Lecture 3: UAV localization

> Tomáš Báča

Introducti

State estimator

Linear Kalman

Extende Kalman Filter

Kalman

estimatio

. ..

localizatio Local localizatio

Multirotor UAV state estimation and localization B(E)3M33MRS — Aerial Multi-Robot Systems

Ing. Tomáš Báča, Ph.D.

Multi-Robot Systems group, Faculty of Electrical Engineering Czech Technical University in Prague

Tomás Báča (CTU in Prague)

Lecture 3: UAV localization

Multipater UN can extraction and hockardon

Not to the first than the

Lecture 3: UAV localization

> Tomáš Báča

Introduction

introducti

State estimator

Linear Kalman Filter

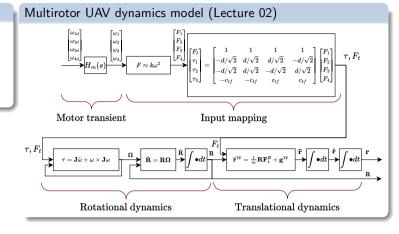
Unscente Kalman Filter

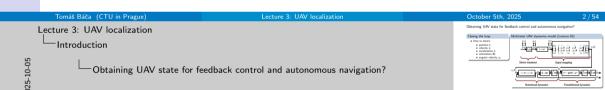
estimati

Global localization Local

Closing the loop

- How to obtain
 - position r,
 - velocity r,
 - \bullet acceleration $\ddot{\mathbf{r}}$,
 - ullet orientation ${f R}$,
 - ullet angular velocity $oldsymbol{\omega}$.





Lecture 3: UAV localization

Tomáš Báča

Introduction

Introductio

estimator and Filter Linear Kalman

Kalman Filter Unscente Kalman

estimatio

Localizati

localization Local localization

Closing the loop

- How to obtain
 - position r,
 - velocity r,
 - acceleration $\ddot{\mathbf{r}}$,
 - orientation R.
 - angular velocity ω .

Problems with measurements

- Some system states can not be measured at all.
- Some system states can not be measured directly.
- Sometimes, the measurement rate is not high enough for control loop.
- Measurements tend to be noisy.
- Measurement precision might not be sufficient.

Lecture 3: UAV localization

> Tomáš Báča

Introduction

introduct

estimator and Filte

Kalman Filter Extender Kalman Filter

Filter

O.L.

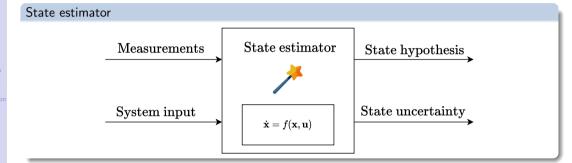
Global

Closing the loop

- How to obtain
 - position r,
 - velocity r,
 - acceleration $\ddot{\mathbf{r}}$,
 - orientation R,
 - angular velocity ω .

Problems with measurements

- Some system states can not be measured at all.
- Some system states can not be measured directly.
- Sometimes, the measurement rate is not high enough for control loop.
- Measurements tend to be noisy.
- Measurement precision might not be sufficient.





• State estimator is often called state observer in the context of control systems.

Lecture 3: UAV localization

> Tomáš Báča

Introduction

introduct

estimator and Filte

Kalman Filter Extender Kalman Filter

Filter

O.L.

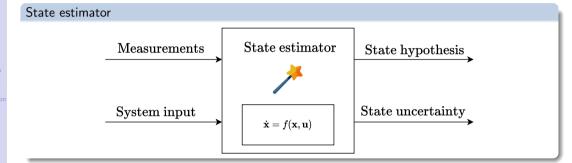
Global

Closing the loop

- How to obtain
 - position r,
 - velocity r,
 - acceleration $\ddot{\mathbf{r}}$,
 - orientation R,
 - angular velocity ω .

Problems with measurements

- Some system states can not be measured at all.
- Some system states can not be measured directly.
- Sometimes, the measurement rate is not high enough for control loop.
- Measurements tend to be noisy.
- Measurement precision might not be sufficient.





• State estimator is often called state observer in the context of control systems.

Probabilistic state estimation and localization

Lecture 3: UAV localization

> Tomáš Báča

Introdu

and Filte Linear Kalman

Extende Kalman Filter

Filter Attitud

Odometr

Global localization Robot's current state

- Robot's belief of its current state.
- Probability Distribution Function (PDF), often multivariate normal distribution.

Robot's motion model

- Allows to predict robot's future state based on the current state and input.
- Transforms the current state distribution, based on input.

Robot's sensor model

- Allows to incorporate measurements into the current state probabilistically.
- Allows to create artificial measurements based on the world model and the robot's state.

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005

• All three models are considered to be stochastic.

Probabilistic generative laws

Lecture 3: UAV localization

> Tomáš Báča

Introduc

State

Linear Kalman Filter

Extend Kalmai Filter

Filter

estilliat

Localiza

localizatio Local localizatio

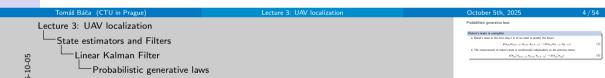
Robot's state is complete

ullet Robot's state at the time step k is all we need to predict the future:

$$p(\mathbf{x}_{[k]}|\mathbf{x}_{[0:k-1]},\mathbf{u}_{[1:k]},\mathbf{z}_{[1:k-1]}) \to p(\mathbf{x}_{[k]}|\mathbf{x}_{[k-1]},\mathbf{u}_{[k-1]}). \tag{1}$$

 $\bullet\,$ The measurement of robot's state is conditionally independent on the previous states:

$$p(\mathbf{z}_{[k]}|\mathbf{x}_{[0:k-1]}, \mathbf{u}_{[1:k]}, \mathbf{z}_{[1:k-1]}) \to p(\mathbf{z}_{[k]}|\mathbf{x}_{[k]}). \tag{2}$$



 $\bullet \ \ {\sf Gauss-Markov} \ \ {\sf assumption} \ \ {\sf states} \ \ {\sf that} \ \ {\sf the} \ \ {\sf future} \ \ {\sf and} \ \ {\sf past} \ \ {\sf states} \ \ {\sf are} \ \ {\sf decorrelated} \ \ {\sf given} \ \ {\sf the} \ \ {\sf current} \ \ {\sf state}.$

Probabilistic generative laws

Lecture 3: UAV local-

> Tomáš Báča

Laboratoria de la constitución d

State estimato

Linear Kalman Filter

Filter Unscent

estimatio

Odometr

Global localization Local localization

Robot's state is complete

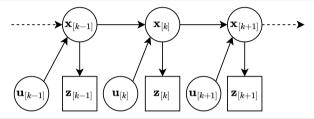
ullet Robot's state at the time step k is all we need to predict the future:

$$p(\mathbf{x}_{[k]}|\mathbf{x}_{[0:k-1]},\mathbf{u}_{[1:k]},\mathbf{z}_{[1:k-1]}) \to p(\mathbf{x}_{[k]}|\mathbf{x}_{[k-1]},\mathbf{u}_{[k-1]}). \tag{1}$$

 $\bullet\,$ The measurement of robot's state is conditionally independent on the previous states:

$$p(\mathbf{z}_{[k]}|\mathbf{x}_{[0:k-1]},\mathbf{u}_{[1:k]},\mathbf{z}_{[1:k-1]}) \to p(\mathbf{z}_{[k]}|\mathbf{x}_{[k]}). \tag{2}$$

Gauss-Markov assumption for stochastic systems



• Gauss-Markov assumption states that the future and past states are decorrelated given the current state.

Tomáš Báča

Introdu

State

Linear Kalman

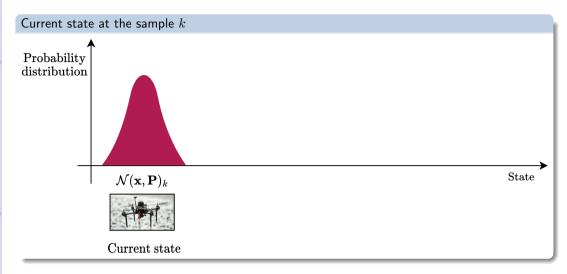
Filter Extende

Unscente Kalman

Attitude

Odometr

Localizati
Global
localization



- Current state is all we need to capture the past.
- Current state yields the prediction of the future state.
- The future states is measured.
- The prediction and the measurement are combined to form the estimate of the future state.

Tomáš Báča

. .

State

Linear Kalman

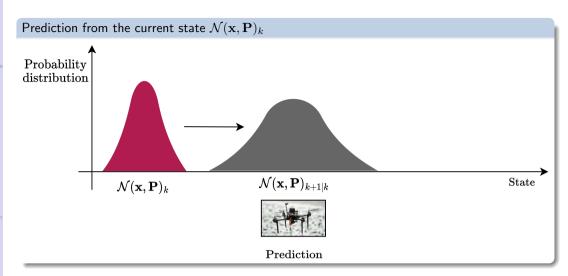
Filter Extend

Unscent Kalman

Attitude

Odometi

Global localization Local



- Current state is all we need to capture the past.
- Current state yields the prediction of the future state.
- The future states is measured.
- The prediction and the measurement are combined to form the estimate of the future state.

Tomáš Báča

Introducti

State estimate

Linear Kalman Filter

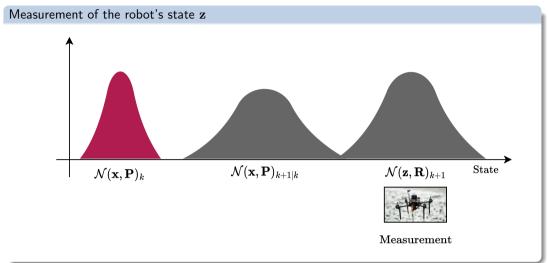
Extende Kalmar Filter

Filter

estimati

Localizat

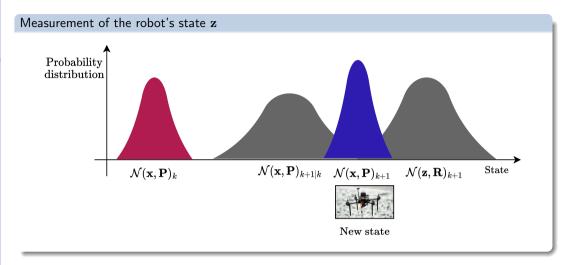
Global localization Local localization



- Current state is all we need to capture the past.
- Current state yields the prediction of the future state.
- The future states is measured.
- The prediction and the measurement are combined to form the estimate of the future state.

Báča

Linear Kalman Filter



- Current state is all we need to capture the past.
- Current state yields the prediction of the future state.
- The future states is measured.
- The prediction and the measurement are combined to form the estimate of the future state.

Lecture 3: UAV localization

> Tomáš Báča

Introduct

State estimator

Linear Kalman Filter

Kalmai Filter

Kalman Filter

estimat

Odometr

Global localization \bullet Developed in \approx 1960 at NASA.

- Optimal state estimator for linear models.
- Minimum Mean-Square Error estimator.

Models

- State: Multivariate Gaussian
- \bullet Sensor model: added noise $\mathcal{N}(\mathbf{0},\mathbf{R})$
- Motion model: linear model with added noise $\mathcal{N}(\mathbf{0},\mathbf{Q})$

Two-stage algorithm

- Prediction: propagation of robot's state and its uncertainty through the model.
- Correction: update of the robot's state and its uncertainty using measurements.

How to derive it?

• B3M35OFD, Estimation, filtering and detection

Discrete stochastic LTI System

- State at the time step k: $\mathbf{x}_{[k]} \in \mathbb{R}^n$.
- Input at the time step k: $\mathbf{u}_{[k]} \in \mathbb{R}^m$.

$$\mathbf{x}_{[k+1]} = \mathbf{A}\mathbf{x}_{[k]} + \mathbf{B}\mathbf{u}_{[k]} + \mathbf{w}_{[k]},$$
 (3)

where:

- System matrix: $\mathbf{A} \in \mathbb{R}^{n \times n}$
- Input matrix: $\mathbf{B} \in \mathbb{R}^{n \times m}$,
- ullet Process noise $\mathbf{w}_{[k]} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$,
- Process covariance matrix: $\mathbf{Q} \in \mathbb{R}^{n \times n}_{>0}$.

Measurement model

ullet Vector of measurements: $\mathbf{z} \in \mathbb{R}^p$.

$$\mathbf{z}_{[k]} = \mathbf{H}\mathbf{x}_{[k]} + \mathbf{v}_{[k]},\tag{4}$$

where:

- ullet Measurement-state mapping: $\mathbf{H} \in \mathbb{R}^{p \times n}$,
- ullet Measurement noise: $\mathbf{v}_{[k]} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}
 ight)$,
- Measurement noise covariance: $\mathbf{R} \in \mathbb{R}^{p \times p}_{>0}$.

Goal of the estimator

To estimate the tuple $\mathbf{x}_{[k]}^*, \mathbf{P}_{[k]}$, where

- ullet $\mathbf{x}_{[k]}^*$ is the state vector estimate,
- $\mathbf{P}_{[k]} \in \mathbb{R}^{n \times n}$ is the state covariance.

Lecture 3: UAV localization

Tomáš Báča

State estimator

and Filte

Extended Kalman Filter

Kalman Filter

0.1

Global localization

Prediction

ullet Given $\mathbf{x}_{[k]}^*, \mathbf{P}_{[k]}, \mathbf{u}_{[k]}$:

$$\mathbf{x}_{[k+1]}^* = \mathbf{A}\mathbf{x}_{[k]}^* + \mathbf{B}\mathbf{u}_{[k]}$$
 (5)

$$\mathbf{P}_{[k+1]} = \mathbf{A}\mathbf{P}_{[k]}\mathbf{A}^{\mathsf{T}} + \mathbf{Q} \tag{6}$$

Correction

• Given $P_{[k]}$, calculate the Kalman gain:

$$\mathbf{K}_{[k]} = \mathbf{P}_{[k]} \mathbf{H}^{\mathsf{T}} \left(\mathbf{H} \mathbf{P}_{[k]} \mathbf{H}^{\mathsf{T}} + \mathbf{R} \right)^{-1}. \tag{7}$$

 \bullet Given $\mathbf{x}_{[k]}^*, \mathbf{P}_{[k]}, \mathbf{z}_{[k]}, \mathbf{K}_{[k]}$, update the state and its covariance:

$$\mathbf{x}_{[k]}^* := \mathbf{x}_{[k]}^* + \mathbf{K}_{[k]} \left(\mathbf{z}_{[k]} - \mathbf{H} \mathbf{x}_{[k]}^* \right),$$
 (8)

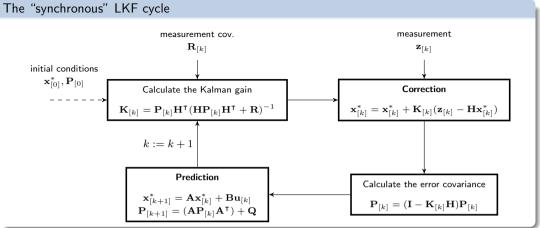
$$\mathbf{P}_{[k]} := \left(\mathbf{I} - \mathbf{K}_{[k]} \mathbf{H}\right) \mathbf{P}_{[k]},\tag{9}$$

Lecture 3: UAV localization

> Tomáš Báča

Linear Kalman Filter

Filter



The cycle evaluation rate?

• At the mercy of the incoming measurements.

Lecture 3: UAV localization

> Tomáš Báča

Introducti

State estimato

Linear Kalman Filter

Kalman Filter

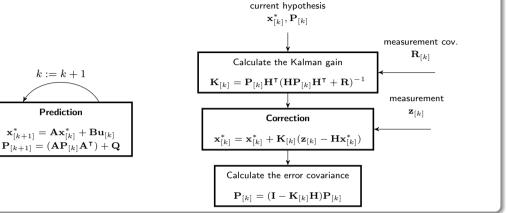
Attitude

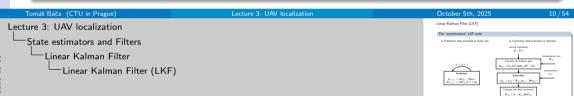
04----

Localiza: Global localizatio The "asynchronous" LKF cycle

• Prediction step executed at fixed rate.

Correction step executed on demand.





- More often, the prediction and correction happen asynchronously.
- Corrections can be even caused by variety of sources at different rate.
- The prediction step is often being evaluated at fixed rate. The state obtained at the prediction step is used for control.

Lecture 3: UAV localization

> Tomáš Báča

Introduc

State estimator

Linear Kalman

Filter Extended

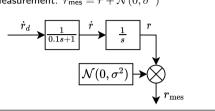
Unscente Kalman Filter

estimati

Global localization Local Example LTI system, $\Delta t = 0.01\,\mathrm{s}$

Measurement

• Measurement: $r_{\mathsf{mes}} = r + \mathcal{N}(0, \sigma^2)$



Lecture 3: UAV localization

> Tomáš Báča

Introduc

State estimators and Filter

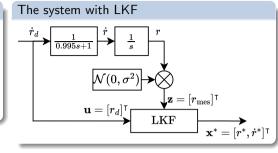
Linear Kalman Filter

Filter

Attitud

Odometi

Global localization Example LTI system, $\Delta t = 0.01\,\mathrm{s}$



Lecture 3: UAV localization

Tomáš Báča

Introdu

State estimator

Linear Kalman Filter

Unscent Kalman

Attitude

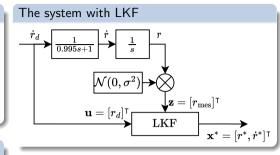
Odometi

Global localization Local Example LTI system, $\Delta t = 0.01\,\mathrm{s}$

Measurement

- Measurement vector: $\mathbf{z} = [r_{\text{mes}}]^{\mathsf{T}}$.
- Measurement mapping:

$$\mathbf{z} = \mathbf{H}\mathbf{x}$$
, where $\mathbf{H} \in \mathbb{R}^{p \times n}$. (12)



Lecture 3: UAV localization

> Tomáš Báča

Linear Kalman Filter

Example LTI system, $\Delta t = 0.01 \, \mathrm{s}$

The system with LKF 0.995s + 1 $\mathcal{N}(0,\sigma^2)$ $\mathbf{z} = [r_{ ext{mes}}]^\intercal$

Measurement

- Measurement vector: $\mathbf{z} = [r_{\text{mes}}]^{\mathsf{T}}$.
- Measurement mapping:

$$\mathbf{z} = \mathbf{H}\mathbf{x}$$
, where $\mathbf{H} \in \mathbb{R}^{p \times n}$. (12)

• Measurement mapping matrix:

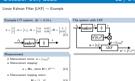
$$\mathbf{H} = \begin{bmatrix} 1 & 0 \end{bmatrix}. \tag{13}$$

Lecture 3: UAV localization

State estimators and Filters

Linear Kalman Filter

Linear Kalman Filter (LKF) — Example



Lecture 3: UAV localization

> Tomáš Báča

Linear Kalman Filter

Example LTI system, $\Delta t = 0.01 \, \mathrm{s}$

The system with LKF 0.995s + 1 $\mathcal{N}(0,\sigma^2)$ $\mathbf{z} = [r_{ ext{mes}}]^\intercal$

Measurement

- Measurement vector: $\mathbf{z} = [r_{\text{mes}}]^{\mathsf{T}}$.
- Measurement mapping:

$$\mathbf{z} = \mathbf{H}\mathbf{x}$$
, where $\mathbf{H} \in \mathbb{R}^{p \times n}$. (12)

• Measurement mapping matrix:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 \end{bmatrix}. \tag{13}$$

What if $\mathbf{z} = [\dot{r}_{\text{mes}}, r_{\text{mes}}]$?

• Measurement mapping matrix:

$$\mathbf{H} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}. \tag{14}$$



Lecture 3: UAV localization

State estimators and Filters

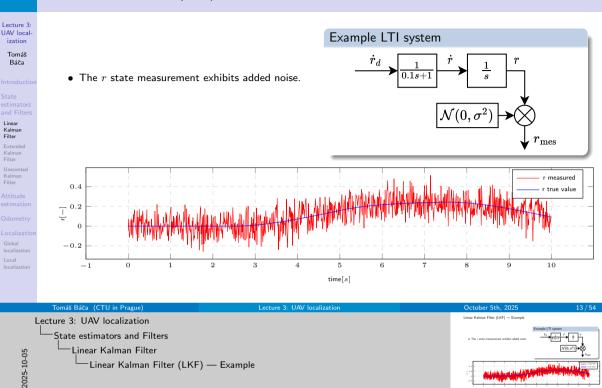
Linear Kalman Filter

Linear Kalman Filter (LKF) — Example

Linear Kalman Filter (LKF) — Example

Linear Kalman Filter

Filter



Tomáš Báča

Introduct

State

Linear Kalman Filter

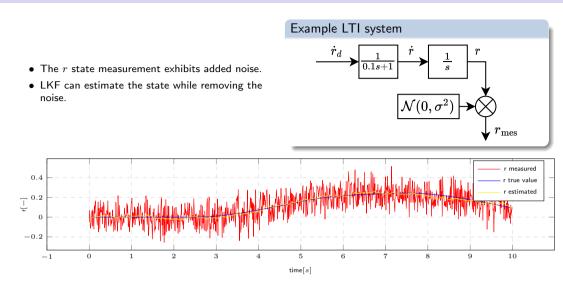
Kalmar Filter

Attitude

Communic

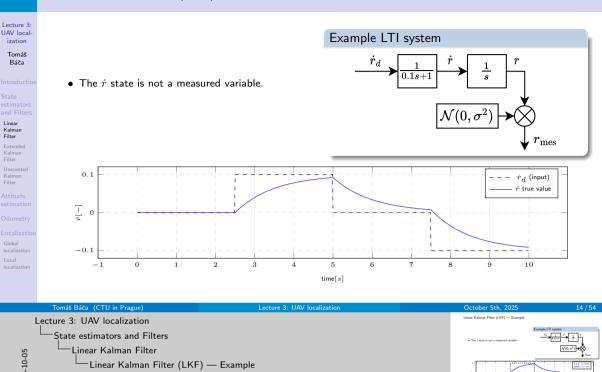
Localizat

Global localization Local



ization Tomáš Báča

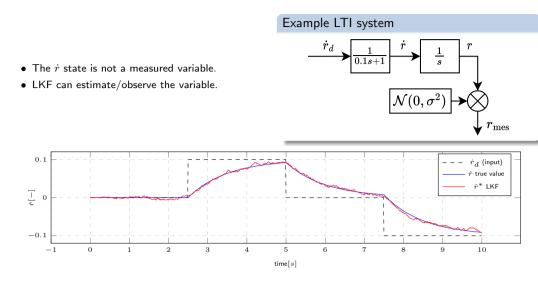
Linear Kalman Filter

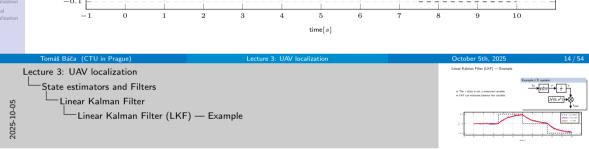


Lecture 3: UAV local-

ization Tomáš Báča

Linear Kalman Filter





Lecture 3: UAV localization

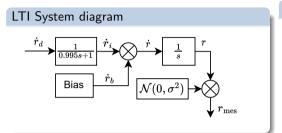
> Tomáš Báča

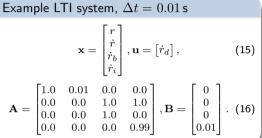
Linear Kalman

Filter

Estimating hidden states

- Hidden states are often used to model sensor biases.
- LKF can estimate them if they are observable.





- Sensor bias estimation is heavily used to estimate nonzero offsets of sensors such as gyroscopes and accelerometers.
- Wind speed can be estimated as a bias in UAV acceleration.

Extended Kalman Filter (EKF) (EKF)

Lecture 3: UAV localization

Tomáš Báča

Introdu

....

estimators and Filters

Kalman Filter Extended Kalman Filter

Unscent Kalman Filter

estimati

.

Global localization Local localization What if we have a non-linear model?

- UAV Rotational dynamics.
- Ackermann vehicle.
- Differential car-like model.
- ... almost anything engineering-related in the real world.

Linearization?

- Needs an operation point.
- A single operation point is hard-to-find with most models.

Let's linearize more

- Extended Kalman Filter (EKF).
- De-facto standard in aviation and inertial navigation.

Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

CTU in Prague)

Lecture 3: UAV localization

State estimators and Filters

Extended Kalman Filter

EXTENDED

Extended Kalman Filter (EKF)

Lecture 3: UAV localization

Tomáš Báča

Introdu

....

and Fi Linear Kalmar

Filter Extended Kalman Filter

Kalman

estimati

ocalizat

localizatio Local localizatio

Discrete stochastic system

- State at the time step k: $\mathbf{x}_{[k]} \in \mathbb{R}^n$.
- Input at the time step k: $\mathbf{u}_{[k]} \in \mathbb{R}^m$.

$$\mathbf{x}_{[k+1]} = f(\mathbf{x}_{[k]}, \mathbf{u}_{[k]}) + \mathbf{w}_{[k]},$$
 (17)

where:

- ullet f() is differentiable,
- ullet Process noise $\mathbf{w}_{[k]} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$,
- Process covariance matrix: $\mathbf{Q} \in \mathbb{R}^{n \times n}_{>0}$.

Measurement model

• Vector of measurements: $\mathbf{z} \in \mathbb{R}^p$.

$$\mathbf{z}_{[k]} = h(\mathbf{x}_{[k]}) + \mathbf{v}_{[k]},\tag{18}$$

where:

- Measurement-state mapping: $h(): \mathbb{R}^p \to \mathbb{R}^n$ is differentiable,
- ullet Measurement noise: $\mathbf{v}_{[k]} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}
 ight)$,
- Measurement noise covariance: $\mathbf{R} \in \mathbb{R}^{p \times p}_{>0}$.

Prediction

 \bullet Given $\mathbf{x}_{[k]}^*, \mathbf{P}_{[k]}, \mathbf{u}_{[k]}$:

$$\mathbf{x}_{[k+1]}^* = f(\mathbf{x}_{[k]}^*, \mathbf{u}_{[k]})$$
 (19)

$$\mathbf{P}_{[k+1]} = \mathbf{F}_{[k]} \mathbf{P}_{[k]} \mathbf{F}_{[k]}^{\mathsf{T}} + \mathbf{Q}, \tag{20}$$

where

$$\mathbf{F}_{[k]} = \left. \frac{\partial f}{\partial \mathbf{x}} \right|_{\mathbf{x}_{[k]}^*, \mathbf{u}_{[k]}} \tag{21}$$

is the Jacobian of f() evaluated at the $\mathbf{x}_{[k]}^*, \mathbf{u}_{[k]}.$

Correction

• Given $P_{[k]}$, calculate the Kalman gain:

$$\mathbf{K}_{[k]} = \mathbf{P}_{[k]} \mathbf{H}_{[k]}^{\mathsf{T}} \left(\mathbf{H}_{[k]} \mathbf{P}_{[k]} \mathbf{H}_{[k]}^{\mathsf{T}} + \mathbf{R} \right)^{-1}. \tag{22}$$

 • Given $\mathbf{x}_{[k]}^*, \mathbf{P}_{[k]}, \mathbf{z}_{[k]}, \mathbf{K}_{[k]}$, update the state and its covariance:

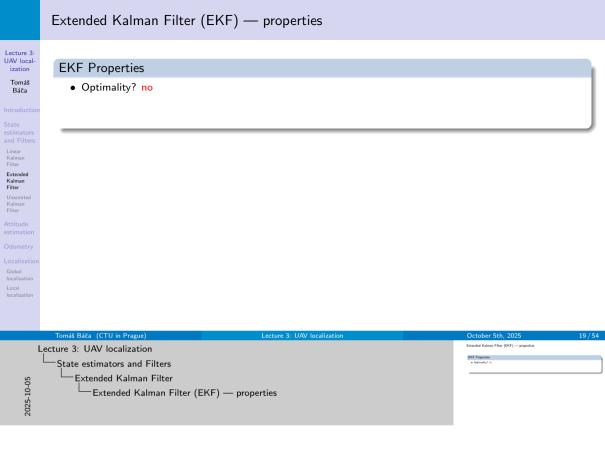
$$\mathbf{x}_{[k]}^* := \mathbf{x}_{[k]}^* + \mathbf{K}_{[k]} \left(\mathbf{z}_{[k]} - h(\mathbf{x}_{[k]}^*) \right),$$
 (23)

$$\mathbf{P}_{[k]} := \left(\mathbf{I} - \mathbf{K}_{[k]} \mathbf{H}_{[k]}\right) \mathbf{P}_{[k]},\tag{24}$$

where

$$\mathbf{H}_{[k]} = \left. \frac{\partial h}{\partial \mathbf{x}} \right|_{\mathbf{x}_{[k]}^*} \tag{25}$$

is the Jacobian of h() evaluated at the $\mathbf{x}_{[k]}^*$.



Extended Kalman Filter (EKF) — properties

Lecture 3: UAV localization

> Tomáš Báča

Introduc

Linear

Extended Kalman Filter

Unscente Kalman

Attitude

Odometr

Localizati

localizatio Local localizatio

EKF Properties

- Optimality? no
- Stability? not guaranteed

Tomás Báča (CTU in Prague)

Lecture 3: UAV localization

October 5th, 2025

19/54

Lecture 3: UAV localization

Estadd Kalman Filter

State estimators and Filters

Extended Kalman Filter

Lecture 3: UAV localization

> Tomáš Báča

Introduc

Introduc

Linear

Filter
Extended
Kalman

Filter Unscent Kalman Filter

Attitude

Odometi

Localizati

Global localization Local

EKF Properties

- Optimality? no
- Stability? not guaranteed
- Ease of use? far from it

Tomás Báča (CTU in Prague)

Lecture 3: UAV localization

October 5th, 2025

Establic Kalan Fau (EU) — proportion

State estimators and Filters

Extended Kalman Filter

Extended Kalman Filter (EKF) — properties

Lecture 3: UAV localization

> Tomáš Báča

Introduc

....

stimato and Filte

Linear Kalman Filter

Extended Kalman Filter Unscented

Filter Attitude

Odometr

Global localization Local **EKF** Properties

- Optimality? no
- Stability? not guaranteed
- Ease of use? far from it

EKF Problems

- $\bullet \ f(\tt), \ {\rm and} \ h(\tt) \ {\rm needs} \ {\rm to} \ {\rm be} \ {\rm differentiable}.$
- f(), and h() are linearized *blindly* in each state.
- EKF is sensitive to model inaccuracies.
- EKF is sensitive to poor initialization.

Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

October 5th, 2025

19 / 54

Lecture 3: UAV localization

State estimators and Filters

Extended Kalman Filter

Extended Kalman Filter (EKF) — properties

Office of State (EKF) — properties

Lecture 3: UAV localization

> Tomáš Báča

Introdu

and Filte

Filter
Extended
Kalman
Filter

Unscent Kalman Filter

estimati

Odomet

Global localization Local localization **EKF** Properties

- Optimality? no
- Stability? not guaranteed
- Ease of use? far from it

EKF Problems

- \bullet f(), and h() needs to be differentiable.
- f(), and h() are linearized blindly in each state.
- EKF is sensitive to model inaccuracies.
- EKF is sensitive to poor initialization.

EKF mind-set problem

- How EKF deals with non-linearity? EKF works with the original state Probability Distribution Function (PDF) and a degraded model description.
- What about we swap it around? Let's transform a degraded state PDF through the original model.

Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

Cotober 5th, 2025

Lecture 3: UAV localization

State estimators and Filters

Extended Kalman Filter

Extended Kalman Filter

Extended Kalman Filter

Extended Kalman Filter

Finance of the state of the state

Unscented Kalman Filter (UKF)

Lecture 3: UAV localization

> Tomáš Báča

Introduc

estimator: and Filter

Linear Kalman Filter Extended

Unscented Kalman Filter

Attitude estimati

Odometry

Global localization Local localization

Unscented Kalman Filter

- Published in early 2000s by Uhlmann et al.
- Uses the full nonlinear model f(), h().
- Does not linearize, therefore, f(), h() can be arbitrary.
- More elegant solution than EKF.
- More robust than EKF.
- [2] E. A. Wan and R. Van Der Merwe, "The unscented Kalman filter for nonlinear estimation," in Adaptive Systems for Signal Processing, Communications, and Control Symposium, IEEE, IEEE, 2000, pp. 153– 158

Tomás Báča (CTU in Prague)

Lecture 3: UAV localization

Unscented Kalman Filter

Unscented Kalm

Lecture 3: UAV localization

> Tomáš Báča

Introduct

State

Linear Kalman Filter

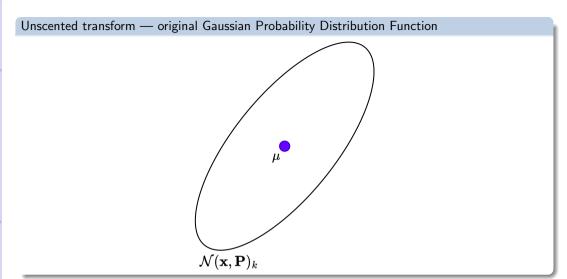
Unscented Kalman Filter

Attitude

Cotimati

Localizati

Global localization Local localization



Lecture 3: UAV localization

> Tomáš Báča

Introduct

State

Linear Kalman Filter

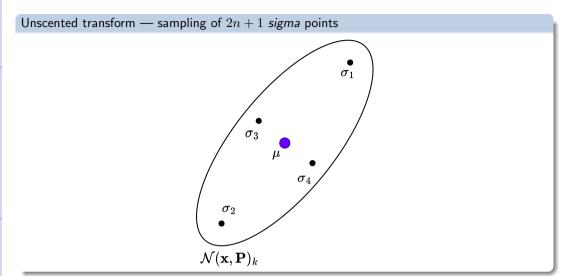
Unscented Kalman

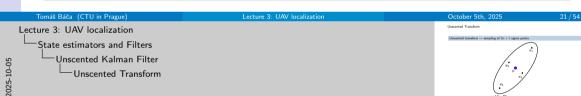
Filter Attitude

01

Localizati

localization Local localization





Lecture 3: UAV localization

> Tomáš Báča

Introducti

State

Linear Kalman

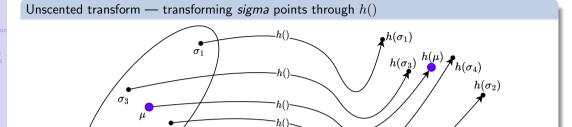
Extende

Unscented Kalman Filter

Attitude

Odometr

Localizati Global localization



h()

Lecture 3: UAV localization

> Tomáš Báča

Introduct

State

and Filt Linear Kalman

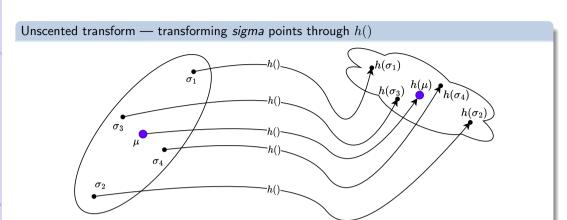
Extende Kalman

Unscented Kalman Filter

Attitude

Odometr

Localizat Global localizatio



Lecture 3: UAV localization

> Tomáš Báča

Introduc

estimato

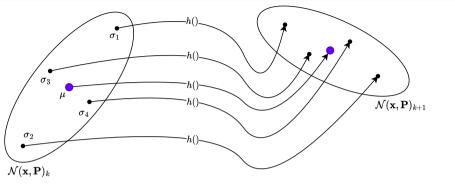
Kalman Filter Extende

Unscented Kalman Filter

estimat

Localiza

localizatio Local localizatio Unscented transform — reconstruction of the transformed Gaussian PDF



- UT preserves 1st, 2nd and 3rd moment of the Gaussian PDF.
- The new mean (x) is obtained by weighted sum of the sigma points using first-order weights.
- The new covariance (P) is obtained by weighted sum of the sigma points using second-order weights.

Unscented Kalman Filter (UKF) — Algorithm

Lecture 3: UAV localization

> Tomáš Báča

Introdu

Linear Kalman Filter Extended

Unscente Kalman Filter

estimatio

Localizat

localizatio Local localizatio

Prediction step

- 1. Calculate the sigma points for $\mathbf{x}_{[k]}^*, \mathbf{P}_{[k]}$.
- 2. Propagate the sigma points through f().
- 3. Reconstruct $\mathbf{x}^*_{[k+1]}, \mathbf{P}_{[k+1]}$

Correction step

- 1. Calculate the \emph{sigma} points for $\mathbf{x}^*_{[k]}, \mathbf{P}_{[k]}.$
- 2. Propagate the sigma points through h() to obtain the expected measurement \mathbf{z}^* .
- 3. Reconstruct the mean and covariance of the expected measurement.
- Calculate cross-covariance between the measurement z and the expected measurement z*.
- 5. Calculate the Kalman gain using the cross-covariance.
- 6. Update the mean and covariance \mathbf{x}^*, \mathbf{P} .
- [2] E. A. Wan and R. Van Der Merwe, "The unscented Kalman filter for nonlinear estimation," in Adaptive Systems for Signal Processing, Communications, and Control Symposium, IEEE, IEEE, 2000, pp. 153– 158

Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

October 5th, 2025

22 / 54

Lecture 3: UAV localization

State estimators and Filters

Unscented Kalman Filter

Unscented Kalman Filter

Unscented Kalman Filter

State estimators and Filters

State estimators and Filter

Unscented Kalman Filter (UKF) — properties Lecture 3: UAV localization **UKF** Properties Tomáš • Optimality? still no Unscented Tomáš Báča (CTU in Prague) Lecture 3: UAV localization Unscented Kalman Filter (UKF) - properties Lecture 3: UAV localization UKF Properties • Optimality? ctill no State estimators and Filters Unscented Kalman Filter

Unscented Kalman Filter (UKF) — properties

Báča

Kalman Filter

Unscented Kalman Filter (UKF) — properties

Unscented Kalman Filter (UKF) — properties

Lecture 3: UAV localization Tomáš

Báča

Introduc

estimato and Filt Linear

Filter Extende

Filter
Unscented
Kalman
Filter

Attitude

Odomet

Localizat

Global localization Local localization

UKF Properties

- Optimality? still no
- Stability? still not guaranteed, but much better than EKF

Tomás Báča (CTU in Prague)

Lecture 3: UAV localization

October 5th, 2025

23 / 54

Lecture 3: UAV localization

Unscente Kalman Fair (UKF) — properties

(MSF Repaire)

October 5th, 2025

23 / 54

Unscented Kalman Filters

Unscented Kalman Filter

Unscented Kalman Filter (UKF) — properties

Lecture 3: UAV localization Tomáš

Báča

Introduc

Introdu

and Fil Linear Kalman

Filter Unscented Kalman

Filter

Odomet

Localizat

localization Local localization

UKF Properties

- Optimality? still no
- Stability? still not guaranteed, but much better than EKF
- Ease of use? yes

Tomás Báča (CTU in Prague)

Lecture 3: UAV localization

October 5th, 2025

23 / 54

Description 3: UAV localization

State estimators and Filters

Unscented Kalman Filter

Unscented Kalman Filter

Unscented Kalman Filter

Unscented Kalman Filter (UKF) — properties

Lecture 3: UAV localization

Báča

Introdu

....

estimate and Filte

Filter Extended Kalman

Kalman Filter

estimati

Odomet

Global localizatio Local localizatio

UKF Properties

- Optimality? still no
- Stability? still not guaranteed, but much better than EKF
- Ease of use? yes

UKF Benefits

- No need to derive Jacobians.
- h() and f() can be arbitrary.
- ullet Only the implementation of h() and f() needs to be supplied.

UKF Problems

- · Does not have many.
- Mathematical soundness of operations needs to be checked (square rooting of P).

Tomás Báča (CTU in Prague)

Lecture 3: UAV localization

Cector 3: UAV localization

State estimators and Filters

Unscented Kalman Filter

(DIF Pragman

(DIF State (CTU in Prague)

(DI

Global localization Local localization

State vector

The state vector is

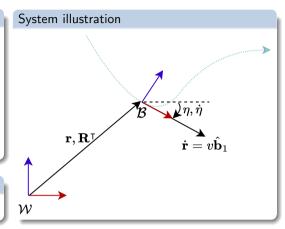
$$\mathbf{x} = \begin{bmatrix} \mathbf{r}^{\mathsf{T}}, \dot{\mathbf{r}}^{\mathsf{T}}, \eta, \dot{\eta} \end{bmatrix}^{\mathsf{T}}, \tag{26}$$

where

- $\mathbf{r}^{\mathcal{W}}$: the 2D position in the world frame,
- $\dot{\mathbf{r}}^{\mathcal{B}}$: the 2D velocity in the body frame,
- η: the heading,
- $\dot{\eta}$: the heading rate.

Measurement vector

$$\mathbf{z} = \begin{bmatrix} \mathbf{r}^{\mathsf{T}}, \dot{\mathbf{r}}^{\mathsf{T}}, \dot{\eta} \end{bmatrix}^{\mathsf{T}} \tag{27}$$



Unscented Kalman Filter (UKF) — example

Lecture 3: UAV localization

> Tomáš Báča

Introducti

State

Linear Kalman Filter Extended Kalman

Unscented Kalman Filter

Attitude estimatio

Global localizatio Local localizatio Motion model, Δt

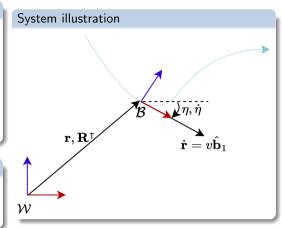
$$\mathbf{x}_{[k+1]} = \begin{bmatrix} \mathbf{r} \\ \dot{\mathbf{r}} \\ \dot{\eta} \\ \dot{\eta} \end{bmatrix}_{[k+1]} = \begin{bmatrix} \mathbf{r}_{[k]} + \Delta t \mathbf{R}_{[k]} \dot{\mathbf{r}}_{[k]} \\ \dot{\mathbf{r}}_{[k]} + \Delta t \dot{\eta}_{[k]} \\ \dot{\eta}_{[k]} + \Delta t \dot{\eta}_{[k]} \end{bmatrix}, \quad (26)$$

where

$$\mathbf{R}_{[k]} = \begin{bmatrix} \cos \eta_{[k]} & -\sin \eta_{[k]} \\ \sin \eta_{[k]} & \cos \eta_{[k]} \end{bmatrix}. \tag{27}$$

Observation model

$$\mathbf{z}_{[k]} = \begin{bmatrix} \mathbf{r}_{[k]} \\ \dot{\mathbf{r}}_{[k]} \\ \dot{\eta}_{[k]} \end{bmatrix}$$
 (28)



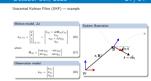
Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

—State estimators and Filters

Unscented Kalman Filter

-Unscented Kalman Filter (UKF) — example



Unscented Kalman Filter (UKF) — example

Tomáš Báča

estimato

Linear Kalman

Extende Kalman

Unscented Kalman Filter

estimatio

Land Control

Global localization

Video: https://youtu.be/HVVgLxYqvcI

Unscented Kalman Filter (UKF) — example 2

Lecture 3: UAV localization

> Tomáš Báča

Introdi

Linear Kalman Filter Extended

Unscented Kalman Filter

estimatio

Localizat

localization
Local
localization

State estimation of a car

- Nonlinear car-like model (similar to the previous example).
- Unscented Kalman Filter.
- Car observed by a single camera.

Video: https://youtu.be/BSNUOd61teY

[3] T. Baca, P. Stepan, B. Spurny, D. Hert, R. Penicka, M. Saska, et al., "Autonomous Landing on a Moving Vehicle with an Unmanned Aerial Vehicle," *Journal of Field Robotics*, vol. 36, pp. 874–891, 5 2019

Rotation+translation Dynamics model

$$\tau = \mathbf{J}\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbf{J}\boldsymbol{\omega} \tag{29}$$

$$\dot{\mathbf{R}} = \mathbf{R}\mathbf{\Omega} \tag{30}$$

$$\ddot{\mathbf{r}}^{\mathcal{W}} = \frac{1}{m} \mathbf{R} \mathbf{F}_t^{\mathcal{B}} + \mathbf{g}^{\mathcal{W}}$$
 (31)

What do we need?

- Angular velocity: $\omega^{\mathcal{B}}$.
- Orientation: R.

State estimator

- a) Complementary filter
- b) EKF
- Often based on quaternions.
- Bias estimation for all the sensors

UAV Onboard Sensors

- Gyroscope:
 - 3-axis MEMS.
 - Measured intrinsic angular rate.
 - Sufficient for attitude rate control.
- Accelerometer:
 - 3-axis MEMS.
 - Measures proper acceleration.
 - Gravity model might be needed for precise navigation.
- "Magnetometer":
 - 3-axis
 - Measures external magnetic field.
 - Magnetic field model needed for precise navigation.
- All above are often part of the Inertial Measurement Unit (IMU).
- All above need calibration.
- All above benefit from temperature stabilization.

Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

UM Attitude estimation

Attitude estimation

UAV Observed Server

UAV Attitude estimation

WM Observed Server

UAV Observ

Odometry

Lecture 3: UAV localization

> Tomáš Báča

Odometry

Etymology

Odo-metry = Measuring of steps \rightarrow measuring of where we are based on the steps we took.

Ground robot analogy

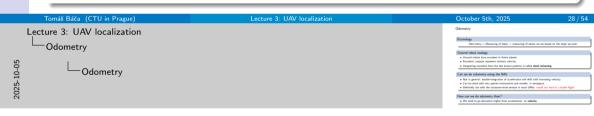
- Ground robots have encoders in theirs wheels.
- Encoders' outputs represent intrinsic velocity.
- Integrating encoders from the last known position is called **dead reckoning**.

Can we do odometry using the IMU

- Not in general: double-integration of acceleration will drift with increasing velocity.
- Can be done with very precise instruments and models: in aerospace.
- Definitely not with the consumer-level sensors in most UAVs: would not lead to a stable flight.

How can we do odometry then?

• We need to go derivative higher from acceleration: to velocity.



• To be complete: double integration of acceleration will lead to quadratic drift in position, if the accelerometer exhibits non-zero bias.

Odometry on UAVs — Optical Flow

Lecture 3: UAV localization Tomáš

Báča

Odometry

Optical flow

- Means of calculating velocity from RGB camera footage.
- Downwards-facing camera.
- Requires distance measurement to fix the absolute velocity.
- Very common on most commercial platforms.
- Parrot AR Drone (2010)
- Relatively robust.
- Not very accurate.

PX4 Flow

- Ultrasound rangefinder
- GreyScale camera
- Embedded μ controller

Flowdeck v2

- IR ToF rangefinder
- GreyScale camera
- Embedded μ controller

Tomáš Báča (CTU in Prague) Lecture 3: UAV localization

Odometry

Lecture 3: UAV localization

Odometry on UAVs - Optical Flow

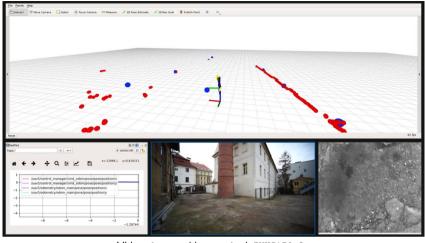
Odometry on UAVs — Optical Flow

Lecture 3: UAV localization

> Tomáš Báča

Odometry

Optic Flow



Video: https://youtu.be/tIKHGiIOs2w

Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

Lecture 3: UAV localization Odometry

2025-10-05

Odometry on UAVs — Optical Flow

Odometry on UAVs — Feature-based visual odometry

Lecture 3: UAV localization

> Tomáš Báča

Odometry

Visual Inertial Odometry

- Combination of feature matching and IMU predictions.
- Does not require a rangefinder.
- Requires proper camera calibration.
- Requires high-resolution and high-rate cameras.
- Global shutter is necessary.
- Robustness is still to be desired (for UAVs).

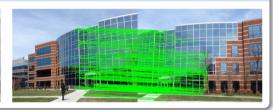
Features detectors:

- Invariance in transformations and lighting.
- Edges, Corners, Blobs.
- SURF, FAST, SIFT, MSER (Matas et al. [4]).

Feature descriptors:

• SURF, SIFT, BRIEF.

Feature matching [5]



Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

Odometry

Odometry on UAVs — Feature-based visual odometry

Edger, Cornert, Illook
 SURF, FAST, SIFT, MSER (M

Odometry on UAVs — Feature-based visual odometry

S-MSCKF Ground Truth

Lecture 3: UAV localization

> Tomáš Báča

Introduc

State

Linear Kalman

Filter Unscente

Filter

estimatio

Odometry

Localizat Global

Extended Kalman

Video: https://youtu.be/EVreW6VDT6U

Tomáš Báča (CTU in Prague)

Showcase of VIO

Lecture 3: UAV localization

October 5th, 2025

32 / 54

Lecture 3: UAV localization

Odometry

2025-10-05

Odometry on UAVs — Feature-based visual odometry

Odometry on UAVs — Feature-based visual odometry

Lecture 3: UAV localization

> Tomáš Báča

Introduc

State estimato

Linear Kalman

Kalman Filter

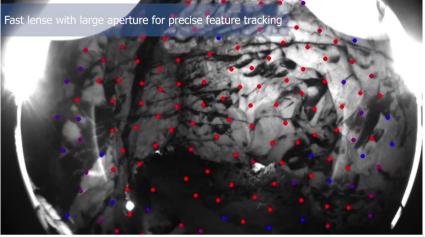
Kalman Filter

estimation

Odometry

Global localizatio

Showcase of VIO in low-light conditions



Video: https://youtu.be/f00V9fnvnEw

Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

October 5th, 2025

33 / 54

Lecture 3: UAV localization

☐ Odometry

2025-10-05

Odometry on UAVs — Feature-based visual odometry



Odometry on UAVs — LiDAR odometry

Lecture 3: UAV localization

> Tomáš Báča

Filter

Odometry

LiDAR

- 2D or 3D.
- Active sensor: Infra-red.
- Scans the environment in stacked rings.
- Has mechanical parts.
- Requires obstacles to be close.

PointCloud data structure

- Organized/unorganized list of 3D points.
- Can contain meta information (reflectivity, color).

PointCloud features

- 3D corners, 3D edges.
- Facets of polyhedra.

Ouster LiDAR Field of View

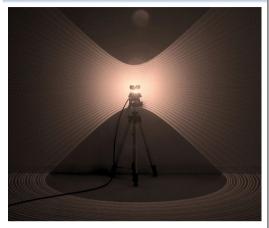


Figure 1: source: http://ouster.com

Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization Odometry

Odometry on UAVs - LiDAR odometry

Odometry on UAVs — LiDAR odometry

Lecture 3: UAV localization

> Tomáš Báča

Introduc

state stimator

Linear Kalman Filter Extended

Kalman Filter

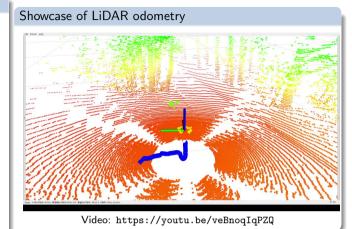
estimatio

Odometry

Global localizatio Local

Iterative Closest Point (ICP)

- Pointcloud registration method.
- Assumption: Not that many points have changed between two consecutively-measured point clouds.
- Minimizing sum of squares of the closest points on two pointclouds.
- Many variants and implementations exist.
- Outlier rejection is important.
- Algorithm:
 - compute point-to-point correspondences,
 - 2. optimize for the rotation and translation,
 - 3. move the pointcloud,
 - 4. repeat.



Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

Tomáš Báča (CTU in Prague)

Odometry

025-10-05

Odometry on UAVs — LiDAR odometry

October 5th, 2025

Dei 3tii, 2023

Odomstry on UAVs — LIDAR odomstry

Iterative Count Point (ICP)

Pointious registration restend
- Attamption Not that many point
connectionly-reasoned point clouds.
- Minimizing user of squares of the
closure point on two point-bade.
- Many varieties and implementation.

doses points on two pointstoads.

Many surkants and implementations not.

Outlier rejection in important.

Algorithm:

Lompute point-to-point correspondences,

optimize for the sociation and translation,

Tower the pointstioad,

move the pointstioad,

Localization

Lecture 3: UAV localization

> Tomáš Báča

Filter

Localization

Localization

The means of obtaining the 3D position of the robot in the world coordinate fame.

Why?

- Global localization is needed for global navigation:
 - for building accurate 3D maps of the environment,
 - for using the maps for navigation.
- Localization is needed for any meaningful interaction of a robot with its world.

Where is the state of the art?

• Depends heavily on the use case.

Tomáš Báča (CTU in Prague) Lecture 3: UAV localization Lecture 3: UAV localization Localization Localization

Global outdoor UAV Localization — GNSS

Lecture 3: UAV localization

> Tomáš Báča

Properties

• Most-often 10 Hz 3D position output.

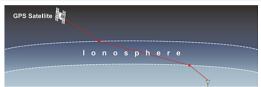
Global Navigation Satellite System

• GPS, GLONAS, Galileo, BeiDou.

Earth's satellite constellations.

- Needs clear sky view.
- Beware of Solar activity (Ionosphere).
- Beware of reflections (buildings).
- · Requires magnetometer.

Influence of ionosphere on GNSS



Upgrade: Realtime Kinematics (RTK)

- Works directly with the GPS carrier wave signal.
- Fixed base-station on a tripod for relaying carrier wave phase.
- The UAV is equipped with RTK-compatible antenna and radio receiver.

• Sensitive to El-Mag interference (USB 3.0).

Clobal localization

2025-10-05

Global indoor UAV Localization — Motion capture

Lecture 3: UAV localization

> Tomáš Báča

Introduct

.....

Filter

Global

IR lighting.Retro-reflective markers.

Marker-based localization

• Pre-set IR camera system.

• Popular for control theory research.

Motion capture output

- $\bullet\,$ Rigid body's position and velocity, $200\,\mathrm{Hz}.$
- Almost no noise, can be used directly for feedback.

UAV equipped with retro-reflective markers

Qualisys motion capture cameras

Tomáš Báča (CTU in Prague)

Locture 2: HAV localization

Lecture 3: UAV localization

—Localization

—Ģlobal localization

Global indoor UAV Localization — Motion capture

October 5th, 2025

30 / 54

Global indoor UAV Localization — Motion capture

Marken-based localization

Press R. Cansen optem.

Righting.

Righting.

Righting.

Righting.

2025-10-05

Global indoor UAV Localization — Motion capture

Lecture 3: UAV localization

> Tomáš Báča

Introduct

State estimato

Linear Kalmar

Kalman Filter

Filter

estimatio

Localizatio

Global localization

2025-10-05

Vijay Kumar's TED talk

Video: https://youtu.be/4ErEBkj_3PY

Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

20 /

or UAV Localization — Motion capture

Lecture 3: UAV localization
Localization

Localizatio

—Ģlobal localization

Global indoor UAV Localization — Motion capture

November 170 to

Global UAV Localization — Indoor GPS

Lecture 3: UAV local-

> Tomáš Báča

State estima and Fi Linear Kalmar

Linear Kalman Filter Extended Kalman Filter Unscente Kalman

Odomete

Global localization

2025-10-05

Ultrasound beacons

- Pre-set environment with ultrasound beacons.
- Known beacon locations.

Radio beacons

- Pre-set environment with radio beacons.
- Known beacon locations.

Marvelmind ultrasound beacons

Figure 2: Source: Marvelmind

Terabee RTPS radio beacons

Figure 3: Source: Terabee

Tomáš Báča (CTU in Prague)

ecture 3: UAV localization

40 / 54

Tomas Baca (CTO in Prague)

Lecture 3: UAV localization

Glass UAV localization

Localization

Localization

Global localization

Global UAV Localization — Indoor GPS

- These systems are very unreliable and are more suitable for ground vehicles.
- Ground vehicles do not need constant precise localization for stabilization, therefore, they cope much better with measurement outages than UAVs.

Global UAV Localization — Indoor GPS

Lecture 3: UAV localization

> Tomáš Báča

Introduc

State

Linear Kalman

Kalman Filter

Filter

estimatio

Localizati

Global localization Showcase of local beacon positioning system

Video: https://youtu.be/SGB4MWCZuAM

Lecture 3: UAV localization
Localization
Global localization
Global UAV Localization — Indoor GPS

Claim UNI Contraction — Institut Units

Stonesses of lead bases positioning system

When Stage // Founts and State State

White Stage // Founts and State State State State

White Stage // Founts and State St

Lecture 3: UAV localization

> Tomáš Báča

localization

• Chicken-and-egg problem. • The holy grail problem in mobile robotics.

- Two options:
 - Online SLAM computes the current robot pose.

SLAM — Simultaneous Localization and Mapping

• Full SLAM — recovers the whole history of the robot poses.

• Creating a map of a priori unknown environment while being localized in the same map.

Popular approaches

- EKF SLAM,
- Fast SLAM (Particle filter),
- PoseGraph SLAM (Bundle Adjustment),
- Factor Graph SLAM.

Tomáš Báča (CTU in Prague) Lecture 3: UAV localization Lecture 3: UAV localization Local UAV Localization - SLAM SLAM — Simultaneous Localization and Mapping

Creating a map of a priori unknown environment while I

Chicken-and-agg positions.

The holy goal positions in mobile relaction.

Two application: Localization Local localization Online SLAM — computes the current robot pose.
 Full SLAM — recovers the whole history of the robot pos Local UAV Localization — SLAM Popular approaches

• EKF SLAM,

Lecture 3: UAV localization

> Tomáš Báča

Introduc

.....

and Filters

Extended Kalman Filter

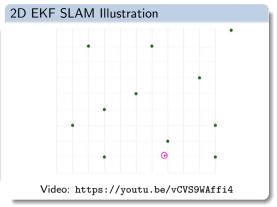
Kalman Filter

estimation

Global localization Local localization

EKF SLAM

- Online SLAM.
- The first SLAM solution, now mostly history.
- The LKF state vector contains:
 - The robot's state (r_x, r_y, r_η) ,
 - The map of landmarks $(l_{x,n}, l_{y,n})$.
- Assumption: landmark association is solved.
- Capable of loop closure (revisiting places should help).
- Computationally intractable for large maps.



[1] S. Thrun, W. Burgard, and D. Fox, *Probabilistic robotics*. Cambridge, Mass.: MIT Press, 2005

Lecture 3: UAV localization

Tomáš Báča

Introduc

and Filter Linear Kalman

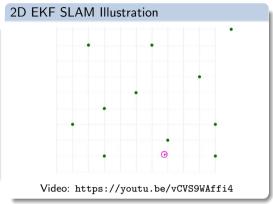
Extended Kalman Filter

Kalman Filter

estimati

Global localization Local localization Algorithm

- 1. The state vector and the map are initialized.
- 2. Prediction step:
 - the robot moves.
 - landmarks are static.
- 3. Calculation of the expected measurement: which landmarks should be observed and where.
- 4. Measurement: landmark association.
- 5. Correction step.
- 6. Repeat.



[1] S. Thrun, W. Burgard, and D. Fox, *Probabilistic robotics*. Cambridge, Mass.: MIT Press, 2005

Lecture 3: UAV localization

> Tomáš Báča

Introdu

.....

Linear Kalman Filter

Unscente Kalman Filter

estimatio

Global localization Local localization

- Particle filter
 - Monte-Carlo localization method.
 - Many particles representing the robot's model.
- Does not need landmark association.
- The robot's state hypothesis is statistically drawn from the set of particles.

Particle filter — Illustration

- The initial distribution of the particles is random (uniform).
- The robot recognizes a door, but it does not know which door is it.

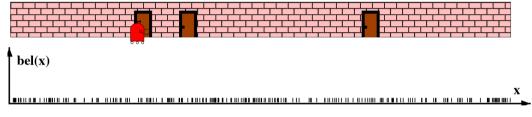


Figure 4: Source: Probabilistic robotics, Thrun et al. [1].



Kalman Filter Unscented

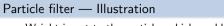
Attitude estimatio

Odometi

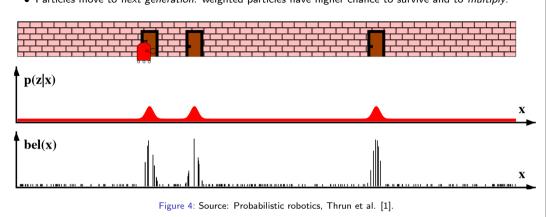
Localization

Global localization

Local localization



- \bullet Weight is put to the particles which could generate such measurements.
- Particles move to next generation: weighted particles have higher chance to survive and to multiply.



Lecture 3: UAV localization

> Tomáš Báča

Filter

localization

Particle filter — Illustration

- The robot moves in the physical world.
- We apply the control input to each particle and move it as well.

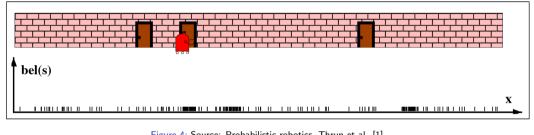


Figure 4: Source: Probabilistic robotics, Thrun et al. [1].

Particle filter — Illustration

Lecture 3: UAV localization

> Tomáš Báča

Introduct

State

and Filte Linear Kalman Filter

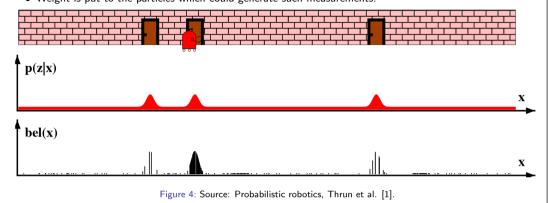
Filter Unscente Kalman

Attitude estimation

Odometr

Global localization Local localization • Robot, again, observes a door, but it does not know which door is it.

• Weight is put to the particles which could generate such measurements.



Lecture 3: UAV localization

> Tomáš Báča

.....

Introduct

and Filter

Extended Kalman Filter

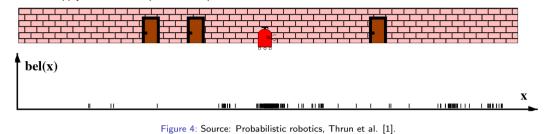
Kalman Filter

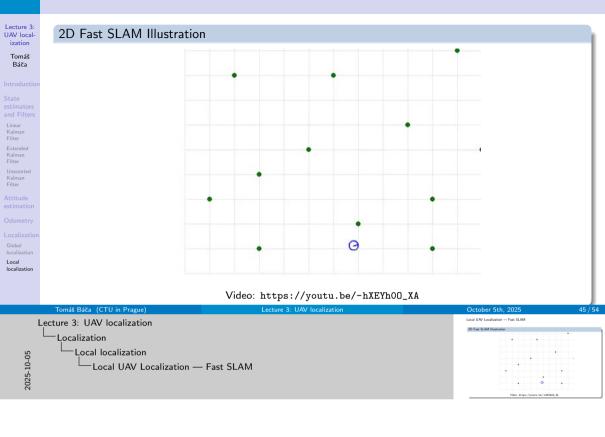
estimatio

Odometr

Global localization Local localization Particle filter — Illustration

- The robot moves in the physical world.
- We apply the control input to each particle and move it as well.





Local UAV Localization — Pose Graph SLAM

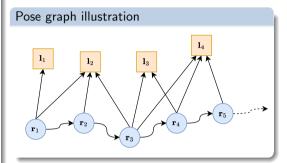
Lecture 3: UAV localization

> Tomáš Báča

localization

Pose graphs • Special case of a Bayes network.

- Constructed as bi-parted graph.
- Two types of nodes:
 - poses.
 - landmarks.
- Edges:
 - motions: constraints between poses.
 - observations constraints between poses and landmarks.
- Inference from the graph forms a nonlinear least-squares optimization.
- Mostly used by visual SLAMs.
- E.g., ORB-SLAM [6], LSD-SLAM [7].



Tomáš Báča (CTU in Prague) Local UAV Localization - Pose Graph SLAM Lecture 3: UAV localization Localization Local localization Local UAV Localization — Pose Graph SLAM

Local UAV Localization — Factor Graph SLAM

Lecture 3: UAV local-

> Tomáš Báča

Introdu

State

Linear Kalman Filter

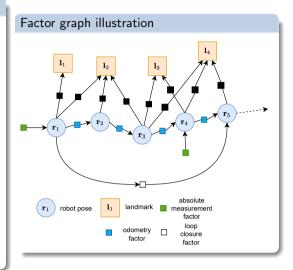
Filter

Attitude

Odomet

Global localization Local localization Factor graphs

- Special case of a Bayes network.
- Constructed as bi-parted graph.
- Two types of nodes:
 - variables,
 - factors.
- Edges: always connect variable and a factor.
- More types of constraints than in Pose Graph.
 - Constraints originating from IMU,
 - Loop closure constraints,
 - Global navigation constraints (Global Navigation Satellite System (GNSS)).
- Inference from the graph forms a nonlinear least-squares optimization.
- Often used with LiDAR Simultaneous Localization and Mappings (SLAMs).
- E.g., LIO-SAM, MILIOM, LVI-SAM, VIRAL-SLAM.



Local UAV Localization — Visual SLAMs

Lecture 3: UAV localization

> Tomáš Báča

Filter Filter

localization

List of SOTA Visual SLAM algorithms [9]

References	Camera	Map	Tasks	Environment	Descriptor
Winters [16]	Omnidir	Topo	Map + Loc	Indoors	PCA
Gaspar [17]	Omnidir	Topo	Map + Loc	Indoors	PCA
Ulrich [18]	Omnidir	Topo	Map + Loc	In + Out	Colour hist.
Werner [46]	Omnidir	Topo	SLAM	Indoors	Colour hist.
Kosecka [19]	Mono	Topo	Map + Loc	Indoors	Gradient orien, hist,
Bradley [20]	Mono	Topo	Map + Loc	Outdoors	WGOH
Weiss [21]	Mono	Topo	Map + Loc	Outdoors	WGII
Wang[22]	Mono	Topo	Map + Loc	In + Out	OACH
Pronobis [23]	Mono	Topo	Loc	Indoors	Receptive field hist.
Singh [48]	Omnidir	Topo	Map + Loc	Outdoors	Gist
Murillo [25]	Omnidir	Hybrid	Map + Loc	In + Out	Omni-gist
Rituerto [49]	Omnidir	Topo	Mapping	Indoors	Omni-gist
Sunderhauf [26]	Mono	Topo	SLAM	Outdoors	BRIEF-gist
Аггоуо [53]	Omnidir	Topo	Map + Loc	Outdoors	LDB
Arroyo [55]	Stereo	Topo	Map + Loc	Outdoors	D-LDB
Liu [50]	Mono	Topo	SLAM	Outdoors	Gist
Chapoulie [51]	Sphere	Topo	Map + Loc	In + Out	Gist
Chapoulie [27]	Sphere	Topo	Map + Loc	In + Out	Spherical harmonics
Lamon [28]	Omnidir	Topo	Loc	Indoors	Fingerprints
Tapus [56,57]	Omnidir	Topo	Map + Loc	Indoors	Fingerprints
Liu [29]	Omnidir	Topo	Mapping	Indoors	FACT
Liu [30]	Omnidir	Topo	Mapping	Indoors	DP-FACT
Menegatti [31,32]	Omnidir	Topo	Map + Loc	Indoors	Fourier signatures
Pavá [58]	Omnidir	Topo	Map + Loc	Indoors	Fourier signatures
Ranganathan [59]	Omnidir	Topo	Mapping	Indoors	Fourier signatures
Milford [60]	Mono	Hybrid	SLAM	Indoors	Colour segmentation
Prasser [61]	Omnidir	Hybrid	SLAM	Outdoors	Colour hist.
Milford [34]	Mono	Hybrid	SLAM	Outdoors	Scan intensity prof.
Glover [62]	Mono	Hybrid	SLAM	Outdoors	Scan intensity prof.
Lui [36,37]	Omnidir	Hybrid	SLAM	In + Out	2D Haar wavelet dec
Badino [38]	Mono	Hybrid	Map + Loc	Outdoors	WI-SURF
Ku [64]	Mono	Hybrid	Map + Loc	Outdoors	WI-SURF
Lategahn [39]	Mono	Hybrid	SLAM	Outdoors	DIRD
Nourani [40]	Mono	Topo	Map + Loc	In + Out	OFM/OFSC
Milford [35,65,66]	Mono	Topo	SLAM	Outdoors	Normalized patches
Pepperell [67]	Mono	Topo	SLAM	Outdoors	Normalized patches
Wu [68]	Mono	Topo	Map + Loc	Outdoors	Binarized patches

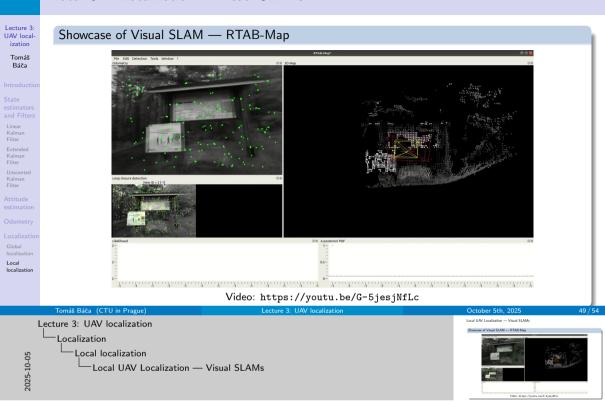
References	Camera	Map	Tasks	Environment	Feature
Kosecka [97–99]	Mono	Topo	Map + Loc	Indoors	SIFT
Zhang [100]		Topo	Map + Loc		
Zhang[101]	Mono	Торо	SLAM	Indoors	SIFT
Rybski [102]	Omnidir	Topo	Map + Loc	Indoors	KLT
He [103]	Mono	Торо	Map + Loc	Outdoors	SIFT
Sabatta [104]	Omnidir	Topo	Map + Loc	Indoors	SIFT
Johns [105]	Mono	Topo	Map + Loc	Indoors	SIFT
Kawewong [106,107]	Omnidir	Topo	SLAM	In + Out	PIRF (SIFT)
Tongprasit [108]	Omnidir	Topo	SLAM	In + Out	PIRF (SURF)
Morioka [109]	Omnidir	Hybrid	SLAM	Indoors	3D-PIRF(SURF)
Andreasson [90]	Omnidir	Topo	Map + Loc	Indoors	KLT/M-SIFT
Valgren [110]	Omnidir	Topo	Mapping	Indoors	KLT/M-SIFT
Valgren [111]	Omnidir	Topo	Mapping	In + Out	SIFT
Valgren [112]	Omnidir	Topo	Loc	Outdoors	SIFT/SURF
Ascani [113]	Omnidir	Topo	Loc	In + Out	SIFT/SURF
Anati [114]	Omnidir	Topo	Map + Loc	In + Out	SIFT
Zivkovic [115]	Omnidir	Hybrid	Map + Loc	Indoors	SIFT
Booii [116]	Omnidir	Hybrid	Map + Loc	Indoors	SIFT
Booii [117]	Omnidir	Hybrid	Map + Loc	In + Out	SIFT
Davoub [118]	Omnidir	Hybrid	Map + Loc	Indoors	SURF
Blanco [119.120]	Stereo	Hybrid	SIAM	Indoors	SIFT
Tully [121]	Omnidir	Hybrid	Map + Loc	Indoors	SIFT
Tully [122]	Omnidir	Hybrid	SIAM	Indoors	SIFT
Segvic [123]	Mono	Hybrid	Map + Loc	Outdoors	SIFT/Harris/MSI
Ramisa [124]	Omnidir	Topo	Map + Loc	Indoors	MSER/SIFT/GLO
Badino [125]	Mono	Hybrid	Map + Loc	Outdoors	SURF/U-SURF
Dayoub [126]	Omnidir	Topo	Map + Loc	Indoors	SURF
Bacca [127, 128]	Omnidir	Topo	Map + Loc	Indoors	SIFT/SURF
Bacca [129]	Omnidir	Торо	SIAM	Indoors	Edges
Romero [130,131]	Omnidir	Торо	SLAM	Outdoors	MSER
	Mono	Topo	Loc	Outdoors	ASIFT
Majdik [132]					
Saedan [133]	Omnidir	Hybrid	SLAM	Indoors	Wavelets
Kessler [134]	Omnidir	Topo	SLAM	Indoors	SIFT
Maohai [135]	Omnidir	Topo	Map + Loc	Indoors	ASIFT
Garcia-Fidalgo [136]	Mono	Topo	SLAM	In + Out	SURF
Garcia-Fidalgo [137]	Mono	Topo	SLAM	In + Out	SIFT

Tomáš Báča (CTU in Prague)	Lecture 3: UAV localization	October 5th, 2025	48 / 54
Lecture 3: UAV localization	Local UAV Localization — Visual SLAMs		
Localization Local localization Local UAV Localization —	Visual SLAMs	The state of STA Young SAM Agentum [8] The st	

- The research field of visual SLAMs is huge and also very popular.
- Almost everyone can contribute, because you only need a camera to start working.

Rarely anything works in the real world and onboard a UAV.

Local UAV Localization — Visual SLAMs



- The video showcases RGBD SLAM.
- RTAB-Map can also utilize other sources of data to build a map, e.g., LiDAR pointclouds.

Local UAV Localization — LiDAR SLAMs

Tomáš Báča

Filter

localization

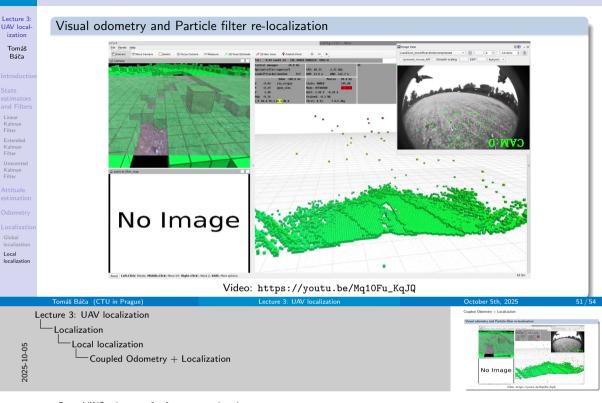
Showcase of LiDAR SLAM — A-LOAM SLAM

Video: https://youtu.be/w_62XWc6W7w

Tomáš Báča (CTU in Prague) Lecture 3: UAV localization Lecture 3: UAV localization Localization Local localization 2025-10-05 Local UAV Localization — LiDAR SLAMs

- The field of LiDAR SLAMs is also very active and rich.
- Similarly, true SLAMs are rarely used on UAVs, mostly due to the SLAMs' computational demands.

Coupled Odometry + Localization



- Open-VINS odometry for fast state estimation.
- Particle filter for re-localization in a known height map.

Localization — Summary

Lecture 3: UAV localization

> Tomáš Báča

localization

• UAVs most commonly operate outdoors, therefore, GNSS localization the most common.

- Commercial platforms are capable of onboard odometry (most often visual), however, that is used for stabilization and to aid human pilots with control in GNSS-denied environments.
- SLAMs are mostly the subject of research and are not reliable enough to use the UAVs to their full potential.
- Multi-modal SLAMs and geometries are probably the future. Fusion of different sensor modalities (Visual, LiDAR, Radar, InfraRed) will increase the reliability and robustness.

References

Lecture 3: UAV localization

Tomáš Báča

Introduc

State estimato

and Filte

Filter Extende

Unscent Kalman

Attitude

Odometr

Global localization Local localization

- [1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005.
- [2] E. A. Wan and R. Van Der Merwe, "The unscented Kalman filter for nonlinear estimation," in Adaptive Systems for Signal Processing, Communications, and Control Symposium, IEEE, IEEE, 2000, pp. 153–158.
- [3] T. Baca, P. Stepan, B. Spurny, et al., "Autonomous Landing on a Moving Vehicle with an Unmanned Aerial Vehicle," Journal of Field Robotics, vol. 36, pp. 874–891, 5 2019.
- [4] S. Obdrzalek and J. Matas, "Object recognition using local affine frames on maximally stable extremal regions," in Toward category-level object recognition, Springer, 2006, pp. 83–104.
- [5] S. A. K. Tareen and Z. Saleem, "A comparative analysis of sift, surf, kaze, akaze, orb, and brisk," in 2018 International conference on computing, mathematics and engineering technologies (iCoMET), IEEE, 2018, pp. 1–10.
- [6] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. Montiel, and J. D. Tardos, "ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM," IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.
- [7] J. Engel, T. Schops, and D. Cremers, "LSD-SLAM: Large-scale direct monocular SLAM," in European conference on computer vision, Springer, 2014, pp. 834–849.
- [8] F. Dellaert, M. Kaess, et al., "Factor graphs for robot perception," Foundations and Trends in Robotics, vol. 6, no. 1-2, pp. 1-139, 2017.
- [9] E. Garcia-Fidalgo and A. Ortiz, "Vision-based topological mapping and localization methods: A survey," Robotics and Autonomous Systems, vol. 64, pp. 1–20, 2015.

Tomáš Báča (CTU in Prague)

Lecture 3: UAV localization

Cocoleration

Localization

Localization

Localization

References

References

References

