Digital Image

(B4M33DZO)

Lecture 1:

Point-wise Operations

https://cw.fel.cvut.cz/wiki/courses/dzo/start

Ondřej Drbohlav & Daniel Sýkora

Department of Cybernetics

Faculty of Electrical Engineering

Czech Technical University in Prague

Ondřej Drbohlav & Daniel Sýkora , 2025


Course Introduction

- Main web: https://cw.fel.cvut.cz/wiki/courses/dzo/start
- ▶ 13 lectures, usually with a short break in the middle
- ▶ 6 homeworks during the semester \rightarrow 60 points
- Exam: written test & oral exam if needed (40 poits)

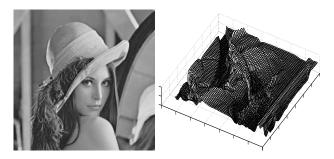
Labs

- ► Each homework has a template
- ▶ Programming language: Matlab [yes: indexing from 1, accessing an array with () and you can't do: fn(x)(1:3)]
- ▶ But: if you would like to help migrating the homeworks to Python (and Jypter notebook) and/or do more interesting stuff, drop me an email!

Why attend?

Why attend?

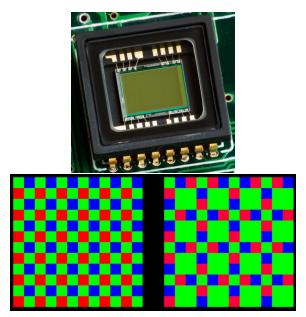
We'll do:


- ▶ live webcam demos
- discussions, quizzes
- visits to related 'off-topics' (e.g. how would this be solved nowadays, using deep nets?)

What is the image?

In theory – continuous function of two variables:

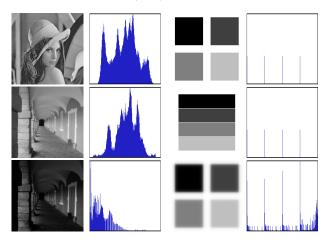
$$I(x,y): \mathbb{R}^2 \to \mathbb{R}^n$$


where n = 1: luminance, n = 3: color, etc.

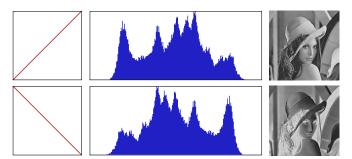
In practice – matrix of pixels (equidistant samples):

$$I[x, y]: \mathbb{N}^2 \to \mathbb{R}^n$$

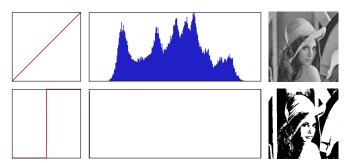
How to capture an image?

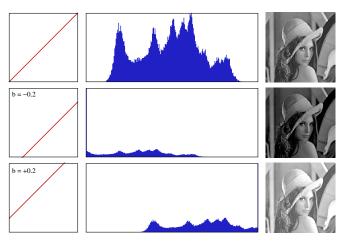

What is image processing?

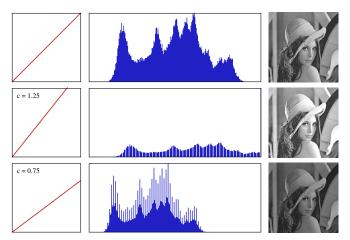
Specific modification of image function:

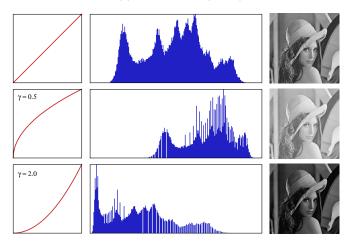


Histogram

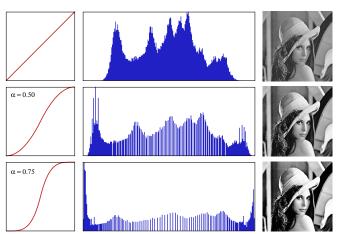

Probability density function (pdf) of pixel luminance:


Negative: T(I) = 1 - I

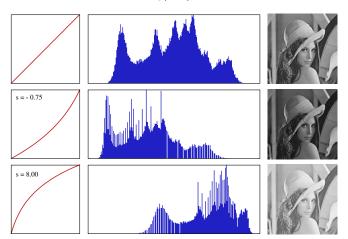

Threshold:
$$T(I) = \begin{cases} 0 & I < \theta \\ 1 & I \ge \theta \end{cases}$$


Brightness shift: T(I) = I + b $b \in \langle -1, 1 \rangle$

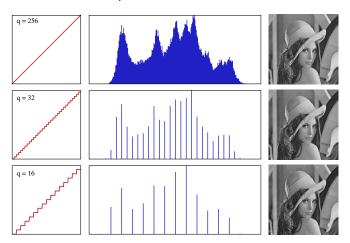
Contrast: $T(I) = I \cdot c \quad c \in (0, \infty)$

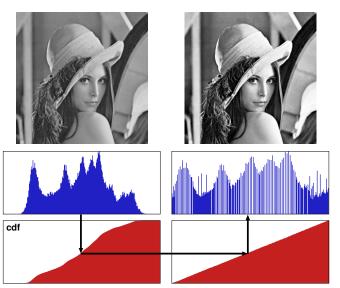


Gamma correction: $T(I) = I^{\gamma}$ $\gamma \in (0, \infty)$



Non-linear contrast:


$$T(I) = \begin{cases} \frac{1}{2} (2I)^{\gamma} & I \in \langle 0, \frac{1}{2} \rangle & \gamma = \frac{1}{1-\alpha} \\ 1 - \frac{1}{2} (2 - 2I)^{\gamma} & I \in \langle \frac{1}{2}, 1 \rangle & \alpha \in (0, 1) \end{cases}$$


Logarithmic scale: $T(I) = \frac{\log(1+I \cdot s)}{\log(1+s)}$ $s \in (-1, \infty)$

Quantization: $T(I) = \frac{1}{q} \lfloor I \cdot q \rfloor$ $q \in (1, \infty)$

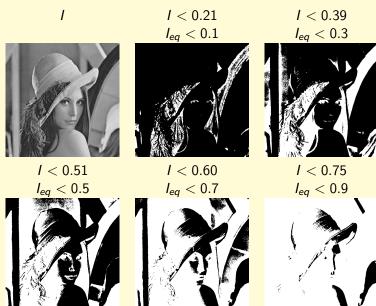
Equalization: $T(I) = \operatorname{cdf}(I) = \sum_{i=0}^{I} \operatorname{pdf}(i)$

Equalization

 $I < T_{0.5}$ $I_{eq} < 0.5$

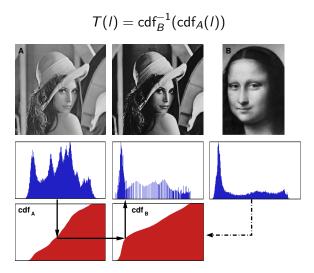
 $I < T_{0.1}$ $I_{eq} < 0.1$

 $I < T_{0.7}$ $I_{eq} < 0.7$


 $I < T_{0.3}$ $I_{eq} < 0.3$

 $I < T_{0.9}$ $I_{eq} < 0.9$

Equalization


Equalization - Transformation function

$$T(Q) = \int_0^Q p(x) \mathrm{d}x \tag{1}$$

p(x): pdf of image intensities

T(Q): the resulting transformation function

Mapping

What's next?

- ► Image geometric transformations.
- Downscaling by convolution
- Upscaling by interpolation
- ► Theory & use & demo