
Logical reasoning and programming, lab session 4
(October 13, 2025)

4.1 How many symmetries does your formulation of PHP𝑛+1
𝑛 have?

4.2 We can define the lexicographic order on two bit vectors 𝑥1, . . . , 𝑥𝑛 and
𝑦1, . . . , 𝑦𝑛, denoted 𝑥1 . . . 𝑥𝑛 ≤lex 𝑦1 . . . 𝑦𝑛, as follows

𝑛⋀︁
𝑖=1

((𝑥𝑖 ∨ 𝑦𝑖 ∨ 𝑎𝑖−1) ∧ (𝑥𝑖 ∨ 𝑎𝑖 ∨ 𝑎𝑖−1) ∧ (𝑦𝑖 ∨ 𝑎𝑖 ∨ 𝑎𝑖−1)),

where 𝑎0 is always false, using new auxiliary variables 𝑎0, 𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛.

(a) What is the purpose of auxiliary variables?

Hint: When is it necessary to satisfy 𝑥𝑖 ≤ 𝑦𝑖?
(b) Why is 𝑎0 always false and hence useless?
(c) Why can we replace (𝑥𝑛∨𝑦𝑛∨𝑎𝑛−1)∧(𝑥𝑛∨𝑎𝑛∨𝑎𝑛−1)∧(𝑦𝑛∨𝑎𝑛∨𝑎𝑛−1)

just by (𝑥𝑛 ∨ 𝑦𝑛 ∨ 𝑎𝑛−1)? Hence we need only 3𝑛 − 2 clauses and
𝑛 − 1 auxiliary variables (𝑎𝑛 is also useless).

(d) How does the meaning of the formula change if you replace (𝑥𝑛 ∨𝑦𝑛 ∨
𝑎𝑛−1) by (𝑥𝑛 ∨ 𝑎𝑛−1) ∧ (𝑦𝑛 ∨ 𝑎𝑛−1)?

4.3 How can we exploit the lexicographic order to decrease the number of
symmetries in PHP𝑛+1

𝑛 ?

Hint: Order hole-occupancy or pigeon-occupancy vectors.

4.4 A very nice symmetry breaker for PHP𝑛+1
𝑛 is based on columnwise sym-

metry, namely we can add the following clauses

𝑝𝑖(𝑖+1) ∨ 𝑝𝑖𝑗

for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, where 𝑝𝑘𝑙 means that pigeon 𝑘 is in hole 𝑙, for 1 ≤ 𝑘 ≤
𝑛 + 1 and 1 ≤ 𝑙 ≤ 𝑛. Why?

4.5 Try PicoSAT/pycosat and PySAT on PHP𝑛+1
𝑛 with various symmetry

breakers.

4.6 Symmetry breaking and PHP𝑛+1
𝑛 , for further details see Knuth’s TAOCP

on satisfiability or slides Symmetry in SAT: an overview.

4.7 Try BreakID.

4.8 For some experimental results on graph coloring (discussed during the
previous lab session), you can consult SAT Encoding of Partial Ordering
Models for Graph Coloring Problems from SAT 2024.

4.9 Do you know how to efficiently express

𝑝1 + 𝑝2 + · · · + 𝑝100 ≤ 99?

1

http://fmv.jku.at/picosat/
https://pypi.org/project/pycosat/
https://pysathq.github.io/
https://www-cs-faculty.stanford.edu/~knuth/fasc6a.ps.gz
https://www-cs-faculty.stanford.edu/~knuth/fasc6a.ps.gz
https://www.birs.ca/cmo-workshops/2018/18w5208/files/DevriendtJo.pdf
https://bitbucket.org/krr/breakid/
https://doi.org/10.4230/LIPIcs.SAT.2024.12
https://doi.org/10.4230/LIPIcs.SAT.2024.12


4.10 Is it possible to replace

𝑝1 + · · · + 𝑝1024 ≤ 1

by
𝑝1 + · · · + 𝑝512 + 𝑥 ≤ 1 and 𝑝513 + · · · + 𝑝1024 + 𝑥 ≤ 1?

If so, is it equivalent, or equisatisfiable?

4.11 There are various encodings of cardinality constraints, discuss sequential
counter and bitwise encodings. You can find further examples in this
presentation, this presentation, or in PySAT.

4.12 For an example of a cardinality constraint using if-then-else and BDDs
check this presentation.

4.13 Check the API documentation of PySAT. There are various useful things,
for example, IDPool, clausify, enum_models, get_core. For using as-
sumptions in PySAT, see Module Description.

4.14 Check some examples in PySAT.

4.15 Formulate the software package upgradability as a MaxSAT problem,
see this tutorial.

4.16 Check using implicit hitting set for MaxSAT in this tutorial.

4.17 Try MaxSAT in PySAT, check WCNF.

4.18 Try CBMC on this example. You can also try this program. For details,
see these lecture notes.

4.19 We have a language that contains only one binary predicate symbol ∈ and
we have an interpretation ℳ = (𝐷, 𝑖) such that 𝐷 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑖(∈)
is given by the following diagram:

𝑐 𝑑

𝑎 𝑏

Meaning that 𝑥 ∈ 𝑦 iff there is an arrow from 𝑥 to 𝑦. Decide whether the
following formulae are valid in ℳ:

(a) ∃𝑋∀𝑌 (¬(𝑌 ∈ 𝑋)),
(b) ∃𝑋∀𝑌 (𝑌 ∈ 𝑋),
(c) ∃𝑋∀𝑌 (𝑌 ∈ 𝑋 ↔ 𝑌 ∈ 𝑌 ),
(d) ∃𝑋∀𝑌 (𝑌 ∈ 𝑋 ↔ ¬(𝑌 ∈ 𝑌 )).

2

http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/jpms-satsmtar16-slides.pdf#page=72
http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/jpms-satsmtar16-slides.pdf#page=72
https://www.cs.cmu.edu/~mheule/15816-f24/slides/representations.pdf#page=59
https://pysathq.github.io/docs/html/api/card.html
https://alexeyignatiev.github.io/ssa-school-2019/slides/ab-satsmtar19-slides.pdf#page=22
https://pysathq.github.io/docs/html/index.html
https://pysathq.github.io/docs/html/api/formula.html#pysat.formula.IDPool
https://pysathq.github.io/docs/html/api/formula.html#pysat.formula.Formula.clausify
https://pysathq.github.io/docs/html/api/solvers.html#pysat.solvers.Solver.enum_models
https://pysathq.github.io/docs/html/api/solvers.html#pysat.solvers.Solver.get_core
https://pysathq.github.io/docs/html/api/solvers.html#module-description
https://github.com/pysathq/pysat/tree/master/examples
https://ecai20-maxsat-tutorial.github.io/ecai20-maxsat-tutorial.pdf#page=239
https://ecai20-maxsat-tutorial.github.io/ecai20-maxsat-tutorial.pdf#page=131
https://pysathq.github.io/docs/html/api/formula.html#pysat.formula.WCNF
https://www.cprover.org/cbmc/
https://www.cs.cmu.edu/~15414/s21/lectures/15-bmc/cbmc-example.c
https://www.cs.cmu.edu/~15414/s21/lectures/15-bmc/sort-bug.c
https://www.cs.cmu.edu/~15414/s21/lectures/15-bmc.pdf

