$\label{logical reasoning and programming, lab session 6} Logical \ reasoning \ and \ programming, \ lab \ session \ 6$

(October 27, 2025)

6.1 Show that

$$(g(f(x_1-2)) = x_1+2) \land (g(f(x_2)) = x_2-2) \land (x_2+1=x_1-1)$$

is unsatisfiable by the Nelson–Oppen procedure, where x_1 and x_2 are integers and f and g uninterpreted functions.

Why does the procedure work here even though QF LIA is non-convex?

6.2 If we want to combine theories in SMT using the Nelson–Oppen method, we require that both of them are stably infinite. Assume two theories \mathcal{T}_1 with the language $\{f\}$ and \mathcal{T}_2 with the language $\{g\}$, where f and g are uninterpreted unary function symbols. Moreover, \mathcal{T}_1 has only models of size at most 2 (for example, it contains $\forall X \forall Y \forall Z (X = Y \lor X = Y \lor Y = Z)$ as an axiom). Show that the Nelson–Oppen method says that

$$f(x_1) \neq f(x_2) \land g(x_2) \neq g(x_3) \land g(x_1) \neq g(x_3).$$

is satisfiable in the union of \mathcal{T}_1 and \mathcal{T}_2 , but this is clearly incorrect.

- **6.3** Show that the following formulae are valid and provide counter-examples for the opposite implications:
 - (a) $\forall X p(X) \lor \forall X q(X) \to \forall X (p(X) \lor q(X)),$
 - (b) $\exists X(p(X) \land q(X)) \rightarrow \exists Xp(X) \land \exists Xq(X),$
 - (c) $\exists X \forall Y p(X,Y) \rightarrow \forall Y \exists X p(X,Y),$
 - (d) $\forall X p(X) \to \exists X p(X)$.
- **6.4** Decide whether for any formula φ holds:
 - (a) $\varphi \equiv \forall \varphi$,
 - (b) $\varphi \equiv \exists \varphi$,
 - (c) $\models \varphi$ iff $\models \forall \varphi$,
 - (d) $\models \varphi$ iff $\models \exists \varphi$,

where $\forall \varphi \ (\exists \varphi)$ is the universal (existential) closure of φ . If not, does at least one implication hold?

- **6.5** Show that for any set of formulae Γ and a formula φ holds if $\Gamma \models \varphi$, then $\forall \Gamma \models \varphi$, where $\forall \Gamma = \{ \forall \psi \colon \psi \in \Gamma \}$. Does the opposite direction hold?
- **6.6** Does it hold $\Gamma \models \varphi$ iff $\forall \Gamma \models \forall \varphi$?
- **6.7** Find a set of formulae Γ and a formula φ such that $\Gamma \models \varphi$ and $\Gamma \models \neg \varphi$.
- **6.8** Produce equivalent formulae in prenex form:
 - (a) $\forall X(p(X) \to \forall Y(q(X,Y) \to \neg \forall Zr(Y,Z))),$
 - (b) $\exists X p(X,Y) \to (q(X) \to \neg \forall Z p(X,Z)),$

- (c) $\exists X p(X,Y) \to (q(X) \to \neg \exists Z p(X,Z)),$
- (d) $p(X,Y) \to \exists Y(q(Y) \to (\exists Xq(X) \to r(Y))),$
- (e) $\forall Y p(Y) \to (\forall X q(X) \to r(Z))$.
- **6.9** In **6.8** you could obtain in some cases various prefixes; the order of quantifiers can be different. Are all these variants correct?
- **6.10** Can we produce a formula equivalent to **6.8**e with just one quantifier?
- **6.11** Produce Skolemized formulae equisatisfiable with those in **6.8**. Try to produce as simple as possible Skolem functions.
- **6.12** Skolemize the following formula

$$\forall X(p(a) \vee \exists Y(q(Y) \wedge \forall Z(p(Y,Z) \vee \exists U \neg q(X,Y,U)))) \vee \exists Wq(a,W).$$

Why is it possible in this particular case to do that without producing an equivalent formula in prenex form?

6.13 We say that a binary predicate q is the transitive closure of a binary predicate p, if q(s,t) iff there is a sequence of terms $s = t_1, t_2, \ldots, t_{n-1}, t_n = t$ such that $p(t_i, t_{i+1})$, for $1 \le i < n$. Is the formula

$$\forall X \forall Z (q(X,Z) \leftrightarrow (p(X,Z) \lor \exists Y (p(X,Y) \land q(Y,Z))))$$

a correct definition of q?

6.14 The compactness theorem in First-Order Logic says that a set of sentences has a model iff every finite subset of it has a model. Use this theorem to show that the transitive closure is not definable in FOL.

Hint: Assume for a contradiction that φ is a formula that expresses that q is the transitive closure of p. Let $\psi^n(a,b) = \neg(\exists X_1 \ldots \exists X_{n-1}(p(a,X_1) \land p(X_1,X_2) \land \cdots \land p(X_{n-1},b))$ (Hence $\psi^1(a,b)$ means $\neg p(a,b)$ and $\psi^2(a,b)$ means $\neg(\exists X_1(p(a,X_1) \land p(X_1,b)))$). What can you say about the satisfiability of $\Gamma = \{\varphi\} \cup \{q(a,b)\} \cup \{\psi^1(a,b),\psi^2(a,b),\ldots\}$?