TWO-PLAYER ZERO-SUM GAMES

Tomáš Kroupa

Al Center
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

HOW MORRA IS PLAYED

- Each player raises between 1 and 3 fingers and simultaneously makes
 a guess about how many fingers the opponent will raise
- There is no payoff unless exactly one player predicts correctly
- The correct guesser wins an amount from the other player, which is equal to the total number of fingers raised by both players

THE PAYOFF MATRIX FOR MORRA

	1-1	1-2	1-3	2-1	2-2	2-3	3-1	3-2	3-3
1-1	0	2	2	-3	0	0	-4	0	0
1-2	-2	0	0	0	3	3	-4	0	0
1-3	-2	0	0	-3	0	0	0	4	4
2-1	3	0	3	0	-4	0	0	-5	0
2-2	0	-3	0	4	0	4	0	-5	0
2-3	0	-3	0	0	-4	0	5	0	5
3-1	4	4	0	0	0	-5	0	0	-6
3-2	0	0	-4	5	5	0	0	0	-6
3-3	0	0	-4	0	0	-5	6	6	0

TWO-PLAYER ZERO-SUM GAMES

Two-player zero-sum game (equivalently, matrix game) is given by

- 1. Player set $N = \{1, 2\}$
- 2. Finite strategy sets S_1 and S_2
- 3. Utility functions satisfying $u_1 + u_2 = 0$

Remarks

- Notation $u := u_1 = -u_2$
- We can view $u(s_1, s_2)$ as the payoff of player 1/loss of player 2
- Terminology: player 1 is maximizing while player 2 is minimizing

SOLVING MATRIX GAMES

• By the Nash theorem, any matrix game has an equilibrium $(p_1^*, p_2^*) \in \Delta$ in mixed strategies,

$$U(p_1, p_2^*) \le U(p_1^*, p_2^*) \le U(p_1^*, p_2) \qquad \forall (p_1, p_2) \in \Delta$$

 We derive this result from fundamental principles, which will lead naturally to a linear programming (LP) problem

PURE EQUILIBRIA IN MATRIX GAMES

• A pure Nash equilibrium in a matrix game is a pair $(s_1^*, s_2^*) \in \mathbf{S}$ s.t.

$$u(s_1, s_2^*) \le u(s_1^*, s_2^*) \le u(s_1^*, s_2)$$
 $\forall (s_1, s_2) \in \mathbf{S}$

• The strategy profile (s_1^*, s_2^*) is also called a saddle point

$$\max_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2) = 7 = \min_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2)$$

MAXIMIN/MINIMAX VALUE OF A MATRIX GAME

Lower bound on the payoff

1. Given p_1 , player 2 computes

$$\min_{p_2 \in \Delta_2} U(p_1, p_2)$$

2. Player 1 then computes

$$\underline{\underline{V}} := \max_{p_1 \in \Delta_1} \min_{p_2 \in \Delta_2} U(p_1, p_2)$$
$$= \max_{p_1 \in \Delta_1} \min_{s_2 \in S_2} U(p_1, s_2)$$

Upper bound on the loss

1. Given p_2 , player 1 computes

$$\max_{p_1 \in \Delta_1} U(p_1, p_2)$$

2. Player 2 then computes

$$\overline{\mathbf{v}} := \min_{p_2 \in \Delta_2} \max_{p_1 \in \Delta_1} U(p_1, p_2)$$

$$= \min_{p_2 \in \Delta_2} \max_{s_1 \in S_1} U(s_1, p_2)$$

LP FORMULATION

```
Player 1 solves
                                                                Player 2 solves
\max_{p_1 \in \Delta_1} \min_{s_2 \in S_2} U(p_1, s_2)
                                                                 min max U(s_1, p_2)
                                                                p_2 \in \Delta_2 S_1 \in S_1
     Maximize v_1
                                                                     Minimize v_2
                                                                     subject to
     subject to
         U(p_1, s_2) \ge v_1 \quad \forall s_2 \in S_2
                                                                         U(s_1, p_2) \leq v_2 \quad \forall s_1 \in S_1
         p_1 \in \Delta_1
                                                                         p_2 \in \Delta_2
         V_1 \in \mathbb{R}
                                                                          V_2 \in \mathbb{R}
```

Minimax theorem (von Neumann, 1928)

The two LPs are dual and their optimal value is $v := \underline{v} = \overline{v}$, which is called the value of the game.

NASH EQUILIBRIA IN MATRIX GAMES

- Maximin strategy is the optimal solution p_1^* for player 1
- Minimax strategy is the optimal solution p_2^* for player 2

Proposition

Let (p_1^*, p_2^*) be a mixed strategy profile in a matrix game. The following are equivalent.

- 1. p_1^* is a maximin strategy and p_2^* is a minimax strategy.
- 2. (p_1^*, p_2^*) is a Nash equilibrium.

If any of the above conditions hold, then $v = U(p_1^*, p_2^*)$.

THE SOLUTION OF MORRA

The support of any maximin strategy is
$$\{1\text{-}3, 2\text{-}2, 3\text{-}1\}$$
, e.g. $p_{13}^* = \frac{5}{12}, \ p_{22}^* = \frac{4}{12}, \ p_{31}^* = \frac{3}{12}$

v = 0

Maximize
$$v_1$$
 subject to
$$-2p_{12}-2p_{13}+3p_{21}+4p_{31} \ge v_1$$

$$\vdots$$

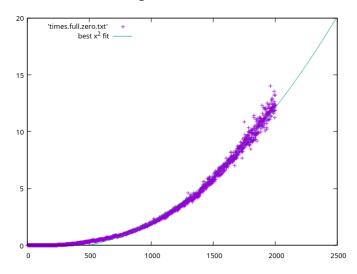
$$p_{ij} \ge 0 \qquad i,j=1,2,3$$

$$\sum_{i=1}^{3} \sum_{j=1}^{3} p_{ij} = 1$$

$$v_1 \in \mathbb{R}$$

COMPUTATIONAL EXPERIMENTS

- Julia + JuMP + Gurobi, randomly generated matrix games
- Number of strategies vs Solve time in Gurobi



COMPARISON

	Zero-sum	General-sum		
Nash equilibrium	exists	exists		
maxmin/minmax strategies	equivalent to NE	different		
unique value	yes	no		
equilibrium selection problem	no	yes		
computable in $\mathbb Q$	yes	no		
optimization problem	LP	non-convex POP		

MOTIVATION

- Certain matrix games are too large to solve directly using the baseline linear programming approach
- We will discuss strategy generation method which gradually expands the sets of currently used strategies

WHAT PATH SHOULD THE ROBOT FOLLOW TO AVOID CCTV?

The position of cameras is known.

WHAT PATH SHOULD THE ROBOT FOLLOW TO AVOID CCTV?

The adversary deploys cameras.

WHAT PATH SHOULD THE ROBOT FOLLOW TO AVOID CCTV?

Motion planner

- Path π for the robot
- Finite set of paths Π
- Mixed strategy $p \in \Delta_{\Pi}$
- Loss $\ell(\pi, \mathbf{c})$
- Expected loss

$$\sum_{\pi \in \Pi} \sum_{\mathbf{c} \in C} p(\pi) \cdot q(\mathbf{c}) \cdot \ell(\pi, \mathbf{c})$$

Adversary

- Cost vector c
- Finite set of cost vectors C
- Mixed strategy $q \in \Delta_C$

PLANNING PATHS: EXPERIMENTS

McMahan, Gordon, Blum (ICML 2003)

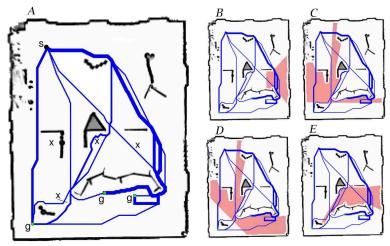
- The gridworld of size up to 269×226
- The robot can move in any of 16 compas directions
- Each cell has cost 1 and a cost proportional to the distance of camera

Computational limits

- Sets
 Π and C should be reasonably small
- Already $\binom{100}{2}$ = 4950 positions for 2 cameras in the gridworld 10×10

EXAMPLE OF SOLUTION

McMahan, Gordon, Blum (ICML 2003)

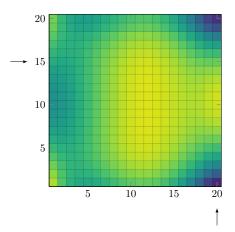


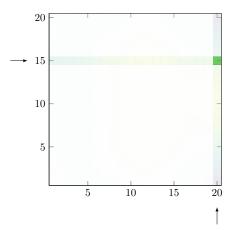
Input: Any matrix game with strategy sets S_1 and S_2 *Initialize*: Pick small strategy sets $T_1 \subseteq S_1$ and $T_2 \subseteq S_2$

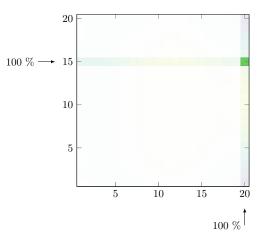
- 1. Solve the subgame with T_1 and $T_2 \longrightarrow (q_1^*, q_2^*)$
- 2. Compute the pure best responses

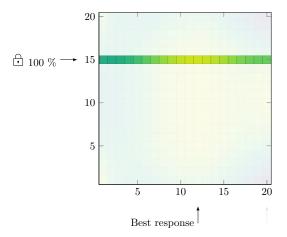
$$s_1 \in \operatorname{argmax} U(s_1', q_2^*)$$
 and $s_2 \in \operatorname{argmin} U(q_1^*, s_2')$
 $s_2' \in S_2$

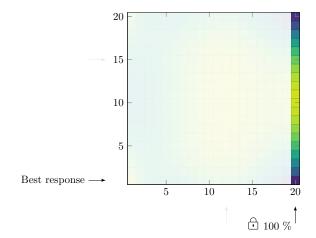
- 3. If $s_1 \in T_1$ and $s_2 \in T_2$, then stop
- 4. Otherwise add s_1 to T_1 or s_2 to T_2 , and go to 1.

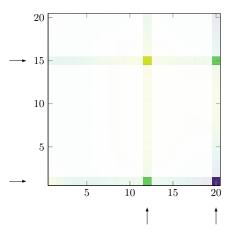


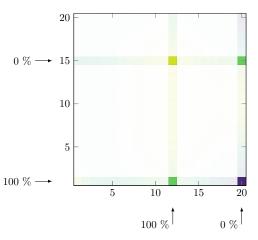












TERMINATION AND CORRECTNESS

Proposition

The DO algorithm terminates and returns a Nash equilibrium of the initial matrix game.

In each iteration:

- 1. $v \le v_u := U(s_1, q_2^*)$
 - 2. $v \ge v_{\ell} := U(q_1^*, s_2)$
 - 3. If $s_1 \in T_1$ and $s_2 \in T_2$, then $v_\ell = v = v_u$ and (q_1^*, q_2^*) is a NE

ALTERNATIVE TERMINATING CONDITION

• Choose some $\varepsilon > 0$ and stop when

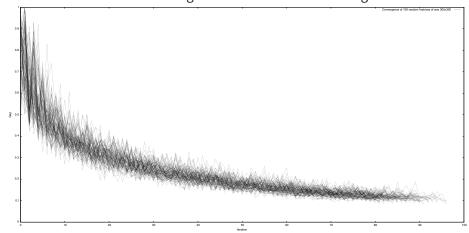
$$v_U - v_\ell \leq \varepsilon$$

• The output (q_1^*, q_2^*) is an ε -Nash equilibrium,

$$U(p_1, q_2^*) - \varepsilon \le U(q_1^*, q_2^*) \le U(q_1^*, p_2) + \varepsilon \qquad \forall (p_1, p_2) \in \Delta$$

CONVERGENCE TO ε -EQUILIBRIUM

#iterations vs convergence criterion for 300×300 games



CONVERGENCE TO ε -EQUILIBRIUM

