Logical reasoning and programming
Lecture 5: Satisfiability Modulo Theories (SMT)

Karel Chvalovsky
CIIRC CTU
October 20, 2025

Parts of this presentation are based on materials from SAT/SMT Summer Schools and SC?
Summer School.

http://satassociation.org/sat-smt-school.html
http://www.sc-square.org/CSA/school/
http://www.sc-square.org/CSA/school/

First-Order Logic (recap)
We moved to First-Order Logic (FOL) and introduced some basic notions
» we fix a language L (function and predicate symbols),
» termsin L,
» formulae in L,
» semantics
» a model for L, denoted M = (D, 1),
» an evaluation of variables,
> Tarski's definition of truth,
> semantic consequence relation I' |= ¢ (iff I' U {—} is unsat.)

Theory T (given by L)
We say that an interpretation M = (D,) for L is a T-interpretation if M satisfies all
axioms of T, ori admits only intended interpret ations of 7.
We say that a formula ¢ is
» T-satisfiable, if M = ¢ for a T-interpretation M;
» T-valid, if M |= ¢ for every T-interpretation M.

A set of formulae T T-entails a formula ¢, denoted T |=7 ¢, if every T-interpretation

satisfying all formulae in I' satisfies also (.)
1/26

Satisfiability Modulo Theories (SMT)

We have a formula that has a propositional structure, but propositional variables are
expressions in a theory 7T .

Example
From

(z j Ove j DA(@+y+2z#0)A(fy) > f(2),
we obtain

(pVaq)AN=rNAs,

by so-called propositional abstraction (r is z +y + z = 0).

2/26

Solving SMT

There are two basic approaches how to solve a satisfiability of a formula ¢ modulo a
theory T

Eager (encode an SMT problem in SAT)

> we translate the problem over the theory into an equisatisfiable propositional
formula and use a SAT solver,

> it is eager, because the SAT solver has access to complete theory information
from the beginning,

P it requires sophisticated encodings.

Lazy (combine a SAT solver with a decision procedure)

» It is very common that we have theory solvers for problems that are conjunctions
of literals.

3/26

Very lazy SMT—example

Is the following conjunction of clauses satisfiable?

Problem—theory view

—a=15b
r=aV z=0
y=avy=b
z=a Vv z=b

—|[E:y

4/26

Very lazy SMT—example

Is the following conjunction of clauses satisfiable?

Problem—propositional view

b2
y2
Pe

P
V. p3
vV D5
V. o pr
ps

4/26

Very lazy SMT—example

Is the following conjunction of clauses satisfiable?

Problem—propositional view

b2
y2
Pe

SAT solver

b1

<

Dps

b3
D5
b7

4/26

Very lazy SMT—example

Is the following conjunction of clauses satisfiable?

Problem—propositional view

b2
y2
Pe

SAT solver

- pr A - P8 AN P2 A - D3

b1

<

Dps

b3
D5
b7

N — Ps

N De

N - Pt

4/26

Very lazy SMT—example

Is the following conjunction of clauses satisfiable?
Problem—theory view
—a=15b
r=aV z=0
y=avy=b
z=aV z=5b

—|[E:y

Theory solver

—a=bA - x=yAT=aAN ~T=bAyYy=an -y=ba z=aAN -z=b

4/26

Very lazy SMT—example

Is the following conjunction of clauses satisfiable?

Problem—theory view

—a=15b
r=aV z=0
y=aVvy=b
z=aV z=0b

T =YY

Theory solver

—a=bA - xT=yAT=aAN "T=bAYy=an -y=ba z=aAN -z=b

Theory solver says unsatisfiable. Block this (minimal) solution by adding a clause.

4/26

Very lazy SMT—example
Is the following conjunction of clauses satisfiable?
Problem—theory view

—a=15b
r=aV z=0
y=avy=b
z=aV z=0b

=y

r=yVvV-or=a\V-y=a

Theory solver
—a=bA - xT=yAT=aAN "T=bAYy=an -y=ba z=aAN -z=b

Theory solver says unsatisfiable. Block this (minimal) solution by adding a clause.

4/26

Very lazy SMT—example

Is the following conjunction of clauses satisfiable?

Problem—propositional view

b2
y2
Pe

ps V-~

b1

<

Dps
D2

b3
D5
b7

Vo P4

4/26

Very lazy SMT—example

Is the following conjunction of clauses satisfiable?

Problem—propositional view

b2
y2
Pe

ps V-~

SAT solver

- pr A - P8 AN P2 A - D3

P

V. p3
vV D5
V. o pr
ps

p2 VvV~
AN = P4

D4

AN %5

N De

N - Pt

4/26

Very lazy SMT—example
Is the following conjunction of clauses satisfiable?
Problem—theory view

—a=15b
r=aV z=0
y=avy=b
z=aV z=0b

=y

r=yVvV-or=a\V-y=a

Theory solver
—a=bA - x=yAT=aAN ~T=bA y=aAN y=baA z=aAN -z=b

Satisfiable by taking two constants ¢ # ca, where cy =a=x =z and co = b =y.

4/26

Lazy approach

Let ¢ be a formula and we want to know whether ¢ is T-satisfiable. Let ¢’ be a
propositional abstraction of .

» we call a SAT solver on ¢’
> if ¢/ € SAT, then we obtain a set of literals I1,...,l], in ¢ that satisfies the
formula ¢/,

» we can then ask a T-solver whether the set of corresponding literals Iy, ..., in ¢ is
satisfiable in T

> if it is, then return ¢ is satisfiable and provide a model, -
> if it is not, then we can add a new propositional clause I} V --- V I}, to ¢’ (or
something better) and repeat the whole process with a new propositional formula,

» if ¢ ¢ SAT, then return ¢ is unsatisfiable.

5/26

DPLL(7)—lazy approach + theory propagations

It “effectively” transforms a satisfiability of an arbitrary quantifier-free formula over T
to a satisfiability of a conjunction of literals over 7. In basic lazy approach there is no
theory guidance, here T -solver guides the search by producing 7 -consequences.

For efficiency reasons we want several things from a solver for T

» checks consistency of conjunctions of literals,

» computes 7 -propagations (7 -consequences),

» pruduces explanations (ideally minimal) of 7T-inconsistencies and 7 -propagations,
» should be incremental and backtrackable,
>

(generate T-atoms and 7-lemmata).
Although it is called DPLL(T), in practice, CDCL is usually used and hence we want a

support for backjumping and conflicts. Moreover, we want to test already partial
assignments not only full propositional models for 7-consistency.

6/26

DPLL(T)- =T -propagations example

We have
g(a) =cA(f(g(a)) # fle)Vgla) =d) Nc#d.
—_— —— L — ——

p —|q T —Ss

7/26

DPLL(T)- =T -propagations example

We have

9(a) = cA(f(9(a)) # F() Vgla) = d) Ac#d.
——— —_— ~—~—

p —-q

SAT solver

p
s

By unit propagations.

r

-s

T-solver

7/26

DPLL(T)- =T -propagations example

We have

9(a) = cA(f(9(a)) # F() Vgla) = d) Ac#d.
——— —_— ~—~—

p —-q

SAT solver

p
s

r

-s

T-solver

g(a) =c
c#*d

7/26

DPLL(T)- =T -propagations example

We have

9(a) = cA(f(9(a)) # F() Vgla) = d) Ac#d.
——— —_— ~—~—

p —-q

SAT solver

p
s

By T-propagations.

r

-s

T-solver

7/26

DPLL(T)- =T -propagations example

We have
g(a) =cA(f(g(a)) # fle)Vgla) =d) Nc#d.
—_— —.—.— — —— ——

p —|q T —Ss

SAT solver T -solver
p gla)=c
-5 c#d
q f(g(a)) = f(c)
- gla) # d

7/26

DPLL(T)- =T -propagations example

We have
g(a) =cA(f(g(a)) # fle)Vgla) =d) Nc#d.
—_— —.—.— — —— ——

p —|q T —Ss

SAT solver T -solver
p gla)=c
-5 c#d
q f(g(a)) = f(c)
- gla) # d

UNSAT

7/26

DPLL(T) issue—diamond example

n—1
Is a1 > an N /\ ((ak <bp ANbp < ak+1) V (ak <cp Neg < ak+1)) satisfiable?
k=1

>

8/26

DPLL(T) issue—diamond example

n—1
Is a1 > an N /\ ((ak <bp ANbp < ak+1) V (ak <cp Neg < ak+1)) satisfiable?
k=1

>

8/26

DPLL(T) issue—diamond example

n—1
Is a1 > an N /\ ((ak <bp ANbp < ak+1) V (ak <cp Neg < ak+1)) satisfiable?
k=1

>

8/26

DPLL(T) issue—diamond example

n—1
Is a1 > an N /\ ((ak <bp ANbp < ak+1) V (ak <cp Neg < ak+1)) satisfiable?
k=1

>

8/26

DPLL(T) issue—diamond example

n—1
Is a1 > an N /\ ((ak <bp ANbp < ak+1) V (ak <cp Neg < ak+1)) satisfiable?
k=1

>

This leads to an exponential enumeration.
8/26

DPLL(T) issue—diamond example

n—1
Is a1 > an N /\ ((ak <bp ANbp < ak+1) V (ak <cp Neg < ak+1)) satisfiable?
k=1

>

Can be solved by deducing lemmata a; < a;41.
8/26

DPLL(7) modular architecture

w e Bit-Vectors

Uninterpreted
Functions

SAT solver
CDCL

9/26

DPLL(7) modular architecture

s Bit-Vectors

\ Only sees Boolean skeleton.
Builds partial models.
Sends them to the core as
I assertions.
SAT solver
CDCL

Uninterpreted
Functions

9/26

DPLL(7) modular architecture

/ Sends assertions to theories.
Sends deduced literals
between solvers.
Handles theory combination.
SAT solver
CDCL

Uninterpreted
Functions

9/26

DPLL(7) modular architecture

s Bit-Vectors

A

Theory solver

/ Checks T-satisfiability of
conjunctions of 7-literals.
Incremental.
Backtrackable.

I Conflict generation.

SAT solver
CDCL

Uninterpreted
Functions

9/26

Various theories and their combinations

It is possible to combine various theories, called logics here, and give them “canonical”
names.

source: SMT-LIB
10/26

http://smtlib.cs.uiowa.edu/logics.shtml

Uninterpreted functions (UF)

We have literals of the form
s=t and s#t,

where s and ¢ may contain constants (variables) and function symbols. Equality is
reflexive, symmetric, transitive, and satisfies congruence axioms

VX1VXmVY1VYm(X1:Y1/\/\Xm:Ym%
f(XlaaXm):f(}/l77Ym))

for every m-ary function symbol f. It is sometimes called functional consistency in this
context.

(QF_UF) is usually the core of an SMT solver, which is used in other theories. It is
decidable in O(nlogn).

11/26

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_UF

Why no uninterpreted predicate symbols?

The only predicate symbol allowed in (QF_UF) is equality, because every other
uninterpreted predicate symbol can be expressed by a fresh uninterpreted function

p(ti,...,tm) becomes f,(t1,...,tm) =T,
—p(ti,...,tm) becomes fp(ti,... . tm) # T,

where T is a new constant and f, is a new function symbol for every predicate p in our
original language. Note that f, and T are not valid arguments of other terms.

Example
p(a) V —q(a, g(a,b)) becomes fy(a) =T V fy(a,g(a,b)) # T.

12/26

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_UF

Producing congruence closure
We have a formula ¢

S1=1t1 N NS =1 AN Skr1 7 tr1 N+ N Skyl 7ttt
The idea is to produce the congruence closure of
sS1=01 N - Nsp =1

that is we apply reflexivity, symmetry, transitivity, and congruence axioms as many
times as possible.

Then we just check whether any of

Sk+1 = Tty oy Skl = Lipi
is among them. If this is the case, the problem is unsatisfiable. Otherwise, it is
satisfiable.

Example
We want to check a = b A f(g(a)) # f(g(b)).

13/26

Producing congruence closure Il.

We have a formula ¢

S1 =t A+ ASg =1t N Skr1 7 the1 AN A Skl F Lt

Although the congruence closure is in general infinite, it is sufficient to check only
finitely many equalities here, namely the equalities produced from all the subterms
occurring in (.

Example

We want to check a = b A f(g(a)) # f(g(b)). Hence it is sufficient to produce only
equalities containing a, b, g(a), g(b), f(g(a)), and f(g(b)). It means we get

{a=a,b=b,a="0b,g(a) = g(a),g(b) = g(b),g(a) = g(b)
f(g(a)) = f(g(a)), f(g(b)) = f(g

f(g(b)).

N e
>
~—
>
~
—
@
—
s}
N—
SN—
I
~
—~
Q
—
>
N—
N—
—

Hence it is unsatisfiable, because it contains f(g(a))

14 /26

Producing congruence closure IlI.

We have a formula ¢

S1 =t A+ ASg =1 N Skr1 7 the1 N A Skt F tii-

It is convenient to represent the congruence closure by the equivalence classes of the
terms occurring in ©:
» each subterm occurring in ¢ forms an equivalence class,
> for every s; =t; € @
P> we merge the equivalance classes containing s; and t;,

> we apply the congruence axioms (at least one argument is from the merged class
containing s; and t;).

If this leads to new merges, we propagate congruences further (at least one
argument is from a newly merged class) as long as possible.

» return unsatisfiable if s; and ¢; are in the same equivalence class for s; # t; € ¢,
otherwise return satisfiable.

It is possible to produce an even better representation using DAGs.

15/26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flx,y)y)=2 A g@)F#9(2).

Write down all the subterms.

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flx,y)y)=2 A g@)F#9(2).

f(f(z,9),9)

Including the immediate subterm relations.

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flxy)y)=2 A g@)F#9(2).

f(f(z,9),9)

f(z,y) g(z) h(y) 9(2)

S

x Yy

Merge the equivalence classes containing f(z,y) and x.

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flxy)y)=2 A g@)F#9(2).

f(f(z,9),9)

f—/

f(z,y) g(z) h(y) 9(2)

N

x Yy

Apply the congruence closure axioms.

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flx,y)y)=2 A g@)F#9(2).

16 /26

Producing congruence closure—example

We want to satisfy

flry) =z AN hy)=g@) AN [(flxy)y)=2 A g@)F#9(2).

Merge the equivalence classes for h(y) and g(z).

16 /26

Producing congruence closure—example

We want to satisfy

flry) =z AN hy)=g@) AN [(flxy)y) =2 A g@)#9(2).

Merge the equivalence classes for f(f(z,y),y) and z.

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flx,y)y)=2 A g@)F#9(2).

Apply the congruence closure axioms.

16 /26

Producing congruence closure—example

We want to satisfy

flr,y) =z AN hy)=g@) AN [f(flxy)y) =2 A gl@)F#9(2).

Unsatisfiable because g(z) and g(z) are in the same equivalence class.

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flx,y)y)=2 A g@)F#9(2).

The conflict involves g(x) # g(z).

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flx,y)y)=2 A g@)F#9(2).

The conflict involves g(x) # g(z).

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flx,y)y)=2 A g@)F#9(2).

The conflict involves g(x) # g(z).

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flx,y)y)=2 A g@)F#9(2).

The conflict involves g(x) # g(z), = = f(z,y).

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flx,y)y)=2 A g@)F#9(2).

The conflict involves g(x) # g(z), = = f(z,y).

16 /26

Producing congruence closure—example

We want to satisfy

flry) =2 AN hy)=g(@) AN [(flx,y)y)=2 A g@)F#9(2).

The conflict involves g(z) # g(2), z = f(z,y), and f(f(z,y),y) = z.

16 /26

Equality graphs (e-graphs)
Congruence closures in the form of equality graphs (e-graphs) do not appear only in
theorem provers, but are used, for example, in rewrite-driven compiler optimizations
and program synthesizers (using equality saturation). For example, the egg library
provides high-performance, flexible e-graphs implemented in Rust.

(a) Initial e-graph (b) After applying rewrite (c) After applying rewrite (d) After applying rewrites
contains (a x 2)/2. xX2—>x <1 (xXy)/z > x X (y/z). x/x > land 1 Xx — x.

Fig. 2. An e-graph consists of e-classes (dashed boxes) containing equivalent e-nodes (solid boxes). Edges
connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying
rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: a,a X 1,ax 1 x 1, and
so on.

source: Willsey et al. 2021, p. 5 17/ 26

https://egraphs-good.github.io/

Difference logic
We have

r—yik

where e {<, <, =,#,>,>}, z, y, and k (number) are over integers (QF_IDL) or

reals (QF_RDL).

We can assume that all are of the form x — y < k, because

r—y>k
r—y==k
r—yF£k
r—y<k

y—x < —k,

r—y<khNy—zxz<—k,
r—y<kVy—zx<—k,

r—y<k-1, for integers
r—y<k-—4, for reals

where 0 is treated on symbolic level (or a sufficiently small real).

Moreover, every solution can be shifted. Hence we can introduce a fresh variable g,

replace all x < k by © — yg < k and shift a solution in such a way that yy becomes 0.

18/26

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_IDL
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_RDL

Why is difference logic interesting?

It is an important fragment of arithmetic. We can, for example, express a simple
scheduling problem:

1 < sq,
5, <10,
Sqa +5 < sp,
sp < 10,

where s, and s; express when tasks a and b start.

Clearly, using # (and hence V) and integers, we can encode NP problems like a
k-coloring of a graph G = (V, E):

1<e, <k forv eV,
Cy F Cu for (v,w) € E.

19/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

r<1Nz—y<2Ay—2<3ANz—2x<—6

20/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

r<1lANz—y<2ANy—2<3ANz—2x<—6

We write x — yo < 1 instead, where yg should be equal to 0!

20/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

<INz —y<2ANy—2<3ANz—2x<—6

20/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

r<1Nz—y<2Ay—2<3ANz—2x<—6

20/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

r<1Nz—y<2Ay—2<3ANz—2<—-6

20/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

c<1ANr—y<2ANy—2<3Nz—2<-06

This conflict set is communicated back to the SAT solver!

20/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

r<1INz—y<2Ay—2<3ANz—x<—5H

21/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

r<1INz—y<2Ay—2<3ANz—2x< -5

Y
s
Solution= —(min path from 1) 0 3
O

Bellman—Ford in O(|V] - |E|)

21/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example
r<1INz—y<2Ay—2<3ANz—2x< -5

AN
s
Solution= —(min path from 1) 0 3
(&

r=>5

Bellman—Ford in O(|V] - |E|)

21/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example
r<1INz—y<2Ay—2<3ANz—2x< -5

Y
o
Solution= —(min path from 1) 0 3
(&

r=2>5,y=3

Bellman—Ford in O(|V] - |E|)

21/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example
r<1INz—y<2Ay—2<3ANz—2x< -5

AN
s
Solution= —(min path from 1) 0 3
O

r=5,y=32=0

Bellman—Ford in O(|V] - |E|)

21/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example
r<1INz—y<2Ay—2<3ANz—2x< -5

Y
s
Solution= —(min path from 1) 0 3
(&

r=5y=3,2=0,y=4

Bellman—Ford in O(|V] - |E|)

21/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example
r<1INz—y<2Ay—2<3ANz—2x< -5

Y
s
Solution= —(min path from 1) 0 3
(&

r=5y=3,2=0,y=4
Shift solution!
Bellman-Ford in O(|V] - |E|)

21/26

How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example
r<1INz—y<2Ay—2<3ANz—2x< -5

Y
s
Solution= —(min path from 1) 0 3
(&

r=5y=3,2=0,y=4
Shift solution!
€r = 1, y = —1’ z = —4, yo = 0 Be”man_FOrd in O(|V‘ ° |E’)

21/26

Linear arithmetic

We have
a1T1 + -+ apxy, Db

where <€ {<, <, =,#,>, >}, a; positive, and z1,...,x, are over integers (QF_LIA)
or reals (QF_LRA).

We can again assume that we have only < (if a; positive, then also >).

Although simplex is exponential (and LRA is in P), it is fast in practice.

For LIA (is NP-complete) simplex with branch-and-bound (cutting planes) is usually
used.

For further details, see Kroening and Strichman 2016.

22/26

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LIA
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LRA

Bit-vectors

We have fixed-sized vectors of bits (QF_BV).

Various types of operations
» logical (bit-wise), e.g., and
» arithmetic, e.g., add
» comparisons, e.g., <

P string-like, e.g., concat

Note that we can eagerly translate them into propositional logic and use directly SAT
(bit-blasting). Moreover, in many cases this produces better results. However, some
operations, e.g., multiplication, produce hard SAT instances and other approaches are
needed.

Floating Point numbers are bit-vectors based on the IEEE standard.

23/26

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV
https://smtlib.cs.uiowa.edu/theories-FloatingPoint.shtml

Arrays (A)

We have two basic operations on arrays
» select(a,) is the value of array a at the possition i
» store(a,i,v) is the array a with v at the possition i

and equality is also a part of the language.
It satisfies the following read-over-write axioms:
select(store(a,i,v),1) = v
i # j — select(store(a,i,v),j) = select(a, j)
If we add the axiom of extensionality
Vi(select(a, 1) = select(b,i)) — a = b,

then we obtain (QF_AX).

24/26

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_AX

Arrays properties

Note that the size of a model depends on the number of accesses to memory and not
on the size of the memory we model.

Computing T4 is NP-complete and hence in practice we usually treat select and store
as uninterpreted functions and add instances of violated array axioms on demand.

25/26

SMT-LIB

Among other things it is a common input and output language for SMT solvers that is
described here.

; Integer arithmetic

(set-logic QF_LIA)

(declare-fun x () Int)
(declare-fun y () Int)

(assert (= (- xy) (+ x (- y) 1))
(check-sat)

; unsat

(exit)

26/26

http://smtlib.cs.uiowa.edu/

Bibliography |

[
E

[

Griggio, Alberto (2015). “Introduction to SMT". SAT /SMT Summer School 2015.
URL: http://www.cs.nyu.edu/~barrett/summerschool/griggio.pdf.
Jovanovi¢, Dejan (2016). “Introduction to Satisfiability Modulo Theories”.
SAT/SMT /AR Summer School 2016. URL: http://ssa-school-
2016.it.uu.se/wp-content/uploads/2016/06/jovanovic.pdf.

Kroening, Daniel and Ofer Strichman (2016). Decision Procedures - An Algorithmic
Point of View, Second Edition. Texts in Theoretical Computer Science. An EATCS
Series. Springer. 1SBN: 978-3-662-50496-3. DO1: 10.1007/978-3-662-50497-0.
Oliveras, Albert (2019). “Introduction to SMT". SAT/SMT /AR Summer School
2019. URL: https://alexeyignatiev.github.io/ssa-school-
2019/slides/ao-satsmtar19-slides.pdf.

Tinelli, Cesare (2017). “Foundations of Satisfiability Modulo Theories”. SC*
Summer School 2017. URL:
http://www.sc-square.org/CSA/school/lectures/SCSC-Tinelli.pdf.
Willsey, Max et al. (2021). “Egg: Fast and Extensible Equality Saturation”. In:
Proceedings of the ACM on Programming Languages 5.POPL, pp. 1-29. DOI:
10.1145/3434304.

http://www.cs.nyu.edu/~barrett/summerschool/griggio.pdf
http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/jovanovic.pdf
http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/jovanovic.pdf
https://doi.org/10.1007/978-3-662-50497-0
https://alexeyignatiev.github.io/ssa-school-2019/slides/ao-satsmtar19-slides.pdf
https://alexeyignatiev.github.io/ssa-school-2019/slides/ao-satsmtar19-slides.pdf
http://www.sc-square.org/CSA/school/lectures/SCSC-Tinelli.pdf
https://doi.org/10.1145/3434304

	References

