Logical reasoning and programming, lab session 4

(October 13, 2025)

- **4.1** How many symmetries does your formulation of PHP_n^{n+1} have?
- **4.2** We can define the lexicographic order on two bit vectors x_1, \ldots, x_n and y_1, \ldots, y_n , denoted $x_1 \ldots x_n \leq_{lex} y_1 \ldots y_n$, as follows

$$\bigwedge_{i=1}^{n} ((\overline{x_i} \vee y_i \vee \overline{a_{i-1}}) \wedge (\overline{x_i} \vee a_i \vee \overline{a_{i-1}}) \wedge (y_i \vee a_i \vee \overline{a_{i-1}})),$$

where $\overline{a_0}$ is always false, using new auxiliary variables $a_0, a_1, \ldots, a_{n-1}, a_n$.

(a) What is the purpose of auxiliary variables?

Hint: When is it necessary to satisfy $x_i \leq y_i$?

- (b) Why is $\overline{a_0}$ always false and hence useless?
- (c) Why can we replace $(\overline{x_n} \vee y_n \vee \overline{a_{n-1}}) \wedge (\overline{x_n} \vee a_n \vee \overline{a_{n-1}}) \wedge (y_n \vee a_n \vee \overline{a_{n-1}})$ just by $(\overline{x_n} \vee y_n \vee \overline{a_{n-1}})$? Hence we need only 3n-2 clauses and n-1 auxiliary variables $(a_n \text{ is also useless})$.
- (d) How does the meaning of the formula change if you replace $(\overline{x_n} \vee y_n \vee \overline{a_{n-1}})$ by $(\overline{x_n} \vee \overline{a_{n-1}}) \wedge (y_n \vee \overline{a_{n-1}})$?
- **4.3** How can we exploit the lexicographic order to decrease the number of symmetries in PHP_n^{n+1} ?

Hint: Order hole-occupancy or pigeon-occupancy vectors.

4.4 A very nice symmetry breaker for PHP_n^{n+1} is based on columnwise symmetry, namely we can add the following clauses

$$p_{i(i+1)} \vee \overline{p_{ij}}$$

for $1 \le i < j \le n$, where p_{kl} means that pigeon k is in hole l, for $1 \le k \le n+1$ and $1 \le l \le n$. Why?

- **4.5** Try PicoSAT/pycosat and PySAT on PHP_n^{n+1} with various symmetry breakers.
- **4.6** Symmetry breaking and PHP_n^{n+1} , for further details see Knuth's TAOCP on satisfiability or slides Symmetry in SAT: an overview.
- 4.7 Try BreakID.
- **4.8** For some experimental results on graph coloring (discussed during the previous lab session), you can consult SAT Encoding of Partial Ordering Models for Graph Coloring Problems from SAT 2024.
- 4.9 Do you know how to efficiently express

$$p_1 + p_2 + \dots + p_{100} \le 99?$$

4.10 Is it possible to replace

$$p_1 + \dots + p_{1024} \le 1$$

by

$$p_1 + \cdots + p_{512} + x \le 1$$
 and $p_{513} + \cdots + p_{1024} + \overline{x} \le 1$?

If so, is it equivalent, or equisatisfiable?

- **4.11** There are various encodings of cardinality constraints, discuss sequential counter and bitwise encodings. You can find further examples in this presentation, this presentation, or in PySAT.
- **4.12** For an example of a cardinality constraint using if-then-else and BDDs check this presentation.
- **4.13** Check the API documentation of PySAT. There are various useful things, for example, IDPool, clausify, enum_models, get_core. For using assumptions in PySAT, see Module Description.
- **4.14** Check some examples in PySAT.
- ${f 4.15}$ Formulate the software package upgradability as a MaxSAT problem, see this tutorial.
- 4.16 Check using implicit hitting set for MaxSAT in this tutorial.
- **4.17** Try MaxSAT in PySAT, check WCNF.
- **4.18** Try CBMC on this example. You can also try this program. For details, see these lecture notes.
- **4.19** We have a language that contains only one binary predicate symbol \in and we have an interpretation $\mathcal{M}=(D,i)$ such that $D=\{a,b,c,d\}$ and $i(\in)$ is given by the following diagram:

Meaning that $x \in y$ iff there is an arrow from x to y. Decide whether the following formulae are valid in \mathcal{M} :

- (a) $\exists X \forall Y (\neg (Y \in X)),$
- (b) $\exists X \forall Y (Y \in X)$,
- (c) $\exists X \forall Y (Y \in X \leftrightarrow Y \in Y)$,
- (d) $\exists X \forall Y (Y \in X \leftrightarrow \neg (Y \in Y)).$