Logical reasoning and programming

Lecture 5: Satisfiability Modulo Theories (SMT)

Karel Chvalovský

CIIRC CTU

October 20, 2025

Parts of this presentation are based on materials from SAT/SMT Summer Schools and SC² Summer School.

First-Order Logic (recap)

We moved to First-Order Logic (FOL) and introduced some basic notions

- ightharpoonup we fix a language L (function and predicate symbols),
- \blacktriangleright terms in L,
- \blacktriangleright formulae in L.
- semantics
 - ightharpoonup a model for L, denoted $\mathcal{M} = (D, i)$,
 - an evaluation of variables,
 - ► Tarski's definition of truth,
 - ightharpoonup semantic consequence relation $\Gamma \models \varphi$ (iff $\Gamma \cup \{\neg \varphi\}$ is unsat.)

Theory \mathcal{T} (given by L)

We say that an interpretation $\mathcal{M}=(D,i)$ for L is a \mathcal{T} -interpretation if \mathcal{M} satisfies all axioms of \mathcal{T} , or i admits only intended interpret ations of \mathcal{T} .

We say that a formula φ is

- $ightharpoonup \mathcal{T}$ -satisfiable, if $\mathcal{M} \models \varphi$ for a \mathcal{T} -interpretation \mathcal{M} ;
- $ightharpoonup \mathcal{T}$ -valid, if $\mathcal{M} \models \varphi$ for every \mathcal{T} -interpretation \mathcal{M} .

A set of formulae Γ \mathcal{T} -entails a formula φ , denoted $\Gamma \models_{\mathcal{T}} \varphi$, if every \mathcal{T} -interpretation satisfying all formulae in Γ satisfies also φ .

Satisfiability Modulo Theories (SMT)

We have a formula that has a propositional structure, but propositional variables are expressions in a theory \mathcal{T} .

Example

From

$$(\underbrace{x=0}_p \vee \underbrace{x=1}_q) \wedge (\underbrace{x+y+z\neq 0}_{\neg r}) \wedge (\underbrace{f(y)>f(z)}_s),$$

we obtain

$$(p \lor q) \land \neg r \land s,$$

by so-called propositional abstraction (r is x + y + z = 0).

Solving SMT

There are two basic approaches how to solve a satisfiability of a formula φ modulo a theory \mathcal{T} :

Eager (encode an SMT problem in SAT)

- we translate the problem over the theory into an equisatisfiable propositional formula and use a SAT solver,
- ▶ it is eager, because the SAT solver has access to complete theory information from the beginning,
- it requires sophisticated encodings.

Lazy (combine a SAT solver with a decision procedure)

▶ It is very common that we have theory solvers for problems that are conjunctions of literals.

Is the following conjunction of clauses satisfiable?

Problem—theory view

$$\neg a = b$$

$$x = a \lor x = b$$

$$y = a \lor y = b$$

$$z = a \lor z = b$$

$$\neg x = y$$

Is the following conjunction of clauses satisfiable?

Problem—propositional view

```
\begin{array}{cccc}
 & p_1 \\
p_2 & \vee & p_3 \\
p_4 & \vee & p_5 \\
p_6 & \vee & p_7 \\
 & \neg & p_8
\end{array}
```

Is the following conjunction of clauses satisfiable?

Problem—propositional view

SAT solver

Is the following conjunction of clauses satisfiable?

Problem—propositional view

```
\begin{array}{cccc}
 & p_1 \\
p_2 & \vee & p_3 \\
p_4 & \vee & p_5 \\
p_6 & \vee & p_7 \\
 & \neg & p_8
\end{array}
```

SAT solver

 $\neg p_1 \land \neg p_8 \land p_2 \land \neg p_3 \land p_4 \land \neg p_5 \land p_6 \land \neg p_7$

Is the following conjunction of clauses satisfiable?

Problem—theory view

$$\neg a = b$$

$$x = a \lor x = b$$

$$y = a \lor y = b$$

$$z = a \lor z = b$$

$$\neg x = y$$

Theory solver

$$\neg a = b \land \neg x = y \land x = a \land \neg x = b \land y = a \land \neg y = b \land z = a \land \neg z = b$$

Is the following conjunction of clauses satisfiable?

Problem—theory view

$$\neg a = b$$

$$x = a \lor x = b$$

$$y = a \lor y = b$$

$$z = a \lor z = b$$

$$\neg x = y$$

Theory solver

$$\neg a = b \land \neg x = y \land x = a \land \neg x = b \land y = a \land \neg y = b \land z = a \land \neg z = b$$

Theory solver says unsatisfiable. Block this (minimal) solution by adding a clause.

Is the following conjunction of clauses satisfiable?

Problem—theory view

$$\neg a = b$$

$$x = a \lor x = b$$

$$y = a \lor y = b$$

$$z = a \lor z = b$$

$$\neg x = y$$

$$x = y \lor \neg x = a \lor \neg y = a$$

Theory solver

$$\neg a = b \land \neg x = y \land x = a \land \neg x = b \land y = a \land \neg y = b \land z = a \land \neg z = b$$

Theory solver says unsatisfiable. Block this (minimal) solution by adding a clause.

Is the following conjunction of clauses satisfiable?

Problem—propositional view

Is the following conjunction of clauses satisfiable?

Problem—propositional view

SAT solver

 $\neg p_1 \land \neg p_8 \land p_2 \land \neg p_3 \land \neg p_4 \land p_5 \land p_6 \land \neg p_7$

Is the following conjunction of clauses satisfiable?

Problem—theory view

$$\neg a = b$$

$$x = a \lor x = b$$

$$y = a \lor y = b$$

$$z = a \lor z = b$$

$$\neg x = y$$

$$x = y \lor \neg x = a \lor \neg y = a$$

Theory solver

$$\neg a = b \land \neg x = y \land x = a \land \neg x = b \land \neg y = a \land y = b \land z = a \land \neg z = b$$

Satisfiable by taking two constants $c_1 \neq c_2$, where $c_1 = a = x = z$ and $c_2 = b = y$.

Lazy approach

Let φ be a formula and we want to know whether φ is \mathcal{T} -satisfiable. Let φ' be a propositional abstraction of φ .

- ightharpoonup we call a SAT solver on φ'
- ▶ if $\varphi' \in SAT$, then we obtain a set of literals l'_1, \ldots, l'_n in φ' that satisfies the formula φ' ,
 - we can then ask a \mathcal{T} -solver whether the set of corresponding literals l_1,\ldots,l_n in φ is satisfiable in \mathcal{T}
 - \triangleright if it is, then return φ is satisfiable and provide a model,
 - if it is not, then we can add a new propositional clause $\overline{l_1'} \vee \cdots \vee \overline{l_n'}$ to φ' (or something better) and repeat the whole process with a new propositional formula,
- ▶ if $\varphi' \notin SAT$, then return φ is unsatisfiable.

$\mathsf{DPLL}(\mathcal{T})$ —lazy approach + theory propagations

It "effectively" transforms a satisfiability of an arbitrary quantifier-free formula over $\mathcal T$ to a satisfiability of a conjunction of literals over $\mathcal T$. In basic lazy approach there is no theory guidance, here $\mathcal T$ -solver guides the search by producing $\mathcal T$ -consequences.

For efficiency reasons we want several things from a solver for \mathcal{T} :

- checks consistency of conjunctions of literals,
- \triangleright computes \mathcal{T} -propagations (\mathcal{T} -consequences),
- lacktriangle pruduces explanations (ideally minimal) of ${\cal T}$ -inconsistencies and ${\cal T}$ -propagations,
- should be incremental and backtrackable,
- (generate \mathcal{T} -atoms and \mathcal{T} -lemmata).

Although it is called DPLL(\mathcal{T}), in practice, CDCL is usually used and hence we want a support for backjumping and conflicts. Moreover, we want to test already partial assignments not only full propositional models for \mathcal{T} -consistency.

We have

$$\underbrace{g(a) = c}_{p} \wedge \big(\underbrace{f(g(a)) \neq f(c)}_{\neg q} \vee \underbrace{g(a) = d}_{r}\big) \wedge \underbrace{c \neq d}_{\neg s}.$$

We have

$$\underbrace{g(a) = c}_{p} \wedge \big(\underbrace{f(g(a)) \neq f(c)}_{\neg q} \vee \underbrace{g(a) = d}_{r}\big) \wedge \underbrace{c \neq d}_{\neg s}.$$

SAT solver

 \mathcal{T} -solver

$$rac{p}{\neg s}$$

By unit propagations.

DPLL(T)- -T-propagations example

We have

$$\underbrace{g(a) = c}_{p} \land (\underbrace{f(g(a)) \neq f(c)}_{\neg q} \lor \underbrace{g(a) = d}_{r}) \land \underbrace{c \neq d}_{\neg s}.$$

SAT solver

$$\neg s$$

 $\mathcal{T}\text{-solver}$

$$g(a) = c$$

$$c \neq d$$

We have

$$\underbrace{g(a) = c}_{p} \land (\underbrace{f(g(a)) \neq f(c)}_{\neg q} \lor \underbrace{g(a) = d}_{r}) \land \underbrace{c \neq d}_{\neg s}.$$

By \mathcal{T} -propagations.

We have

$$\underbrace{g(a) = c}_{p} \wedge \big(\underbrace{f(g(a)) \neq f(c)}_{\neg q} \vee \underbrace{g(a) = d}_{r}\big) \wedge \underbrace{c \neq d}_{\neg s}.$$

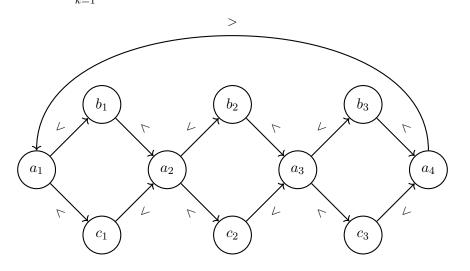
SAT solver	$\mathcal{T} ext{-solver}$
p	g(a) = c
$\neg s$	$c \neq d$
q	f(g(a)) = f(c)
eg r	$g(a) \neq d$

We have

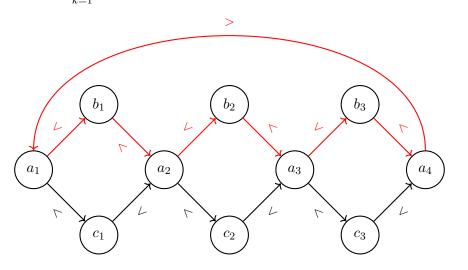
$$\underbrace{g(a) = c}_{p} \wedge \big(\underbrace{f(g(a)) \neq f(c)}_{\neg q} \vee \underbrace{g(a) = d}_{r}\big) \wedge \underbrace{c \neq d}_{\neg s}.$$

UNSAT

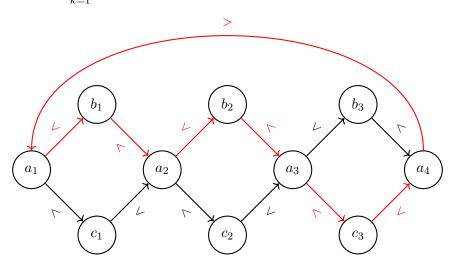
Is $a_1 > a_n \land \bigwedge_{i \in I} \big((a_k < b_k \land b_k < a_{k+1}) \lor (a_k < c_k \land c_k < a_{k+1}) \big)$ satisfiable?



Is $a_1 > a_n \land \bigwedge_{k=1}^n \left((a_k < b_k \land b_k < a_{k+1}) \lor (a_k < c_k \land c_k < a_{k+1}) \right)$ satisfiable?



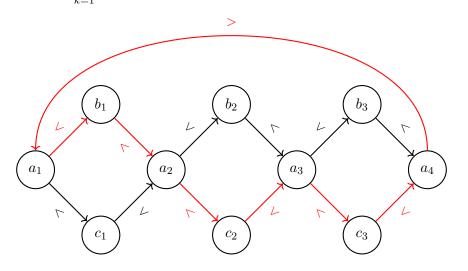
Is $a_1 > a_n \land \bigwedge_{k=1}^n \left((a_k < b_k \land b_k < a_{k+1}) \lor (a_k < c_k \land c_k < a_{k+1}) \right)$ satisfiable?



Is $a_1 > a_n \land \bigwedge_{k=1}^n \left((a_k < b_k \land b_k < a_{k+1}) \lor (a_k < c_k \land c_k < a_{k+1}) \right)$ satisfiable?

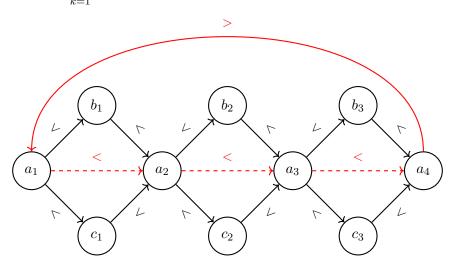


Is
$$a_1 > a_n \land \bigwedge_{k=1}^n \left((a_k < b_k \land b_k < a_{k+1}) \lor (a_k < c_k \land c_k < a_{k+1}) \right)$$
 satisfiable?

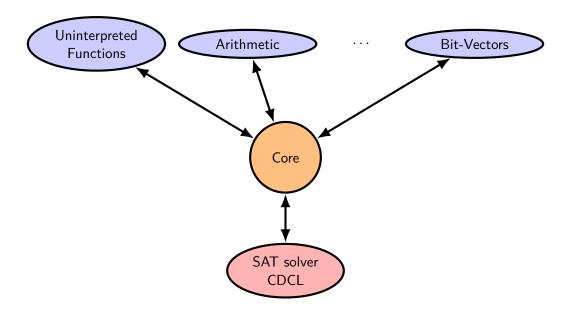


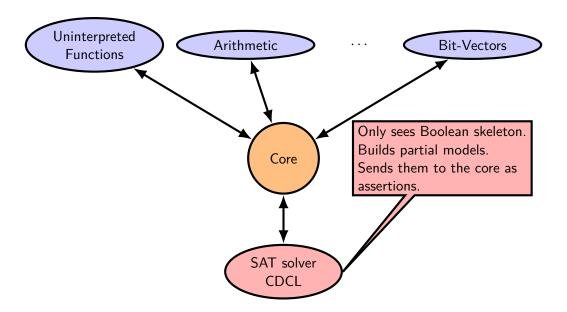
This leads to an exponential enumeration.

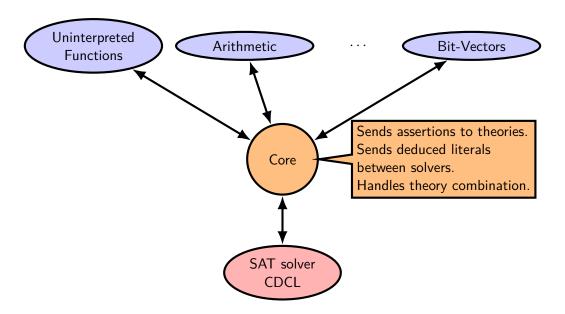
Is $a_1 > a_n \land \bigwedge_{k=1} ((a_k < b_k \land b_k < a_{k+1}) \lor (a_k < c_k \land c_k < a_{k+1}))$ satisfiable?

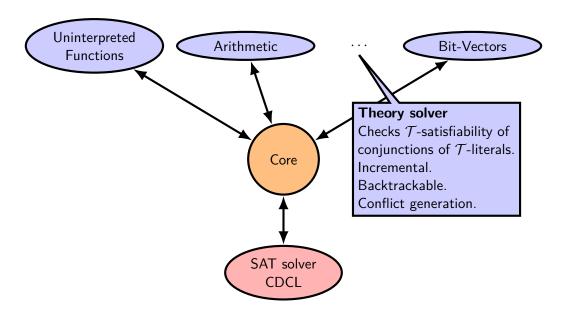


Can be solved by deducing lemmata $a_i < a_{i+1}$.



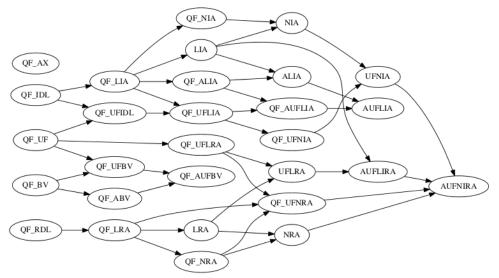






Various theories and their combinations

It is possible to combine various theories, called logics here, and give them "canonical" names.



source: SMT-LIB

Uninterpreted functions (UF)

We have literals of the form

$$s = t$$
 and $s \neq t$,

where s and t may contain constants (variables) and function symbols. Equality is reflexive, symmetric, transitive, and satisfies congruence axioms

$$\forall X_1 \dots \forall X_m \forall Y_1 \dots \forall Y_m (X_1 = Y_1 \wedge \dots \wedge X_m = Y_m \rightarrow f(X_1, \dots, X_m) = f(Y_1, \dots, Y_m))$$

for every m-ary function symbol f. It is sometimes called functional consistency in this context.

(QF_UF) is usually the core of an SMT solver, which is used in other theories. It is decidable in $\mathcal{O}(n \log n)$.

Why no uninterpreted predicate symbols?

The only predicate symbol allowed in (QF_UF) is equality, because every other uninterpreted predicate symbol can be expressed by a fresh uninterpreted function

$$p(t_1,\ldots,t_m)$$
 becomes $f_p(t_1,\ldots,t_m)=\top,$ $\neg p(t_1,\ldots,t_m)$ becomes $f_p(t_1,\ldots,t_m)\neq \top,$

where \top is a new constant and f_p is a new function symbol for every predicate p in our original language. Note that f_p and \top are not valid arguments of other terms.

Example

$$p(a) \vee \neg q(a, g(a, b))$$
 becomes $f_p(a) = \top \vee f_q(a, g(a, b)) \neq \top$.

Producing congruence closure

We have a formula φ

$$s_1 = t_1 \wedge \cdots \wedge s_k = t_k \wedge s_{k+1} \neq t_{k+1} \wedge \cdots \wedge s_{k+l} \neq t_{k+l}.$$

The idea is to produce the congruence closure of

$$s_1 = t_1 \wedge \cdots \wedge s_k = t_k$$

that is we apply reflexivity, symmetry, transitivity, and congruence axioms as many times as possible.

Then we just check whether any of

$$s_{k+1} = t_{k+1}, \dots, s_{k+l} = t_{k+l}$$

is among them. If this is the case, the problem is unsatisfiable. Otherwise, it is satisfiable.

Example

We want to check $a = b \land f(g(a)) \neq f(g(b))$.

Producing congruence closure II.

We have a formula φ

$$s_1 = t_1 \wedge \cdots \wedge s_k = t_k \wedge s_{k+1} \neq t_{k+1} \wedge \cdots \wedge s_{k+l} \neq t_{k+l}.$$

Although the congruence closure is in general infinite, it is sufficient to check only finitely many equalities here, namely the equalities produced from all the subterms occurring in φ .

Example

We want to check $a=b \land f(g(a)) \neq f(g(b))$. Hence it is sufficient to produce only equalities containing a, b, g(a), g(b), f(g(a)), and f(g(b)). It means we get

$$\{a = a, b = b, a = b, g(a) = g(a), g(b) = g(b), g(a) = g(b), f(g(a)) = f(g(a)), f(g(b)) = f(g(b)), f(g(a)) = f(g(b))\}.$$

Hence it is unsatisfiable, because it contains f(g(a)) = f(g(b)).

Producing congruence closure III.

We have a formula φ

$$s_1 = t_1 \wedge \cdots \wedge s_k = t_k \wedge s_{k+1} \neq t_{k+1} \wedge \cdots \wedge s_{k+l} \neq t_{k+l}.$$

It is convenient to represent the congruence closure by the equivalence classes of the terms occurring in φ :

- ightharpoonup each subterm occurring in φ forms an equivalence class,
- ▶ for every $s_i = t_i \in \varphi$
 - lacktriangle we merge the equivalance classes containing s_i and t_i ,
 - we apply the congruence axioms (at least one argument is from the merged class containing s_i and t_i).

If this leads to new merges, we propagate congruences further (at least one argument is from a newly merged class) as long as possible.

return unsatisfiable if s_j and t_j are in the same equivalence class for $s_j \neq t_j \in \varphi$, otherwise return satisfiable.

It is possible to produce an even better representation using DAGs.

We want to satisfy

$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$

Write down all the subterms.

We want to satisfy

$$f(x,y) = x \quad \wedge \quad h(y) = g(x) \quad \wedge \quad f(f(x,y),y) = z \quad \wedge \quad g(x) \neq g(z).$$

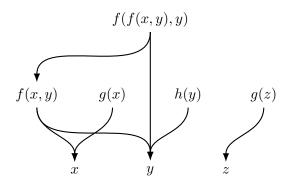
$$f(x,y)$$
 $g(x)$ $h(y)$ $g(z)$

$$x$$
 y

Including the immediate subterm relations.

We want to satisfy

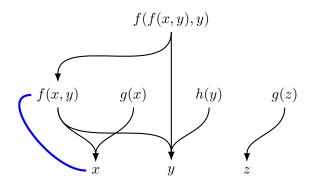
$$f(x,y) = x$$
 \land $h(y) = g(x)$ \land $f(f(x,y),y) = z$ \land $g(x) \neq g(z)$.



Merge the equivalence classes containing f(x, y) and x.

We want to satisfy

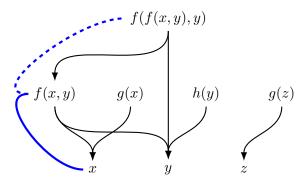
$$f(x,y) = x$$
 \land $h(y) = g(x)$ \land $f(f(x,y),y) = z$ \land $g(x) \neq g(z)$.



Apply the congruence closure axioms.

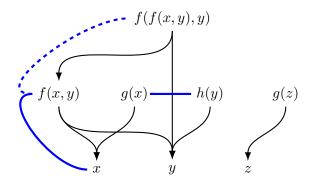
We want to satisfy

$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$



We want to satisfy

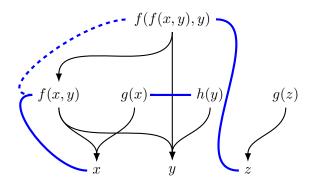
$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$



Merge the equivalence classes for h(y) and g(x).

We want to satisfy

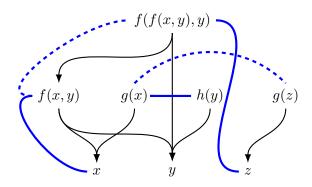
$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$



Merge the equivalence classes for f(f(x, y), y) and z.

We want to satisfy

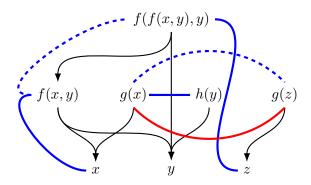
$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$



Apply the congruence closure axioms.

We want to satisfy

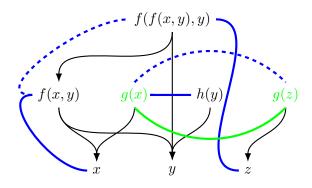
$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$



Unsatisfiable because g(x) and g(z) are in the same equivalence class.

We want to satisfy

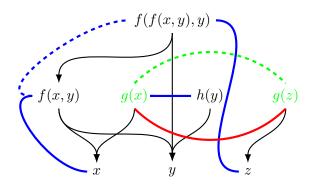
$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$



The conflict involves $g(x) \neq g(z)$.

We want to satisfy

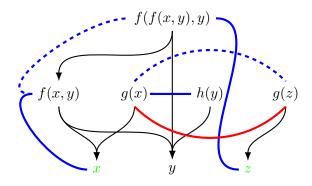
$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$



The conflict involves $g(x) \neq g(z)$.

We want to satisfy

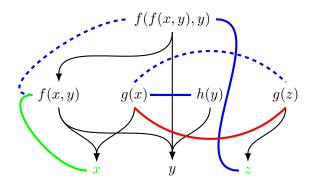
$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$



The conflict involves $g(x) \neq g(z)$.

We want to satisfy

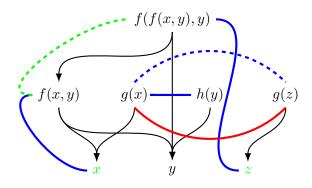
$$f(x,y) = x \quad \wedge \quad h(y) = g(x) \quad \wedge \quad f(f(x,y),y) = z \quad \wedge \quad g(x) \neq g(z).$$



The conflict involves $g(x) \neq g(z)$, x = f(x, y).

We want to satisfy

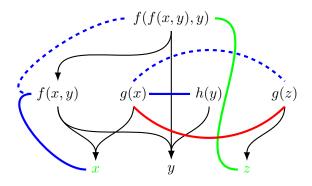
$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$



The conflict involves $g(x) \neq g(z)$, x = f(x, y).

We want to satisfy

$$f(x,y) = x \quad \land \quad h(y) = g(x) \quad \land \quad f(f(x,y),y) = z \quad \land \quad g(x) \neq g(z).$$



The conflict involves $g(x) \neq g(z)$, x = f(x, y), and f(f(x, y), y) = z.

Equality graphs (e-graphs)

Congruence closures in the form of equality graphs (e-graphs) do not appear only in theorem provers, but are used, for example, in rewrite-driven compiler optimizations and program synthesizers (using equality saturation). For example, the egg library provides high-performance, flexible e-graphs implemented in Rust.

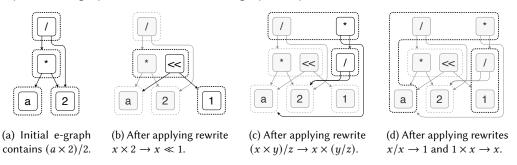


Fig. 2. An e-graph consists of e-classes (dashed boxes) containing equivalent e-nodes (solid boxes). Edges connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: $a, a \times 1, a \times 1 \times 1$, and so on.

source: Willsey et al. 2021, p. 5 $_{17/26}$

Difference logic

We have

$$x - y \bowtie k$$

where $\bowtie \in \{\leq, <, =, \neq, >, \geq\}$, x, y, and k (number) are over integers (QF_IDL) or reals (QF_RDL).

We can assume that all are of the form $x - y \le k$, because

$$\begin{array}{lll} x-y\geq k & \text{is} & y-x\leq -k,\\ x-y=k & \text{is} & x-y\leq k\wedge y-x\leq -k,\\ x-y\neq k & \text{is} & x-y< k \vee y-x<-k,\\ x-y< k & \text{is} & x-y\leq k-1,\\ & & x-y\leq k-\delta, & \text{for reals} \end{array}$$

where δ is treated on symbolic level (or a sufficiently small real).

Moreover, every solution can be shifted. Hence we can introduce a fresh variable y_0 , replace all $x \le k$ by $x - y_0 \le k$ and shift a solution in such a way that y_0 becomes 0.

Why is difference logic interesting?

It is an important fragment of arithmetic. We can, for example, express a simple scheduling problem:

$$1 \le s_a,$$

$$s_a \le 10,$$

$$s_a + 5 \le s_b,$$

$$s_b \le 10,$$

where s_a and s_b express when tasks a and b start.

Clearly, using \neq (and hence \vee) and integers, we can encode NP problems like a k-coloring of a graph G=(V,E):

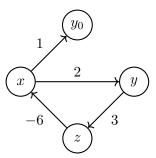
$$1 \le c_v \le k$$
 for $v \in V$,
$$c_v \ne c_w$$
 for $(v, w) \in E$.

We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

Satisfiable iff there is no negative cycle.

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -6$$



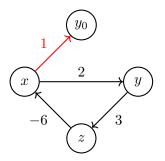
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

Satisfiable iff there is no negative cycle.

Example

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -6$$



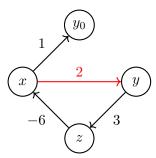
We write $x - y_0 \le 1$ instead, where y_0 should be equal to 0!

We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

Satisfiable iff there is no negative cycle.

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -6$$

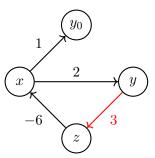


We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

Satisfiable iff there is no negative cycle.

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -6$$

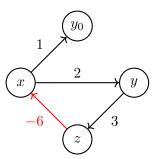


We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

Satisfiable iff there is no negative cycle.

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -6$$



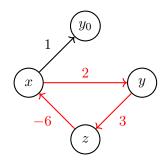
We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

Satisfiable iff there is no negative cycle.

Example

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -6$$



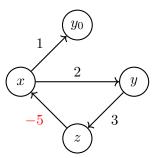
This conflict set is communicated back to the SAT solver!

We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

Satisfiable iff there is no negative cycle.

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -5$$



We represent a problem (i.e. a conjunction of literals) by a graph.

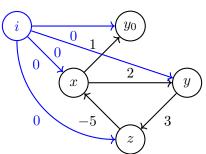
Theorem

Satisfiable iff there is no negative cycle.

Example

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -5$$

Solution = $-(\min \text{ path from } i)$



Bellman–Ford in $\mathcal{O}(|V| \cdot |E|)$

We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

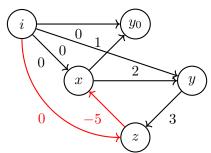
Satisfiable iff there is no negative cycle.

Example

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -5$$

Solution = $-(\min \text{ path from } i)$

$$x = 5$$



Bellman–Ford in $\mathcal{O}(|V| \cdot |E|)$

We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

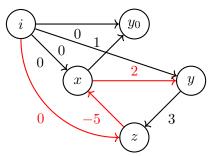
Satisfiable iff there is no negative cycle.

Example

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -5$$

 ${\sf Solution}{=}-(\min\ {\sf path\ from}\ i)$

$$x = 5, y = 3$$



Bellman–Ford in $\mathcal{O}(|V| \cdot |E|)$

We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

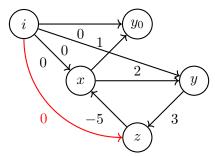
Satisfiable iff there is no negative cycle.

Example

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -5$$

Solution = $-(\min \text{ path from } i)$

$$x = 5, y = 3, z = 0$$



Bellman–Ford in $\mathcal{O}(|V| \cdot |E|)$

We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

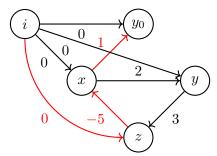
Satisfiable iff there is no negative cycle.

Example

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -5$$

 ${\sf Solution}{=}-(\min\ \mathsf{path}\ \mathsf{from}\ i)$

$$x = 5$$
, $y = 3$, $z = 0$, $y_0 = 4$



Bellman–Ford in $\mathcal{O}(|V| \cdot |E|)$

We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

Satisfiable iff there is no negative cycle.

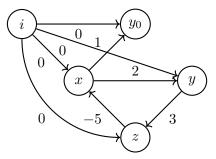
Example

$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -5$$

 $\mathsf{Solution} = -(\min \ \mathsf{path} \ \mathsf{from} \ i)$

$$x = 5$$
, $y = 3$, $z = 0$, $y_0 = 4$

Shift solution!



Bellman–Ford in $\mathcal{O}(|V| \cdot |E|)$

We represent a problem (i.e. a conjunction of literals) by a graph.

Theorem

Satisfiable iff there is no negative cycle.

Example

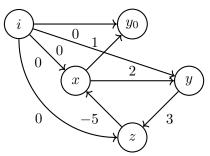
$$x \le 1 \land x - y \le 2 \land y - z \le 3 \land z - x \le -5$$

 ${\sf Solution}{=}-(\min\ {\sf path\ from}\ i)$

$$x = 5$$
, $y = 3$, $z = 0$, $y_0 = 4$

Shift solution!

$$x = 1$$
, $y = -1$, $z = -4$, $y_0 = 0$



Bellman–Ford in $\mathcal{O}(|V| \cdot |E|)$

Linear arithmetic

We have

$$a_1x_1 + \cdots + a_nx_n \bowtie b$$

where $\bowtie \in \{\leq, <, =, \neq, >, \geq\}$, a_1 positive, and x_1, \ldots, x_n are over integers (QF_LIA) or reals (QF_LRA).

We can again assume that we have only \leq (if a_1 positive, then also \geq).

Although simplex is exponential (and LRA is in P), it is fast in practice.

For LIA (is NP -complete) simplex with branch-and-bound (cutting planes) is usually used.

For further details, see Kroening and Strichman 2016.

Bit-vectors

We have fixed-sized vectors of bits (QF_BV).

Various types of operations

- ▶ logical (bit-wise), e.g., and
- arithmetic, e.g., add
- comparisons, e.g., <</p>
- string-like, e.g., concat

Note that we can eagerly translate them into propositional logic and use directly SAT (bit-blasting). Moreover, in many cases this produces better results. However, some operations, e.g., multiplication, produce hard SAT instances and other approaches are needed.

Floating Point numbers are bit-vectors based on the IEEE standard.

Arrays (A)

We have two basic operations on arrays

- ightharpoonup select(a,i) is the value of array a at the possition i
- ightharpoonup store(a,i,v) is the array a with v at the possition i and equality is also a part of the language.

It satisfies the following read-over-write axioms:

$$\begin{aligned} & \text{select}(\text{store}(a,i,v),i) = v \\ i \neq j \rightarrow & \text{select}(\text{store}(a,i,v),j) = & \text{select}(a,j) \end{aligned}$$

If we add the axiom of extensionality

$$\forall i (\operatorname{select}(a, i) = \operatorname{select}(b, i)) \to a = b,$$

then we obtain (QF_AX).

Arrays properties

Note that the size of a model depends on the number of accesses to memory and not on the size of the memory we model.

Computing \mathcal{T}_A is NP-complete and hence in practice we usually treat select and store as uninterpreted functions and add instances of violated array axioms on demand.

SMT-LIB

Among other things it is a common input and output language for SMT solvers that is described here.

```
; Integer arithmetic
(set-logic QF_LIA)
(declare-fun x () Int)
(declare-fun y () Int)
(assert (= (- x y) (+ x (- y) 1)))
(check-sat)
; unsat
(exit)
```

Bibliography I

- Griggio, Alberto (2015). "Introduction to SMT". SAT/SMT Summer School 2015.

 URL: http://www.cs.nyu.edu/~barrett/summerschool/griggio.pdf.
- Jovanović, Dejan (2016). "Introduction to Satisfiability Modulo Theories". SAT/SMT/AR Summer School 2016. URL: http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/jovanovic.pdf.
- Kroening, Daniel and Ofer Strichman (2016). *Decision Procedures An Algorithmic Point of View, Second Edition*. Texts in Theoretical Computer Science. An EATCS Series. Springer. ISBN: 978-3-662-50496-3. DOI: 10.1007/978-3-662-50497-0.
- Oliveras, Albert (2019). "Introduction to SMT". SAT/SMT/AR Summer School 2019. URL: https://alexeyignatiev.github.io/ssa-school-2019/slides/ao-satsmtar19-slides.pdf.
- Tinelli, Cesare (2017). "Foundations of Satisfiability Modulo Theories". SC² Summer School 2017. URL:
 - http://www.sc-square.org/CSA/school/lectures/SCSC-Tinelli.pdf.
- Willsey, Max et al. (2021). "Egg: Fast and Extensible Equality Saturation". In: *Proceedings of the ACM on Programming Languages* 5.POPL, pp. 1–29. DOI: 10.1145/3434304.