Digital Image

(B4M33DZO)

Lecture 3:

Convolution

https://cw.fel.cvut.cz/wiki/courses/dzo/start

Ondřej Drbohlav & Daniel Sýkora

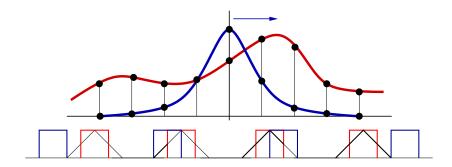
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
Ondřej Drbohlav & Daniel Sýkora , 2025

Convolution

Sliding average of function f weighted by function g:

Definition

$$(f * g)(t) = \int_{-\infty}^{\infty} f(x) \cdot g(t - x) dx$$



Interesting Properties

Commutativity:

$$f * g = g * f$$

Associativity:

$$f*(g*h)=(f*g)*h$$

Distributivity:

$$f * (g + h) = (f * g) + (f * h)$$

▶ Differentiation:

$$(f*g)' = f'*g = f*g'$$

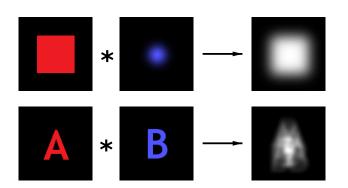
Convolution theorem:

$$f * g = \mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\}$$

Convolution (in 2D) — Continuous Case

Extension of 1D case (image F, convolution kernel G): Definition

$$(F * G)(s,t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(x,y) \cdot G(s-x,t-y) \, \mathrm{d}x \, \mathrm{d}y$$



Convolution (in 2D) — Discrete Case

Discrete convolution (for image F and kernel G):

$$(F * G)[s,t] = \sum_{x} \sum_{y} F[x][y] \cdot G[s-x][t-y]$$

Computational complexity: $\mathcal{O}(|F| \cdot |G|)$

Would it be possible to compute it faster?

Methods:

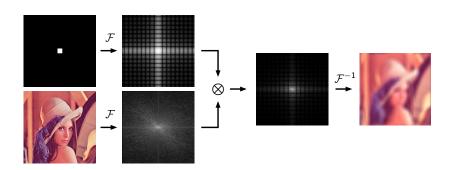
Method	Accuracy	Kernel	Complexity
Fourier Transform	Exact	Arbitrary	$\mathcal{O}(F \cdot \log F)$
Separable Kernel	Exact	Limited	$\mathcal{O}(F \cdot \sqrt{ G })$
Integral Image	High	Limited	$\mathcal{O}(F)$

Fourier Transform

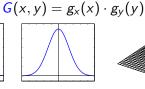
Convolution Theorem:

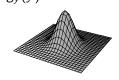
Theorem

$$\mathcal{F}\{\textbf{\textit{F}}*\textbf{\textit{G}}\} = \mathcal{F}\{\textbf{\textit{F}}\}\cdot\mathcal{F}\{\textbf{\textit{G}}\}$$



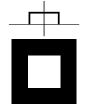
Separable Kernel

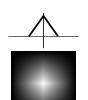


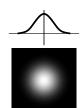


Separable Convolution

$$(F * G)(s,t) = \int_{-\infty}^{\infty} g_y(t-y) \left(\int_{-\infty}^{\infty} F(x,y) \cdot g_x(s-x) dx \right) dy$$







Integral Image

Summed Area Table (SAT):

$$S[x,y] = \sum_{x' \le x} \sum_{y' \le y} I[x',y']$$

2	3	2	1
3	0	1	2
1	3	1	0
1	4	2	2

Image /

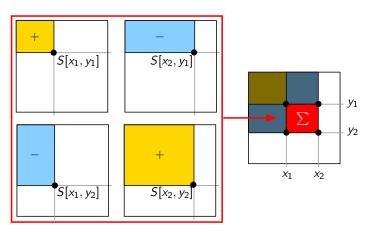
2	5	7	8			
5	8	11	14			
6	12	16	19			
7	17	23	28			
CATC						

SAT S

Integral Image

Region Sum:

$$\Sigma = S[x_2, y_2] - S[x_1, y_2] - S[x_2, y_1] + S[x_1, y_1]$$



Integral Image — Extension

Basic Idea

$$f * g = \left[\int f \right] * \left[g' \right]$$

$$\Rightarrow \frac{g'}{g'}$$

Extension for more complex kernels:

Generalized Form

$$f * g = \left[\int^{(n)} f \right] * \left[g^{(n)} \right]$$

Equivalently,

$$(\underbrace{g * g * \cdots * g}_{n})^{(n)} = \underbrace{g' * g' * \cdots * g'}_{n}$$

Integral Image — Extension

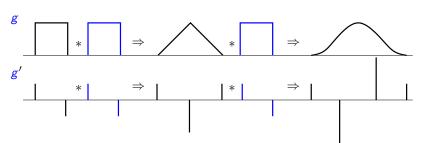
Extension for more complex kernels:

Generalized Form

$$\mathbf{f} * \mathbf{g} = \left[\int_{-\infty}^{(n)} \mathbf{f} \right] * \left[\mathbf{g}^{(n)} \right]$$

Equivalently,

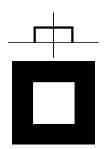
$$(\underbrace{g * g * \cdots * g}_{n})^{(n)} = \underbrace{g' * g' * \cdots * g'}_{n}$$

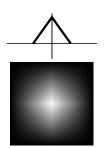


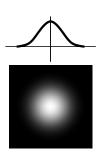
Integral Image — Kernel Examples

Examples of convolution kernels:

-1 1 1 -1







Fourier Transform — Pros and Cons

Advantages:

- Arbitrary kernel shape
- Accurate convolution
- Suitable for large kernels
- Independent of kernel width

Disadvantages:

- Two FFTs per convolution
- Slow for small kernels

Separable Kernel — Pros and Cons

Advantages:

- Accurate convolution
- Speed-up for large kernels

Disadvantages:

- Limited kernel shape
- Still slow for very large kernels
- Requires extra memory and two passes

Integral Image — Pros and Cons

Advantages:

- ▶ Fast
- High accuracy

Disadvantages:

- Limited numeric precision (when approximation is used)
- ► Limited kernel shapes