
Logical reasoning and programming, lab session 5
(October 20, 2025)

The following exercises require an SMT solver. For simplicity, you can use
• an online version of Z3, or

• an online version of CVC51,

or both. Even better, you can install Z3 or CVC5 yourself. Another option is to
use pySMT, a convenient way how to experiment with various SMT solvers in
Python. If you want to learn a bit more about the Z3 prover, you should start
with this Z3 Guide. Moreover, if you want to play with the Z3 prover in Python,
check Z3 API in Python and Programming Z3. However, you may use Python
API in cvc5 instead. Nevertheless, if you want to experiment with various SMT
solvers in Python, you should likely try pySMT as mentioned before.

There is a Satisfiability Modulo Theories: A Beginner’s Tutorial, where you
may find some more SMT examples (and some we discuss here). For example,
check the Floating-Point Arithmetic part.

5.1 We have a language that contains only one binary predicate symbol ∈ and
we have an interpretation ℳ = (𝐷, 𝑖) such that 𝐷 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑖(∈)
is given by the following diagram:

𝑐 𝑑

𝑎 𝑏

Meaning that 𝑥 ∈ 𝑦 iff there is an arrow from 𝑥 to 𝑦. Decide whether the
following formulae are valid in ℳ:

(a) ∃𝑋∀𝑌 (¬(𝑌 ∈ 𝑋)),
(b) ∃𝑋∀𝑌 (𝑌 ∈ 𝑋),
(c) ∃𝑋∀𝑌 (𝑌 ∈ 𝑋 ↔ 𝑌 ∈ 𝑌 ),
(d) ∃𝑋∀𝑌 (𝑌 ∈ 𝑋 ↔ ¬(𝑌 ∈ 𝑌 )).

5.2 Decide whether it is satisfiable in the theory of uninterpreted functions
that

𝑥 = 𝑓(𝑓(𝑓(𝑓(𝑓(𝑥))))) ∧ 𝑥 = 𝑓(𝑓(𝑓(𝑥))) ∧ 𝑥 ̸= 𝑓(𝑥).

5.3 Is it possible to decide whether ∀𝑋(𝑓(𝑓(𝑋)) = 𝑔(𝑋)) ∧ 𝑓(𝑔(𝑎)) ̸= 𝑔(𝑓(𝑎))
is satisfiable by our congruence closure algorithm?

5.4 Prove that the algorithm to extract a solution for Difference logic, if there
is no cycle in the graph, always works.

5.5 Check the Static Single Assignment (SSA) example in these slides.
1There is also an older version called CVC4 available.

1

https://microsoft.github.io/z3guide/playground/Freeform%20Editing
https://cvc5.github.io/app/
https://github.com/Z3Prover/z3
https://cvc5.github.io/
https://github.com/pysmt/pysmt
https://microsoft.github.io/z3guide/
https://microsoft.github.io/z3guide/programming/Z3%20Python%20-%20Readonly/Introduction
https://theory.stanford.edu/~nikolaj/programmingz3.html
https://cvc5.github.io/docs-ci/docs-main/api/python/python.html
https://cvc5.github.io/docs-ci/docs-main/api/python/python.html
https://github.com/pysmt/pysmt
https://cvc5.github.io/tutorials/beginners/index.html
https://cvc5.github.io/tutorials/beginners/theories.html#floating-point-arithmetic
https://www.decision-procedures.org/slides/uf.pdf#page=59
https://cvc4.github.io/


5.6 Try all the examples in the SMT-LIB Examples.

5.7 Show that 𝑥 − 𝑦 > 0 iff 𝑥 > 𝑦 holds for integers, but does not hold for
bit-vectors with a fixed length.

5.8 Let 𝑥 be a 32 bit-vector. You want to verify that if you produce 𝑦 by
𝑥 ≫𝑠 31 (arithmetic right shift is bvashr) followed by one of the following

• (𝑥 ⊕ 𝑦) − 𝑦, or
• (𝑥 + 𝑦) ⊕ 𝑦, or
• 𝑥 − ((𝑥 + 𝑥)&𝑦),

then you get the absolute value of 𝑥. For further details, check this web-
page.

5.9 How hard is it to check whether two programs are equivalent?

5.10 Try CBMC, using MiniSAT and Z3, on f11, f12, f13, and f14 from this
example. For details, see these lecture notes.

5.11 You can find many examples in Dennis Yurichev’s SAT/SMT by Example.

2

http://smtlib.cs.uiowa.edu/examples.shtml
https://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs
https://www.cprover.org/cbmc/
https://www.cs.cmu.edu/~15414/s21/lectures/15-bmc/cbmc-example.c
https://www.cs.cmu.edu/~15414/s21/lectures/15-bmc.pdf
https://smt.st/

