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First-Order Logic (recap)
We moved to First-Order Logic (FOL) and introduced some basic notions
▶ we fix a language L (function and predicate symbols),
▶ terms in L,
▶ formulae in L,
▶ semantics

▶ a model for L, denoted ℳ = (𝐷, 𝑖),
▶ an evaluation of variables,
▶ Tarski’s definition of truth,
▶ semantic consequence relation Γ |= 𝜙 (iff Γ ∪ {¬𝜙} is unsat.)

Theory 𝒯 (given by 𝐿)
We say that an interpretation ℳ = (𝐷, 𝑖) for 𝐿 is a 𝒯 -interpretation if ℳ satisfies all
axioms of 𝒯 , or𝑖 admits only intended interpret ations of 𝒯 .

We say that a formula 𝜙 is
▶ 𝒯 -satisfiable, if ℳ |= 𝜙 for a 𝒯 -interpretation ℳ;
▶ 𝒯 -valid, if ℳ |= 𝜙 for every 𝒯 -interpretation ℳ.

A set of formulae Γ 𝒯 -entails a formula 𝜙, denoted Γ |=𝒯 𝜙, if every 𝒯 -interpretation
satisfying all formulae in Γ satisfies also 𝜙.
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Satisfiability Modulo Theories (SMT)

We have a formula that has a propositional structure, but propositional variables are
expressions in a theory 𝒯 .

Example
From

(𝑥 = 0⏟  ⏞  
𝑝

∨ 𝑥 = 1⏟  ⏞  
𝑞

) ∧ (𝑥 + 𝑦 + 𝑧 ̸= 0⏟  ⏞  
¬𝑟

) ∧ (𝑓(𝑦) > 𝑓(𝑧)⏟  ⏞  
𝑠

),

we obtain
(𝑝 ∨ 𝑞) ∧ ¬𝑟 ∧ 𝑠,

by so-called propositional abstraction (𝑟 is 𝑥 + 𝑦 + 𝑧 = 0).
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Solving SMT

There are two basic approaches how to solve a satisfiability of a formula 𝜙 modulo a
theory 𝒯 :

Eager (encode an SMT problem in SAT)
▶ we translate the problem over the theory into an equisatisfiable propositional

formula and use a SAT solver,
▶ it is eager, because the SAT solver has access to complete theory information

from the beginning,
▶ it requires sophisticated encodings.

Lazy (combine a SAT solver with a decision procedure)
▶ It is very common that we have theory solvers for problems that are conjunctions

of literals.
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Very lazy SMT—example
Is the following conjunction of clauses satisfiable?

Problem—theory view
¬ 𝑎 = 𝑏

𝑥 = 𝑎 ∨ 𝑥 = 𝑏

𝑦 = 𝑎 ∨ 𝑦 = 𝑏

𝑧 = 𝑎 ∨ 𝑧 = 𝑏

¬𝑥 = 𝑦

𝑥 = 𝑦 ∨ ¬𝑥 = 𝑎 ∨ ¬ 𝑦 = 𝑎
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Lazy approach

Let 𝜙 be a formula and we want to know whether 𝜙 is 𝒯 -satisfiable. Let 𝜙′ be a
propositional abstraction of 𝜙.

▶ we call a SAT solver on 𝜙′

▶ if 𝜙′ ∈ SAT, then we obtain a set of literals 𝑙′1, . . . , 𝑙′𝑛 in 𝜙′ that satisfies the
formula 𝜙′,
▶ we can then ask a 𝒯 -solver whether the set of corresponding literals 𝑙1, . . . , 𝑙𝑛 in 𝜙 is

satisfiable in 𝒯
▶ if it is, then return 𝜙 is satisfiable and provide a model,
▶ if it is not, then we can add a new propositional clause 𝑙′

1 ∨ · · · ∨ 𝑙′
𝑛 to 𝜙′ (or

something better) and repeat the whole process with a new propositional formula,
▶ if 𝜙′ /∈ SAT, then return 𝜙 is unsatisfiable.
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DPLL(𝒯 )—lazy approach + theory propagations

It “effectively” transforms a satisfiability of an arbitrary quantifier-free formula over 𝒯
to a satisfiability of a conjunction of literals over 𝒯 . In basic lazy approach there is no
theory guidance, here 𝒯 -solver guides the search by producing 𝒯 -consequences.

For efficiency reasons we want several things from a solver for 𝒯 :
▶ checks consistency of conjunctions of literals,
▶ computes 𝒯 -propagations (𝒯 -consequences),
▶ pruduces explanations (ideally minimal) of 𝒯 -inconsistencies and 𝒯 -propagations,
▶ should be incremental and backtrackable,
▶ (generate 𝒯 -atoms and 𝒯 -lemmata).

Although it is called DPLL(𝒯 ), in practice, CDCL is usually used and hence we want a
support for backjumping and conflicts. Moreover, we want to test already partial
assignments not only full propositional models for 𝒯 -consistency.
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DPLL(𝒯 )- –𝒯 -propagations example

We have
𝑔(𝑎) = 𝑐⏟  ⏞  

𝑝

∧
(︀

𝑓(𝑔(𝑎)) ̸= 𝑓(𝑐)⏟  ⏞  
¬𝑞

∨ 𝑔(𝑎) = 𝑑⏟  ⏞  
𝑟

)︀
∧ 𝑐 ̸= 𝑑⏟  ⏞  

¬𝑠

.

SAT solver

𝑝

¬𝑠

𝑞

¬𝑟

UNSAT

𝒯 -solver

𝑔(𝑎) = 𝑐

𝑐 ̸= 𝑑

𝑓(𝑔(𝑎)) = 𝑓(𝑐)
𝑔(𝑎) ̸= 𝑑
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DPLL(𝒯 ) issue—diamond example
Is 𝑎1 > 𝑎𝑛 ∧

𝑛−1⋀︁
𝑘=1

(︀
(𝑎𝑘 < 𝑏𝑘 ∧ 𝑏𝑘 < 𝑎𝑘+1) ∨ (𝑎𝑘 < 𝑐𝑘 ∧ 𝑐𝑘 < 𝑎𝑘+1)

)︀
satisfiable?

𝑎1

𝑏1

𝑐1

𝑎2

𝑏2

𝑐2

𝑎3

𝑏3

𝑐3

𝑎4

<

<

<

<

<

<

<

<

<

<

<

<

>
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>

This leads to an exponential enumeration.
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< < <

Can be solved by deducing lemmata 𝑎𝑖 < 𝑎𝑖+1.
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DPLL(𝒯 ) modular architecture

SAT solver
CDCL

Core

Uninterpreted
Functions Arithmetic · · · Bit-Vectors
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SAT solver
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Core

Uninterpreted
Functions Arithmetic · · · Bit-Vectors

Only sees Boolean skeleton.
Builds partial models.
Sends them to the core as
assertions.
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SAT solver
CDCL

Core

Uninterpreted
Functions Arithmetic · · · Bit-Vectors

Sends assertions to theories.
Sends deduced literals
between solvers.
Handles theory combination.
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DPLL(𝒯 ) modular architecture

SAT solver
CDCL

Core

Uninterpreted
Functions Arithmetic · · · Bit-Vectors

Theory solver
Checks 𝒯 -satisfiability of
conjunctions of 𝒯 -literals.
Incremental.
Backtrackable.
Conflict generation.
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Various theories and their combinations
It is possible to combine various theories, called logics here, and give them “canonical”
names.

source: SMT-LIB
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Uninterpreted functions (UF)

We have literals of the form
𝑠 = 𝑡 and 𝑠 ̸= 𝑡,

where 𝑠 and 𝑡 may contain constants (variables) and function symbols. Equality is
reflexive, symmetric, transitive, and satisfies congruence axioms

∀𝑋1 . . . ∀𝑋𝑚∀𝑌1 . . . ∀𝑌𝑚(𝑋1 = 𝑌1 ∧ · · · ∧ 𝑋𝑚 = 𝑌𝑚 →
𝑓(𝑋1, . . . , 𝑋𝑚) = 𝑓(𝑌1, . . . , 𝑌𝑚))

for every 𝑚-ary function symbol 𝑓 . It is sometimes called functional consistency in this
context.

(QF_UF) is usually the core of an SMT solver, which is used in other theories. It is
decidable in 𝒪(𝑛 log 𝑛).
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Why no uninterpreted predicate symbols?

The only predicate symbol allowed in (QF_UF) is equality, because every other
uninterpreted predicate symbol can be expressed by a fresh uninterpreted function

𝑝(𝑡1, . . . , 𝑡𝑚) becomes 𝑓𝑝(𝑡1, . . . , 𝑡𝑚) = ⊤,

¬𝑝(𝑡1, . . . , 𝑡𝑚) becomes 𝑓𝑝(𝑡1, . . . , 𝑡𝑚) ̸= ⊤,

where ⊤ is a new constant and 𝑓𝑝 is a new function symbol for every predicate 𝑝 in our
original language. Note that 𝑓𝑝 and ⊤ are not valid arguments of other terms.

Example
𝑝(𝑎) ∨ ¬𝑞(𝑎, 𝑔(𝑎, 𝑏)) becomes 𝑓𝑝(𝑎) = ⊤ ∨ 𝑓𝑞(𝑎, 𝑔(𝑎, 𝑏)) ̸= ⊤.
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Producing congruence closure
We have a formula 𝜙

𝑠1 = 𝑡1 ∧ · · · ∧ 𝑠𝑘 = 𝑡𝑘 ∧ 𝑠𝑘+1 ̸= 𝑡𝑘+1 ∧ · · · ∧ 𝑠𝑘+𝑙 ̸= 𝑡𝑘+𝑙.

The idea is to produce the congruence closure of

𝑠1 = 𝑡1 ∧ · · · ∧ 𝑠𝑘 = 𝑡𝑘

that is we apply reflexivity, symmetry, transitivity, and congruence axioms as many
times as possible.

Then we just check whether any of

𝑠𝑘+1 = 𝑡𝑘+1, . . . , 𝑠𝑘+𝑙 = 𝑡𝑘+𝑙

is among them. If this is the case, the problem is unsatisfiable. Otherwise, it is
satisfiable.

Example
We want to check 𝑎 = 𝑏 ∧ 𝑓(𝑔(𝑎)) ̸= 𝑓(𝑔(𝑏)).
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Producing congruence closure II.

We have a formula 𝜙

𝑠1 = 𝑡1 ∧ · · · ∧ 𝑠𝑘 = 𝑡𝑘 ∧ 𝑠𝑘+1 ̸= 𝑡𝑘+1 ∧ · · · ∧ 𝑠𝑘+𝑙 ̸= 𝑡𝑘+𝑙.

Although the congruence closure is in general infinite, it is sufficient to check only
finitely many equalities here, namely the equalities produced from all the subterms
occurring in 𝜙.

Example
We want to check 𝑎 = 𝑏 ∧ 𝑓(𝑔(𝑎)) ̸= 𝑓(𝑔(𝑏)). Hence it is sufficient to produce only
equalities containing 𝑎, 𝑏, 𝑔(𝑎), 𝑔(𝑏), 𝑓(𝑔(𝑎)), and 𝑓(𝑔(𝑏)). It means we get

{𝑎 = 𝑎, 𝑏 = 𝑏, 𝑎 = 𝑏, 𝑔(𝑎) = 𝑔(𝑎), 𝑔(𝑏) = 𝑔(𝑏), 𝑔(𝑎) = 𝑔(𝑏),
𝑓(𝑔(𝑎)) = 𝑓(𝑔(𝑎)), 𝑓(𝑔(𝑏)) = 𝑓(𝑔(𝑏)), 𝑓(𝑔(𝑎)) = 𝑓(𝑔(𝑏))}.

Hence it is unsatisfiable, because it contains 𝑓(𝑔(𝑎)) = 𝑓(𝑔(𝑏)).
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Producing congruence closure III.
We have a formula 𝜙

𝑠1 = 𝑡1 ∧ · · · ∧ 𝑠𝑘 = 𝑡𝑘 ∧ 𝑠𝑘+1 ̸= 𝑡𝑘+1 ∧ · · · ∧ 𝑠𝑘+𝑙 ̸= 𝑡𝑘+𝑙.

It is convenient to represent the congruence closure by the equivalence classes of the
terms occurring in 𝜙:
▶ each subterm occurring in 𝜙 forms an equivalence class,
▶ for every 𝑠𝑖 = 𝑡𝑖 ∈ 𝜙

▶ we merge the equivalance classes containing 𝑠𝑖 and 𝑡𝑖,
▶ we apply the congruence axioms (at least one argument is from the merged class

containing 𝑠𝑖 and 𝑡𝑖).
If this leads to new merges, we propagate congruences further (at least one
argument is from a newly merged class) as long as possible.

▶ return unsatisfiable if 𝑠𝑗 and 𝑡𝑗 are in the same equivalence class for 𝑠𝑗 ̸= 𝑡𝑗 ∈ 𝜙,
otherwise return satisfiable.

It is possible to produce an even better representation using DAGs.
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Producing congruence closure—example
We want to satisfy

𝑓(𝑥, 𝑦) = 𝑥 ∧ ℎ(𝑦) = 𝑔(𝑥) ∧ 𝑓(𝑓(𝑥, 𝑦), 𝑦) = 𝑧 ∧ 𝑔(𝑥) ̸= 𝑔(𝑧).

Write down all the subterms.
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Producing congruence closure—example
We want to satisfy

𝑓(𝑥, 𝑦) = 𝑥 ∧ ℎ(𝑦) = 𝑔(𝑥) ∧ 𝑓(𝑓(𝑥, 𝑦), 𝑦) = 𝑧 ∧ 𝑔(𝑥) ̸= 𝑔(𝑧).

𝑥 𝑦 𝑧

𝑓(𝑥, 𝑦) 𝑔(𝑥) ℎ(𝑦) 𝑔(𝑧)

𝑓(𝑓(𝑥, 𝑦), 𝑦)

Including the immediate subterm relations.
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𝑥 𝑦 𝑧

𝑓(𝑥, 𝑦) 𝑔(𝑥) ℎ(𝑦) 𝑔(𝑧)

𝑓(𝑓(𝑥, 𝑦), 𝑦)

Merge the equivalence classes containing 𝑓(𝑥, 𝑦) and 𝑥.
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𝑓(𝑥, 𝑦) 𝑔(𝑥) ℎ(𝑦) 𝑔(𝑧)

𝑓(𝑓(𝑥, 𝑦), 𝑦)

Merge the equivalence classes for ℎ(𝑦) and 𝑔(𝑥).
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𝑓(𝑥, 𝑦) 𝑔(𝑥) ℎ(𝑦) 𝑔(𝑧)

𝑓(𝑓(𝑥, 𝑦), 𝑦)

Unsatisfiable because 𝑔(𝑥) and 𝑔(𝑧) are in the same equivalence class.
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The conflict involves 𝑔(𝑥) ̸= 𝑔(𝑧).
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Producing congruence closure—example
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𝑓(𝑥, 𝑦) 𝑔(𝑥) ℎ(𝑦) 𝑔(𝑧)

𝑓(𝑓(𝑥, 𝑦), 𝑦)

The conflict involves 𝑔(𝑥) ̸= 𝑔(𝑧), 𝑥 = 𝑓(𝑥, 𝑦), and 𝑓(𝑓(𝑥, 𝑦), 𝑦) = 𝑧.
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Equality graphs (e-graphs)
Congruence closures in the form of equality graphs (e-graphs) do not appear only in
theorem provers, but are used, for example, in rewrite-driven compiler optimizations
and program synthesizers (using equality saturation). For example, the egg library
provides high-performance, flexible e-graphs implemented in Rust.egg: Fast and Extensible Equality Saturation 23:5

/

a

*

2

(a) Initial e-graph
contains (𝑎 × 2)/2.

/

a

*

2 1

<<

(b) After applying rewrite
𝑥 × 2 → 𝑥 ≪ 1.

/

a

*

2 1

<<

*

/

(c) After applying rewrite
(𝑥 × 𝑦)/𝑧 → 𝑥 × (𝑦/𝑧).

/

a

*

2 1

<<

*

/

(d) After applying rewrites
𝑥/𝑥 → 1 and 1 × 𝑥 → 𝑥 .

Fig. 2. An e-graph consists of e-classes (dashed boxes) containing equivalent e-nodes (solid boxes). Edges
connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying
rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: 𝑎, 𝑎 × 1, 𝑎 × 1 × 1, and
so on.

2.1.3 Interface and Rewriting. E-graphs bear many similarities to the classic union-find data struc-
ture that they employ internally, and they inherit much of the terminology. E-graphs provide two
main low-level mutating operations:

• add takes an e-node 𝑛 and:
– if lookup(𝑛) = 𝑎, return 𝑎;
– if lookup(𝑛) = ∅, then set𝑀 [𝑎] = {𝑛} and return the id 𝑎.

• merge (sometimes called assert or union) takes two e-class ids 𝑎 and 𝑏, unions them in the
union-find𝑈 , and combines the e-classes by setting both𝑀 [𝑎] and𝑀 [𝑏] to𝑀 [𝑎] ∪𝑀 [𝑏].

Both of these operations must take additional steps to maintain the congruence invariant.
Invariant maintenance is discussed in Section 3.

E-graphs also offers operations for querying the data structure.
• find canonicalizes e-class ids using the union-find𝑈 as described in definition 2.1.
• ematch performs the e-matching [de Moura and Bjùrner 2007; Detlefs et al. 2005] procedure
for finding patterns in the e-graph. ematch takes a pattern term 𝑝 with variable placeholders
and returns a list of tuples (𝜎, 𝑐) where 𝜎 is a substitution of variables to e-class ids such that
𝑝 [𝜎] is represented in e-class 𝑐 .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → 𝑟 to
an e-graph, ematch finds tuples (𝜎, 𝑐) where e-class 𝑐 represents ℓ [𝜎]. Then, for each tuple,
merge(𝑐, add(𝑟 [𝜎])) adds 𝑟 [𝜎] to the e-graph and unifies it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (𝑎×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply 𝑥 ×𝑦 → 𝑦 × 𝑥 to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation
Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjùrner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly
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Difference logic
We have

𝑥 − 𝑦 ◁▷ 𝑘

where ◁▷∈ {≤, <, =, ̸=, >, ≥}, 𝑥, 𝑦, and 𝑘 (number) are over integers (QF_IDL) or
reals (QF_RDL).

We can assume that all are of the form 𝑥 − 𝑦 ≤ 𝑘, because

𝑥 − 𝑦 ≥ 𝑘 is 𝑦 − 𝑥 ≤ −𝑘,

𝑥 − 𝑦 = 𝑘 is 𝑥 − 𝑦 ≤ 𝑘 ∧ 𝑦 − 𝑥 ≤ −𝑘,

𝑥 − 𝑦 ̸= 𝑘 is 𝑥 − 𝑦 < 𝑘 ∨ 𝑦 − 𝑥 < −𝑘,

𝑥 − 𝑦 < 𝑘 is 𝑥 − 𝑦 ≤ 𝑘 − 1, for integers
𝑥 − 𝑦 ≤ 𝑘 − 𝛿, for reals

where 𝛿 is treated on symbolic level (or a sufficiently small real).

Moreover, every solution can be shifted. Hence we can introduce a fresh variable 𝑦0,
replace all 𝑥 ≤ 𝑘 by 𝑥 − 𝑦0 ≤ 𝑘 and shift a solution in such a way that 𝑦0 becomes 0.
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Why is difference logic interesting?

It is an important fragment of arithmetic. We can, for example, express a simple
scheduling problem:

1 ≤ 𝑠𝑎,

𝑠𝑎 ≤ 10,

𝑠𝑎 + 5 ≤ 𝑠𝑏,

𝑠𝑏 ≤ 10,

where 𝑠𝑎 and 𝑠𝑏 express when tasks 𝑎 and 𝑏 start.

Clearly, using ̸= (and hence ∨) and integers, we can encode NP problems like a
𝑘-coloring of a graph 𝐺 = (𝑉, 𝐸):

1 ≤ 𝑐𝑣 ≤ 𝑘 for 𝑣 ∈ 𝑉,

𝑐𝑣 ̸= 𝑐𝑤 for (𝑣, 𝑤) ∈ 𝐸.
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How to decide difference logic?
We represent a problem (i.e. a conjunction of literals) by a graph.
Theorem
Satisfiable iff there is no negative cycle.

Example
𝑥 ≤ 1 ∧ 𝑥 − 𝑦 ≤ 2 ∧ 𝑦 − 𝑧 ≤ 3 ∧ 𝑧 − 𝑥 ≤ −6

𝑦0

𝑥 𝑦

𝑧

1

2

3−6

We write 𝑥 − 𝑦0 ≤ 1 instead, where 𝑦0 should be equal to 0!

This conflict set is communicated back to the SAT solver!
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This conflict set is communicated back to the SAT solver!
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Solution= −(min path from 𝑖)

𝑥 = 5

Shift solution!

𝑥 = 1, 𝑦 = −1, 𝑧 = −4, 𝑦0 = 0 Bellman–Ford in 𝒪(|𝑉 | · |𝐸|)
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Linear arithmetic

We have
𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 ◁▷ 𝑏

where ◁▷∈ {≤, <, =, ̸=, >, ≥}, 𝑎1 positive, and 𝑥1, . . . , 𝑥𝑛 are over integers (QF_LIA)
or reals (QF_LRA).

We can again assume that we have only ≤ (if 𝑎1 positive, then also ≥).

Although simplex is exponential (and LRA is in P), it is fast in practice.

For LIA (is NP-complete) simplex with branch-and-bound (cutting planes) is usually
used.

For further details, see Kroening and Strichman 2016.
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http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LIA
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LRA


Bit-vectors

We have fixed-sized vectors of bits (QF_BV).

Various types of operations
▶ logical (bit-wise), e.g., and
▶ arithmetic, e.g., add
▶ comparisons, e.g., <

▶ string-like, e.g., concat

Note that we can eagerly translate them into propositional logic and use directly SAT
(bit-blasting). Moreover, in many cases this produces better results. However, some
operations, e.g., multiplication, produce hard SAT instances and other approaches are
needed.

Floating Point numbers are bit-vectors based on the IEEE standard.
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http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV
https://smtlib.cs.uiowa.edu/theories-FloatingPoint.shtml


Arrays (A)

We have two basic operations on arrays
▶ select(𝑎, 𝑖) is the value of array 𝑎 at the possition 𝑖

▶ store(𝑎, 𝑖, 𝑣) is the array 𝑎 with 𝑣 at the possition 𝑖

and equality is also a part of the language.

It satisfies the following read-over-write axioms:

select(store(𝑎, 𝑖, 𝑣), 𝑖) = 𝑣

𝑖 ̸= 𝑗 → select(store(𝑎, 𝑖, 𝑣), 𝑗) = select(𝑎, 𝑗)

If we add the axiom of extensionality

∀𝑖(select(𝑎, 𝑖) = select(𝑏, 𝑖)) → 𝑎 = 𝑏,

then we obtain (QF_AX).
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http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_AX


Arrays properties

Note that the size of a model depends on the number of accesses to memory and not
on the size of the memory we model.

Computing 𝒯𝐴 is NP-complete and hence in practice we usually treat select and store
as uninterpreted functions and add instances of violated array axioms on demand.
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SMT-LIB

Among other things it is a common input and output language for SMT solvers that is
described here.

; Integer arithmetic
(set-logic QF_LIA)
(declare-fun x () Int)
(declare-fun y () Int)
(assert (= (- x y) (+ x (- y) 1)))
(check-sat)
; unsat
(exit)
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http://smtlib.cs.uiowa.edu/
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