while removing the

noise.

Tmes

r measured

r true value

r estimated
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Introduction e The 7 state is not a measured variable.

SED e LKF can estimate/observe the variable.
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and Filters N(O’ 0-2)

Linear
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Filter r
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Kalman y
Filter
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Kalman [ e e el e o -
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- = = 7q (input)
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Lk
estimation 77 LKF

Odometry

Localization

Global
localization —0.1 |- L —

Local

flere=iFesifem -1 0 1 2 3 4 5 6 7 8 9 10

time[s]
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Linear Kalman Filter (LKF) — Example 2

Estimating hidden states

e Hidden states are often used to model sensor biases.

o LKF can estimate them if they are observable.

LTI System diagram

Tq 1
> 0905511

Bias

Example LTI system, At = 0.01s

Tom4s Ba¢a (CTU in Prague)
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1.0
0.0
0.0
0.0

0.0
1.0
1.0
0.0

Ju=[fq],

0.0

1.0

0.0 | B=
0.99 0

oo oo

(15)

. (16)
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Linear Kalman Filer (LKF) — Example 2

e Sensor bias estimation is heavily used to estimate nonzero offsets of sensors such as gyroscopes and accelerometers.

e Wind speed can be estimated as a bias in UAV acceleration.




Extended Kalman Filter (EKF) (EKF)

Lecture 3:
UAV local-
ization . .
o What if we have a non-linear model?
Bt . .
e e UAV Rotational dynamics.
Lpeductel e Ackermann vehicle.
State . . .
S o Differential car-like model.
and Filters . . . .
i e ... almost anything engineering-related in the real world.
y
Kalman
Filter
Extended . . .
(et Linearization?
P e Needs an operation point.
Filter . . . . . .
o e A single operation point is hard-to-find with most models. )
ttitude
estimation
Odometry . .
R Let's linearize more
Localization
Sl e Extended Kalman Filter (EKF).
o) e De-facto standard in aviation and inertial navigation. )
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Extended Kalman Filter (EKF)

Lecture 3: 1 1
Leewre s Discrete stochastic system

zation e State at the time step k: x[;) € R™.

Tomas

Bita e Input at the time step k: up) € R™.
Intreduetion Xie41] = S (X[r)> Ugk)) + Wik (17)
e where:
SelAlZe e f() is differentiable,

Linear

e e Process noise w[y) ~ N(0,Q),

E}Eﬁ:d e Process covariance matrix: Q € RZ5" )
Unscented

e Measurement model
A*t*””“: e Vector of measurements: z € RP.
Odometry z[k] = h(x[k]) + vUC]’ (18)
Localization where:

clobal e Measurement-state mapping: h() : R? — R" is differentiable,

o ¢ Measurement noise: vz ~ N (0, R),

e Measurement noise covariance: R € Rp;ép.
4
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Extended Kalman Filter (EKF)

Lecture 3:
UAV local-
ization

Tomas

e Correction

e Given Py, calculate the Kalman gain:

Introduction . .
B Prediction

State

-1
o Given x7,, Py, upy: Ki = PiH], (HyPH) +R) . (22)

and Filters
E“m xfk-&-l] — f(xfk]v up) (19) ° .Given xr_k]’P[k]’Z[k]’K[k]' update the state and
(i Its covariance:

Extended Py = F[k]P[k]FT +Q, (20) . » y
Ci " X[y = X T K (Z[k] - h(x[k])) ; (23)

Unscented where
o of Py i= (I - Ky Hyy) Ppeg, (24)
Fiy= = (21)
Attitude x* u where
estimation (k] K] oh
Ox |4

Localization [k

- is the Jacobian of h() evaluated at the xJ,.
Local v
localization

Hpy, (25)

Odometry is the Jacobian of f() evaluated at the xf‘k], U

*
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e Optimality? no

e Stability? not guaranteed

e Ease of use? far from it
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Extended Kalman Filter (EKF) — properties

Lecture 3:
UAV local- .

ization EKF Properties

Tomss -

e e Optimality? no

: e Stability? not guaranteed

Introduction
S e Ease of use? far from it
estimators
and Filters

Kaiman EKF Problems

Filter

Extended e f(), and h() needs to be differentiable.
Kalman

Filter e f(), and h() are linearized blindly in each state.
Unscented

e e EKF is sensitive to model inaccuracies.
Attitude e EKF is sensitive to poor initialization.
estimation
Odometry

Localization

Global
localization

Local
localization
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Extended Kalman Filter (EKF) — properties

Lecture 3:
UAV local- .
ization EKF Properties
T,;’;f e Optimality? no

e Stability? not guaranteed
Introduction
S e Ease of use? far from it )
estimators
and Filters
e EKF Problems
Filter
Extended e f(), and h() needs to be differentiable.
Kalman
Filter e f(), and h() are linearized blindly in each state.
Unscented
S o EKEF is sensitive to model inaccuracies.
Attitude e EKF is sensitive to poor initialization.
estimation ’
Odometry
Locer - EKF mind-set problem
- o How EKF deals with non-linearity? EKF works with the original state Probability Distribution Function (PDF) and a
o= degraded model description.
ocalization

o What about we swap it around? Let's transform a degraded state PDF through the original model. )
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Unscented Kalman Filter (UKF)

Lecture 3:
UAV local-

ization

Tomas

Béata
oo Unscented Kalman Filter
State e Published in early 2000s by Uhlmann et al.
estimators
and Filters e Uses the full nonlinear model f(), k().

Linear

faiman e Does not linearize, therefore, f(),h() can be arbitrary.

ilter

Exended e More elegant solution than EKF.

e e More robust than EKF.

Unscented v
Kalman

Filter
i‘t“";“;‘:on [2] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Adaptive
- Systems for Signal Processing, Communications, and Control Symposium, IEEE, |IEEE, 2000, pp. 153—
dometry

158
4

Localization

Global
localization

Local
localization

Tomds Ba¢a (CTU in Prague) Lecture 3: UAV localization October 5th, 2025

Unscented Kalman Filter (UKF)

Lecture 3: UAV localization

State estimators and Filters Uncred Kol Fr

Unscented Kalman Filter
UKF

2025-10-05



Unscented Transform

Lecture 3:

Vi Unscented transform — original Gaussian Probability Distribution Function

Tomas
Bata

Introduction

State
estimators
and Filters
Linear

Kalman
Filter

Extended
Kalman
Filter

Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local

localization N(X, P)k
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Unscented Transform

Lecture 3:

Vi Unscented transform — sampling of 2n + 1 sigma points
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Unscented Transform

Lecture 3:
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ization

Tomas

Bsta Unscented transform — transforming sigma points through h()

Introduction h()
State

estimators g1

and Filters

Linear h()

Kalman
Filter

h(o1)

hiog) 'S h(o4)
h(o2)

-

Extended o
Kalma 3

o h()
Unscented 1%

Kalman h()

Filter

Attitude
estimation

Odometry

Localization

Q
I
Q
i~
=

Global
localization

Local
localization
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Unscented Transform

Lecture 3:
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ization

Tomas

Bita Unscented transform — transforming sigma points through h()

Introduction

State h()

estimators
and Filters

Linear

Kalman h()

Filter
Extended
Kalman
Filter 03 h()
Unscented
Kalman H h()
Filter
g
Attitude 4
estimation

Odometry 02 ()

Localization

Global
localization y

Local
localization
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Unscented Transform

Lecture 3:
UAV local- . .
iy Unscented transform — reconstruction of the transformed Gaussian PDF
Tom33
Baka
h()
Introduction o1
State
- h()
and Filters
Linear o
o 3 ()
Extended I‘L
?H‘ev o4 0 N(X, P)k+1
Unscented
Kalman
Filter [k
2 h()
Attitude
estimation
Odometry /\[(x’ P);
Localization
Global e UT preserves 1st, 2nd and 3rd moment of the Gaussian PDF.
localization
Local e The new mean (x) is obtained by weighted sum of the sigma points using first-order weights.

localization

e The new covariance (P) is obtained by weighted sum of the sigma points using second-order weights.
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Unscented Transform

Unscented transform — econstruction f th trnsformed Gaussian PDF.
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Introduction

State

estimators 1.

and Filters

Linear
Kalman

Filter 2.

Extended
Kalman
Filter
Unscented
Kalman

. Reconstruct xf,

Unscented Kalman Filter (UKF) — Algorithm

Correction step

Prediction step

Calculate the sigma points for
xf‘k] y P[k:] .
Propagate the sigma points through

f0-

[k+1]° Pry

Filter

Attitude
estimation

Odometry

Localization [2]
Global

localization

Local

I lization

1.
2.

Calculate the sigma points for xfka[k]-

Propagate the sigma points through h() to obtain the
expected measurement z*.

. Reconstruct the mean and covariance of the expected

measurement.

. Calculate cross-covariance between the measurement z and

the expected measurement z*.

5. Calculate the Kalman gain using the cross-covariance.

6. Update the mean and covariance x*, P.

E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Adaptive

Systems for Signal Processing, Communications, and Control Symposium, IEEE, 1EEE, 2000,

158

pp. 153—
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Unscented Kalman Filter (UKF) — properties

UKF Properties
e Optimality? still no
e Stability? still not guaranteed, but much better than EKF

e Ease of use? yes

UKF Benefits
e No need to derive Jacobians.
e () and f() can be arbitrary.
e Only the implementation of k() and f() needs to be supplied.

UKF Problems

e Does not have many.

e Mathematical soundness of operations needs to be checked (square rooting of P).
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Unscented Kalman Filter (UKF) — example
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ization

Tomas

Bita State vector System illustration

The state vector is

Introduction

Sta . .
eslll\(r:ators X = [rTv rT7 m, 77] T ) (26)

and Filters

Linear where

Kalman
Filter

o r"V: the 2D position in the world frame,

Extended
Kalman

Filter o iB: the 2D velocity in the body frame,

Unscented .
e e 7): the heading, r,R}

Filter

7: the heading rate.

Attitude y
estimation

Odometry

Measurement vector

Localization

Global

\o:z)\iaz:\t\on 7z = [I"T, 1'.'|'7 n] T (27) W
y

Local
localization
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Unscented Kalman Filter (UKF) — example

Lecture 3:
UAV local-
ization

Toma¥ Motion model, At : :
Bita System illustration

Introduction T'lk] —+ AtR[k] l‘[k]

State r[k]
estimators = . 3 26
X[k+1] k) + Atn[k] ( )

and Filters
(k1] k)

Linear

3 =R

Kalman
Filter

Extended h
Kalman where

Filter cos —sin
Ry = k] Mk (27)

Unscented

it [ sin cos ’
?iltler 1] 11¥] Y r, R}

Attitude
estimation

Observation model

Odometry

Localization Tk
Global r

localization Z[k) = |T[k] (28) w
Local n[k] 4

localization y
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Introduction
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estimators

and Filters
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Kalman
Filter
Extended \ .
Kalman
Filter
Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local

. Resat a2
localization

Video: https://youtu.be/HVVgLxYqvcl
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Unscented Kalman Filter (UKF) — example 2

Lecture 3:
UAV local-
ization

Tomas
Bata

Introduction
. State estimation of a car
estimators

i e e Nonlinear car-like model
Linear (similar to the previous

Kalman

Filter example).

Extended .
Kalman e Unscented Kalman Filter.
Filter

Unscented e Car observed by a single

Kalman

Filter camera.

Attitude
estimation

ki
Ty | ELEKTROTEGin A
TV praze |

Odometry

Video: https://youtu.be/BSNUOd61teY

Localization

Global
localization

o [3] T. Baca, P. Stepan, B. Spurny, D. Hert, R. Penicka, M. Saska, et al., “Autonomous Landing on a Moving
loceization Vehicle with an Unmanned Aerial Vehicle,” Journal of Field Robotics, vol. 36, pp. 874-891, 5 2019 J
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UAV Attitude estimation

Lecure 5 UAV Onboard Sensors
jocal- . . .
ization Rotation-+translation Dynamics model e Gyroscope:
Tom33 .
Bita T=Jo+wxJw (29) e 3-axis MEMS.
. e Measured intrinsic angular rate.
Introduction R=RQ (30) e Sufficient for attitude rate control.
State 1 .
e W — —RF? + gW (31) e Accelerometer:
and Filters m ) e 3-axis MEMS.
Kaiman e Measures proper acceleration.
Filter . . .
h f
N What do we need? ° Gra.vnty.model might be needed for precise
e navigation.
Unscented e Angular velocity: wB. e “Magnetometer”:
Kalman
Filter e Orientation: R. ) e 3-axis
Attt_ituci_e e Measures external magnetic field.
estimation
- e Magnetic field model needed for precise
Odometry State estimator gnet P
navigation.
Localization :
o e a) Complementary filter e All above are often part of the Inertial
lefenifer e b) EKF Measurement Unit (IMU).
Local
focalization e Often based on quaternions. o All above need calibration.
e Bias estimation for all the sensors. ) e All above benefit from temperature stabilization.
v
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Filter
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Kalman
Filter

Unscented
Kalman
Filter

Attitude
estimation

Odometry

Localization

Global
localization

Local
localization

Odometry

Etymology

Odo-metry = Measuring of steps — measuring of where we are based on the steps we took.

Ground robot analogy

e Ground robots have encoders in theirs wheels.

e Encoders’ outputs represent intrinsic velocity.

e Integrating encoders from the last known position is called dead reckoning.

Can we do odometry using the IMU

e Not in general: double-integration of acceleration will drift with increasing velocity.

e Can be done with very precise instruments and models: in aerospace.

e Definitely not with the consumer-level sensors in most UAVs: would not lead to a stable flight.

How can we do odometry then?

e We need to go derivative higher from acceleration: to velocity.
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o To be complete: double integration of acceleration
non-zero bias.

Odometry

will lead to quadratic drift in position, if the accelerometer exhibits



Odometry on UAVs — Optical Flow

Lecture 3: PX4 Flow
UAV local-
ization
Tomag
Bita e Ultrasound
rangefinder
Optical flow * GreyScale
camera
e Means of calculating velocity from RGB camera e Embedded
Uiz footage.
Faiman g ucontroller
N e Downwards-facing camera.
Fiter” e Requires distance measurement to fix the
recented absolute velocity. Flowdeck v2
o e Very common on most commercial platforms.
e Parrot AR Drone (2010)
_ e IR ToF
Citometiny e Relatively robust. rangefinder
o e Not very accurate. ) o GreyScale
\ij\‘\‘z:mon camera
localization Y Embedded
pcontroller
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Odometry on UAVs — Optical Flow
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Video: https://youtu.be/tIKHGiIOs2w
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Odometry on UAVs — Feature-based visual odometry

Visual Inertial Odometry

e Combination of feature matching and IMU Features detectors:

predictions.
e Does not require a rangefinder.
e Requires proper camera calibration.
e Requires high-resolution and high-rate cameras.
e Global shutter is necessary.

e Robustness is still to be desired (for UAVs).

e Invariance in transformations and lighting.
e Edges, Corners, Blobs.
e SURF, FAST, SIFT, MSER (Matas et al. [4]).

Feature descriptors:

e SURF, SIFT, BRIEF.

Feature matching [5]
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Odometry on UAVs — Feature-based visual odometry
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Video: https://youtu.be/EVreW6VDTEU
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Odometry on UAVs — Feature-based visual odometry

Showcase of VIO in low-light conditions

Video: https://youtu.be/f00V9fnvnEw
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Odometry on UAVs — LiDAR odometry

Lecture 3:
UAV local- A A A
YL : r LIDAR Field of View
o loc LiDAR Ouste eld of Vie
Tomas
Bita e 2D or 3D.
e Active sensor: Infra-red.
e Scans the environment in stacked rings.
e Has mechanical parts.
e e Requires obstacles to be close. )
Filter
Extended
Kalman .
- PointCloud data structure
S e Organized/unorganized list of 3D points.
e Can contain meta information (reflectivity,
color).
Odometry
S PointCloud features
e e 3D corners, 3D edges.
e Facets of polyhedra. ) Figure 1: source: http://ouster.com
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Odometry on UAVs — LiDAR odometry

Lecture 3:
UAV local-

fzation Iterative Closest Point (ICP)

Tomas g

Bita e Pointcloud registration method. Showcase of LIiDAR Odometry
Tt e Assumption: Not that many points - 5 2 B
S have changed between two ’
S consecutively-measured point clouds.

Linear e Minimizing sum of squares of the

Kalman . .

Filter closest points on two pointclouds.

o e Many variants and implementations

Filter .

Unscented exist.

i e Outlier rejection is important.
s e Algorithm:
AT 1. compute point-to-point

correspondences,

l;;::m" 2. optimize for the rotation and

localization translation,

o 3. move the pointcloud, Video: https://youtu.be/veBnoqIqPZQ

- v

4. repeat. )
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Localization

The means of obtaining the 3D position of the robot in the world coordinate fame.

Why?
e Global localization is needed for global navigation:

e for building accurate 3D maps of the environment,
e for using the maps for navigation.

e Localization is needed for any meaningful interaction of a robot with its world.

Where is the state of the art?

e Depends heavily on the use case.
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Global outdoor UAV Localization — GNSS

Global Navigation Satellite System

e Earth's satellite constellations.
e GPS, GLONAS, Galileo, BeiDou.

Properties
e Most-often 10 Hz 3D position output.
e Needs clear sky view.
e Beware of Solar activity (lonosphere).
e Beware of reflections (buildings).

e Requires magnetometer.

Influence of ionosphere on GNSS

GPS Satellite ﬁgj‘!

Upgrade: Realtime Kinematics (RTK)

e Works directly with the GPS carrier wave signal.

e Fixed base-station on a tripod for relaying carrier
wave phase.

e The UAV is equipped with RTK-compatible
antenna and radio receiver.
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® Sensitive to EI-Mag interference (USB 3.0).

Global outdoor UAV Localization — GNSS




capture

Motion capture output
e Rigid body’s position and velocity, 200 Hz.

e Almost no noise, can be used directly for
feedback.

UAV equipped with retro-reflective markers

Global indoor UAV Localization — Motion

Lecture 3: . .
UAV local- Marker-based localization

ization

Tomae e Pre-set IR camera system.

Bica e IR lighting.
Introduction o Retro-reflective markers.
i;‘:mm e Popular for control theory research.
and Filters o
Linear

Kalman . .

Fiter Qualisys motion capture cameras

Katman

Filter

Unscented

Kalman

Filter
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Global indoor UAV Localization — Motion capture

Lecture 3 Vijay Kumar's TED talk

UAV local-
ization

Tomas
Bata

Global
localization
L

alization

Video: https://youtu.be/4ErEBkj_3PY
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Global UAV Localization — Indoor GPS

Ultrasound beacons Radio beacons
e Pre-set environment with ultrasound beacons. e Pre-set environment with radio beacons.
e Known beacon locations. ) e Known beacon locations.

Marvelmind ultrasound beacons Terabee RTPS radio beacons

Iy’

Wi rerois

Figure 2: Source: Marvelmind Figure 3: Source: Terabee
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e These systems are very unreliable and are more suitable for ground vehicles.

e Ground vehicles do not need constant precise localization for stabilization, therefore, they cope much better with measure-
ment outages than UAVs.



Global UAV Localization — Indoor GPS

ey Showcase of local beacon positioning system
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Video: https://youtu.be/SGB4MWCZuAM
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Local UAV Localization — SLAM

Lecture 3:
UAV local-

ization

Tt SLAM — Simultaneous Localization and Mapping

Béata

e Creating a map of a priori unknown environment while being localized in the same map.

Introduction
. o Chicken-and-egg problem.

tate
S e The holy grail problem in mobile robotics.

Linear e Two options:

Kalman

Filter e Online SLAM — computes the current robot pose.

e e Full SLAM — recovers the whole history of the robot poses. )
Filter

Unscented

K}a\man

e Popular approaches
Attitude
estimation L] EKF SLAM,
ey e Fast SLAM (Particle filter),
‘;;:1“‘““”" e PoseGraph SLAM (Bundle Adjustment),

‘Lm‘l“’ e Factor Graph SLAM. )
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2D EKF SLAM lllustration

EKF SLAM
e Online SLAM.
e The first SLAM solution, now mostly history.
e The LKF state vector contains:

e The robot’s state (rx,ry, ),
e The map of landmarks (Ixn, ly,n)-

e Assumption: landmark association is solved.

e Capable of loop closure (revisiting places should
help).
e Computationally intractable for large maps.

Video: https://youtu.be/vCVSOWALfid

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005
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Loc

Algorithm
1. The state vector and the map are initialized.
2. Prediction step:
e the robot moves,
e landmarks are static.
3. Calculation of the expected measurement: which
landmarks should be observed and where.
4. Measurement: landmark association.

5. Correction step.

[=)]

al UAV Localization — EKF SLAM

2D EKF SLAM lllustration

. Repeat.

(1]

Video: https://youtu.be/vCVSOWALfid

S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005
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Local UAV Localization — Fast SLAM

Particle filter

. o Does not need landmark association.
e Monte-Carlo localization method.
e The robot's state hypothesis is statistically

M icl i h ' I .
e Many particles representing the robot's mode drawn from the set of particles.

Particle filter — lllustration
e The initial distribution of the particles is random (uniform).

e The robot recognizes a door, but it does not know which door is it.

SOHHBNIGHHY | N | MRNEMRIBNEINER | KHHHRENEIE
bel(x)

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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Local UAV Localization — Fast SLAM

Particle filter — lllustration

e Weight is put to the particles which could generate such measurements.

e Particles move to next generation: weighted particles have higher chance to survive and to multiply.

Figure 4: Source: Probabilistic robotics, Thrun et al. [1].

v
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Particle filter — lllustration
o The robot moves in the physical world

e We apply the control input to each pa

Local UAV Localization — Fast SLAM

rticle and move it as well.
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Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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Local UAV Localization — Fast SLAM

Lecture 3:

UAV local- o 0 E

ko Particle filter — lllustration

Té’[*;“ e Robot, again, observes a door, but it does not know which door is it.

aca
e Weight is put to the particles which could generate such measurements.
S Y Y Y O S S S S Y I Y
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Linear

Kalman

Filter A

Extended p(zlx)

Kalman

Filter

Unscented

Kalman

Filter
3
bel(x)

localization

Local

B Figure 4: Source: Probabilistic robotics, Thrun et al. [1].
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Béta Particle filter — Illustration
e The robot moves in the physical world.

e We apply the control input to each particle and move it as well.

Y T Y O Y O O - S Y S O S S O

e [ T T T T T T T 11 1 [ T T T T T T T T T T 1
Y T Y Y ) O - ) T S O
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Figure 4: Source: Probabilistic robotics, Thrun et
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Video: https://youtu.be/-hXEYhOO_XA
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Local UAV Localization — Pose Graph SLAM

Lecture 3:
UAV local-

ization

Tomas

Fom Pose graphs

e Special case of a Bayes network.

Introduction
S e Constructed as bi-parted graph.
estimators 3
and Filters e Two types of nodes:

bz ® poses,

Filter e landmarks.

Extended

Kalman ° Edges;

Filter

Unscented e motions: constraints between poses,
Kalman . .

Filer e observations constraints between poses and
Attitude landmarks.
estimation .

e Inference from the graph forms a nonlinear

Odometry I

— least-squares optimization.
Localization .

- e Mostly used by visual SLAMs.

localization

Local e E.g., ORB-SLAM [6], LSD-SLAM [7]. )

Pose graph illustration
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Local UAV Localization — Factor Graph SLAM

Lecture 3 Factor graphs
jocal-
fzation o Special case of a Bayes network. Factor graph illustration
Tomss .
Bica e Constructed as bi-parted graph.
I e Two types of nodes:
et e variables,
S e factors.
and ilters
Linear e Edges: always connect variable and a factor.
Kalman
Filter e More types of constraints than in Pose Graph.
Extended
Xl e Constraints originating from IMU,
— e Loop closure constraints,
famen e Global navigation constraints (Global
f— Navigation Satellite System (GNSS)).
cmenen e Inference from the graph forms a nonlinear
Odometry least-squares optimization. @ robol pose landmark B memeoe
‘:‘[;”“"”””‘ e Often used with LiDAR Simultaneous flacmr
Global . - . 00
localization Localization and Mappings (SLAMs). modmely O clostire
Local factor
localization e E.g., LIO-SAM, MILIOM, LVI-SAM, b
VIRAL-SLAM. )
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Local UAV Localization — Visual SLAMs

Lecture 3:
UAV local-
fzation List of SOTA Visual SLAM algorithms [9
Ist o Isua algorit S
Tomas
Bata Table 2
Summary of topalagical mapping and 1 Table 5
Summary of topelogical mappingand logalizat ion salutions based on local features
References Camera Map Tasks Environment Dascriptar
| Jucti - Keforences Camera Tasks Environment Feature
ntroduction Winters [16] Omnidir Topo Map + Loc Indaors PA
Gaspar [17] omnidir Topo Map + Loc Indaors rea Kosecka|97-99] Mano Map + Loc Indoors SET
St Ulrich| 18] Omnidir Topo. Map + Lo In+ Out Calour hist. Zhang| 100] Mano Map + Lac Indoors SIFT
- Werner|46] Omnidir Topo SLAM Indaors Calour hist. Zhang| 101] Mano LAM Indoors SIFT
estimators Kosecka[19] Topo Map + Lo Indaors Gradient orien hist. Rybski[102] Omnidir Map + Loc Indoors KL
Eradley [20] Topo Map + Loc Outdoors WEOH He [103] Mono Map + Loc Outdoor SIFT
and Filters Weiss [21] Topo Map - Loc Outdoars well s:nmugw mnmr mp+{x }mm Sﬂ
" Wang[22] Topo Map + Loc in+Out QACH Lo ] 10 Moo Hap o lec indoors -
inear Pronobis 23] Topo Loc Indoors Receptive field hist. wewong [106.107] nidi n+ Out (SIFT)
Kalman Singh 48] Tapo Map + Loc Gutdoars Cist Tangprasit | 108] Omnidic feper In-t Ouc
i Murilo |25] Hybrid Map £ Loc 0t out Omai-gist Maoriaka[109] Omnidic SLAM Indoors 30-PIRF (SURF)
ilter - o Andreassan [90] Omnidir Map + Loc. Indoors KLT/M-SIFT
Rituerta [49] Tapo Mapping Indoors Omni-gist o o o . prsnid
B Sunderhauf [26] Topo SLAM Outdoors BRIEF-gist J mnidir ndoors M-
Kalman Amoo [33] Topo Map + Lo Gurdors LDE ;: o il ﬁmukr
Fil Amoe [35] Topo Map +loc Guedoors D-LDB Ascani [113] Omnidir Lsc In+ Out SIFT/SURF
e Lulol Topo i Gurdoar el Anati [114] Omnidir Map + Loc In+ Out SIF
[t} ted Chapoulie [51] Topo Map + Loc In-+ O Gix Zivkovic [115] Omnidir Nap £ Loc Indoors SET
necente Chapoulie [27] Topo Map + Loc In+ Out Spherical harmanics 6l Omaidir M:* Loc Indoors ST
Kalman Lamon 28] Tope. Loc Indaors Fingerprints i Ot Mag“x ‘"‘TGM SET
Filter Tapus 136371 Topa Map + Loc Indaors fingerprints Dayoud [ 18] omnidir Map + Loc Indoors SURF
E“‘igl '_E“P“ m“""ﬂ }"’“‘" ‘uﬁﬂ o Blanco [119.120] Sterea LAN Indoors SIFT
Attitud u 130] ope Pping ndcors Al ully [121] Omnidir Map + Lac Indoars ST
ttitude Menegatti [31.32] Topo Map + Loc Indaors Founter signatures Tully [122] Omnidir Indoors
estimation PavilE8l Topo Map + Loc Indaors Tourler ignares Seqic 1231 Mono Map + Loc Outdoors SIFI/Hamis/MSER
Ranganathan [59] Topo Mapping Indaors Fourier signatures Tomisa [124] i Nop £ Loe s NSERSTT CLoM
Milford [60] Hybrid SLAM Indoors Colour segmentation Bacine [135] o Nap £ Loc Frhent SURF/U SURF
Odometry Prasser [61] Hybrid SLAM Outdoors Cofour hist. Dayoub | 126] omnidir Map + Lac Indioars
Milford |34 Hybrid et Oucdocrs Sean intensity prot Bacca| 127,128 omnidir Map + Loc Indoors SIFT/SURF
Glaver[62] Hybrid SLAM Outdoors Scan intensity prof Bacea | 120] O Inoars
Localization Lui [36.37] Hybrid SLAM In+ Out 2D Haar wavelet dec. Homera [130.131] Omnidic SLAM Outdoors MSER
o e wed Myl G e i oem
lobal - Saedan| 133] Omnidi SLAM indoo Wanelets
localization Lategahn |39] Hybrid SLat Outdoors I Ressor {134] Ot ndeors e
Nourani [40] Tepo Map + Loc In+ Out OFMJOFSC Maohai [135] Omnidir Map + Loc Indoors ASIFT
Local Milford [35.65,66] Tope SLAM Qutdaars Normalized patches Gareia-Fidalgo [136] Mono. 1n+ Out SuRF
e Pepperell [67] Topo SLAM Outdoors Normalized patc hes Garcia-Fidalgo [137] Mono SLAM In+ Out SIFT
localization W [68] Topo Map + Loc Outdoors Binarized patches
V.
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e The research field of visual SLAMs is huge and also very popular.
e Almost everyone can contribute, because you only need a camera to start working.

e Rarely anything works in the real world and onboard a UAV.
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Local UAV Localization — Visual SLAMs

Showcase of Visual SLAM — RTAB-Map

RIAB-Map*

® Detection Tools Window 7

5 30Map

Video: https://youtu.be/G-5jesjNfLc
Tomds Ba¢a (CTU in Prague) Lecture 3: UAV localization
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e The video showcases RGBD SLAM.
e RTAB-Map can also utilize other sources of data to build a map, e.g., LIDAR pointclouds.

October 5th, 2025

Local UAV Lo — Visual SLAMs

Shcse of Visual SLAM — RTAB-Map
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Showecase of LiDAR SLAM — A-LOAM SLAM

iy

o
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Video: https://youtu.be/w_62XWc6W7w
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e The field of LIDAR SLAMs is also very active and rich.

e Similarly, true SLAMs are rarely used on UAVs, mostly due to the SLAMs' computational demands.
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Visual odometry and Particle filter re-localization
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Video: https://youtu.be/Mq10Fu_KqJQ
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Localization
Local localization

Coupled Odometry + Localization

e Open-VINS odometry for fast state estimation.
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Coupled Odometry + Localization

Visual odometry and Partice fier relocalzation
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e Particle filter for re-localization in a known height map.


https://youtu.be/Mq10Fu_KqJQ
https://youtu.be/Mq10Fu_KqJQ

Localization — Summary
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Introduction
State e UAVs most commonly operate outdoors, therefore, GNSS localization the most common.
estimators
and Filters e Commercial platforms are capable of onboard odometry (most often visual), however, that is used for
e stabilization and to aid human pilots with control in GNSS-denied environments.
Filter
— e SLAMs are mostly the subject of research and are not reliable enough to use the UAVs to their full
e potential.
el e Multi-modal SLAMs and geometries are probably the future. Fusion of different sensor modalities (Visual,

Filter

LiDAR, Radar, InfraRed) will increase the reliability and robustness.
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Thanks for listening.
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Conclusion

Thanks for listening.
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