Logical reasoning and programming, lab session 1

(September 22, 2025)

- 1.1 Decide which of the following formulae are tautologies:
 - (a) $((p \to q) \to q) \to q$,
 - (b) $((p \to q) \to p) \to p$,
 - (c) $(p \to q) \lor (q \to p)$,
 - (d) $((p \to q) \land q) \to p$,
 - (e) $\neg p \rightarrow \neg (p \lor (p \land q))$.

Although formulae contain only two variables, try to find a better method than truth tables if possible.

- 1.2 Decide which of the following claims are true:
 - (a) $\neg(\varphi \leftrightarrow \psi) \models \varphi \land \psi$,
 - (b) $\neg(\varphi \leftrightarrow \psi) \models \varphi \lor \psi$,
 - (c) $\neg(\varphi \leftrightarrow \psi) \models \varphi \rightarrow \psi$.
- **1.3** If $\varphi \to \psi \in \text{TAUT}$ and $\psi \to \chi \in \text{TAUT}$, then $\varphi \to \chi \in \text{TAUT}$. Why? Does the claim still hold if we replace TAUT with SAT and why?
- **1.4** Show that $\models \varphi \leftrightarrow \psi$ iff $\varphi \equiv \psi$.
- **1.5** Are the following two C programs equivalent?

```
if(!a && !b) h();
else if(!a) g();
else f();
if(a) f();
else if(b) g();
else h();
```

Prove their equivalence formally, or provide a counterexample. Please, check your solution against these slides.

- **1.6** Let $Cl(\Gamma) = \{ \varphi \colon \Gamma \models \varphi \}$. What is $Cl(\emptyset)$ equivalent to? Let Γ and Δ be sets of formulae. Check whether:
 - (a) $\Gamma \subseteq Cl(\Gamma)$,
 - (b) $Cl(Cl(\Gamma)) = Cl(\Gamma)$,
 - (c) $Cl(\Gamma \cup \Delta) = Cl(\Gamma) \cup Cl(\Delta)$.

If the equality does not hold in (b) or (c), does at least one of the inclusions hold?

1.7 Recall that a Boolean function of n-variables is a function $f: \{0,1\}^n \to \{0,1\}$. Describe all functions of one variable. How many distinct Boolean functions of n variables exist? Try $n=0,1,2,\ldots$ first. Do you know, why are functions NAND (\uparrow) and NOR (\downarrow) interesting?

¹These connectives are also called Sheffer stroke and Peirce arrow, respectively. They are defined as $x \uparrow y := \neg(x \land y)$ and $x \downarrow y := \neg(x \lor y)$.

- 1.8 If we use standard rewriting rules for producing a CNF, then we usually conclude by some simplifications—remove duplicate clauses and literals. Why can we do that? Is it correct that there is no need for a variable to occur more than once in a clause?
- 1.9 Produce a formula in CNF which is equivalent to

$$\varphi = (a \to (c \land d)) \lor (b \to (c \land e)).$$

Then use the Tseytin transformation to produce a formula in CNF which is equisatisfiable to φ .

- **1.10** Use Boolean formula manipulation in PySAT or Limboole on the previous formula $\varphi = (a \to (c \land d)) \lor (b \to (c \land e))$.
- **1.11** Why is the formula produced by Tseytin transformation only equisatisfiable and not equivalent to the original formula?
- 1.12 Try solving SAT problems by hand in The SAT Game.