NASH EQUILIBRIA

Tomáš Kroupa

Al Center
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

2×2 STRATEGIC GAMES - NASH EQUILIBRIA

$$\begin{array}{c|c}
L & R \\
U & a,b & c,d \\
D & e,f & g,h
\end{array}$$

Proposition

- 1. If $a \ge e$ and $b \ge d$, then (U, L) is a NE.
- 2. If $e \ge a$ and $f \ge h$, then (D, L) is a NE.
- 3. If $c \ge g$ and $d \ge b$, then (U, R) is a NE.
- 4. If $g \ge c$ and $h \ge f$, then (D, R) is a NE.

$$\begin{array}{c|c} & \textit{Listen} & \textit{Sleep} \\ \textit{Prepare} & 10^6, 10^6 & -10, 0 \\ \textit{Slack off} & 0, -10 & 0, 0 \end{array}$$

Professor's Dilemma (A. Procaccia)

The prof chooses a row strategy and the students choose a column strategy.

Which of the two equilibria will arise?

NASH EQUILIBRIA IN AUCTIONS

Second-price auction

- Thruthful bidding v_i is a weakly dominant strategy for each player i, where v_i is a private value of player i.
- This shows that $(v_1, ..., v_n)$ is a Nash equilibrium, though not the unique one.

First-price auction

There is no pure NE even if everyone knows everyone's private value.

PURE STRATEGIES ARE INSUFFICIENT

Matching pennies

$$\begin{array}{c|ccc}
h & 1 & -1 \\
t & -1 & 1
\end{array}$$

Penalty kicks

- Kicker and Goalkeeper
- unnatural or natural side
- Ratio of scored penalties

Good Samaritan Game

- A cry for aid echoes from a nearby dark alley
- Providing aid takes effort and your utility is 9
- You get 10 utils if someone else helps
- If nobody helps, utility is 0

$$u_{i}(\mathbf{s}) = \begin{cases} 9 & s_{i} = a \\ 10 & s_{i} = \bar{a}, s_{j} = a \end{cases} \exists j \neq i$$
$$0 & \mathbf{s} = (\bar{a}, \dots, \bar{a})$$

MIXED STRATEGIES AND EXPECTED UTILITY

Assumption: Finite strategy set S_i for each player $i \in N$

Definition

Mixed strategy of player i is a probability distribution p_i on S_i .

Expected utility of player i is

$$U_i(p_1,\ldots,p_n) = \sum_{\mathbf{s}\in\mathbf{S}} u_i(\mathbf{s}) \prod_{i\in N} p_i(s_i).$$

EXPECTED UTILITY IN A TWO-PLAYER GAME

Example

Player 2
$$x \quad y \quad z$$
Player 1
$$\begin{vmatrix} a & 1.7 & 1.5 & 3.4 \\ b & 2.3 & 0.4 & 0.6 \end{vmatrix}$$

$$p \coloneqq p_1(a)$$

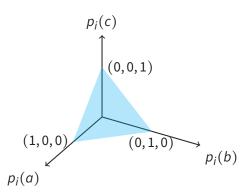
$$q \coloneqq p_2(x), r \coloneqq p_2(y)$$

$$U_1(p,q,r) = pq + pr + 3p(1-q-r) + 2(1-p)q$$

$$U_2(p,q,r) = 7pq + 5pr + 4p(1-q-r) + 3(1-p)q + 4(1-p)r + 6(1-p)(1-q-r)$$

THE SET OF MIXED STRATEGIES

$$\Delta_i := \left\{ p: S_i \to [0,1] \mid \sum_{s \in S_i} p_i(s) = 1 \right\}$$



 $S_i = \{a, b, c\}$

2-dimensional standard simplex The three vertices represent pure strategies

NASH EQUILIBRIUM IN MIXED STRATEGIES

A mixed strategy profile

$$\mathbf{p}^* = (p_1^*, \dots, p_n^*) \in \Delta := \underset{i \in N}{\times} \Delta_i$$

in which no player has an incentive to deviate, assuming the mixed strategies of all other players remain unchanged.

Definition

A mixed strategy profile $\mathbf{p}^* \in \Delta$ is a Nash equilibrium if for every player $i \in N$

$$U_i(\mathbf{p}^*) \ge U_i(p, \mathbf{p}_{-i}^*)$$
 for all $p \in \Delta_i$.

NASH EQUILIBRIUM IN MIXED STRATEGIES, EQUIVALENTLY

Which strategy will player i adopt as a reply to the opponents' strategies?

Best response mapping

$$\mathsf{BR}_i(\mathbf{p}_{-i}) = \operatorname*{argmax}_{p \in \Delta_i} U_i(p, \mathbf{p}_{-i}) \qquad \text{for all } \mathbf{p}_{-i} \in \Delta_{-i}$$

• Best response to \mathbf{p}_{-i} is any strategy $p \in BR_i(\mathbf{p}_{-i})$

Proposition

The following are equivalent for a mixed strategy profile $\mathbf{p}^* \in \Delta$.

- 1. **p*** is a Nash equilibrium.
- 2. $p_i^* \in BR_i(\mathbf{p}_{-i}^*)$, for each $i \in N$.

NASH'S THEOREM

Theorem

Any finite strategic game has a Nash equilibrium in mixed strategies.

- This is an existential theorem, meaning it proves that a Nash equilibrium exists but does not provide any method for finding one
- Computing a single Nash equilibrium is a very hard problem

HOW TO COMPUTE A NASH EQUILIBRIUM?

- 1. The case of 2×2 games
- 2. Support enumeration method for 2 players
- 3. Multilinear reformulation

INDIFFERENCE PRINCIPLE

Support of a mixed strategy p_i of player i is the set

$$\operatorname{spt} p_i \coloneqq \{ s \in S_i \mid p_i(s) > 0 \}.$$

Proposition

Let \mathbf{p}^* be a Nash equilibrium and $i \in N$ be any player.

1. For every $s, t \in \operatorname{spt} p_i^*$,

$$U_i(s, \mathbf{p}_{-i}^*) = U_i(t, \mathbf{p}_{-i}^*).$$

2. For every $s \in \operatorname{spt} p_i^*$,

$$U_i(s, \mathbf{p}_{-i}^*) = U_i(\mathbf{p}^*).$$

SOLVING 2 × 2 STRATEGIC GAMES BY INDIFFERENCE PRINCIPLE

Assume that the game has no pure Nash equilibria (2 cases):

- e < a and b < d and c < g and h < f
- a < e and f < h and g < c and d < b

$$\begin{array}{c|c}
L & R \\
U & a,b & c,d \\
D & e,f & g,h
\end{array}$$

Proposition

If the game above has no pure NE, then there exists a completely mixed Nash equilibrium (p_1^*, p_2^*) such that

$$p_1^*(U) = \frac{h-f}{h-f+b-d}$$
 and $p_2^*(L) = \frac{g-c}{g-c+a-e}$.

EXAMPLE: GAMES WITH UNIQUE MIXED NASH EQUILIBRIA

Roommates sharing chores

Alex can cook or clean. Bob shops or takes trash out.

$$p_1^*(c) = \frac{0-2}{(0-2)+(0-1)} = \frac{2}{3}$$
$$p_2^*(s) = \frac{1-0}{(1-0)+(2-0)} = \frac{1}{3}$$

$$U_1(\mathbf{p}^*) = 2 \cdot \frac{2}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{2}{3} = \frac{2}{3}$$

$$U_2(\mathbf{p}^*) = 2 \cdot \frac{1}{3} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{2}{3} = \frac{2}{3}$$

Matching pennies

$$\begin{array}{c|cc}
h & t \\
h & 1 & -1 \\
t & -1 & 1
\end{array}$$

$$p_1^*(h) = p_2^*(h) = 1/2$$

Penalty kicks

$$\begin{array}{c|cc} u & n \\ u & 0.58 & 0.95 \\ n & 0.93 & 0.70 \end{array}$$

$$p_1^*(u) = 0.38$$
 and $p_2^*(u) = 0.42$
Data statistics: 0.40 and 0.42

EXAMPLE: GOOD SAMARITAN GAME

Analysis

n players, $S_1 = \cdots = S_n = \{a, \overline{a}\}$, and the utility function of every player *i* is

$$u_{i}(\mathbf{s}) = \begin{cases} 9 & s_{i} = a, \\ 10 & s_{i} = \bar{a}, s_{j} = a \quad \exists j \neq i \\ 0 & \mathbf{s} = (\bar{a}, \dots, \bar{a}) \end{cases}$$

- There are *n* pure NE of the form $(a, \bar{a}, \dots, \bar{a}), \dots, (\bar{a}, \dots, \bar{a}, a)$
- In the mixed NE, we get $p_i^*(\bar{a}) = \sqrt[n-1]{0.1} \to 1$ for $n \to \infty$ for each i, and $U_i(\mathbf{p}^*) = 9$
- The probability that nobody helps is $\left(\sqrt[n-1]{0.1}\right)^n \to 0.1$ for $n \to \infty$

SUPPORTS OF EQUILIBRIUM STRATEGIES

Proposition

The following are equivalent for a strategy profile $\mathbf{p}^* \in \Delta$.

- 1. **p*** is a Nash equilibrium.
- 2. $\operatorname{spt} p_i^* \subseteq \operatorname{BR}_i(\mathbf{p}_{-i}^*)$, for each $i \in \mathbb{N}$.

ARE GIVEN SETS T_1 AND T_2 SUPPORTS?

Linear feasibility problem

Find $p_1 \in \Delta_1$ and $p_2 \in \Delta_2$ such that for i = 1, 2:

- $p_i(s_i) = 0$ for every $s_i \notin T_i$
- $U_i(s_i, p_{-i}) \le e_i$ for all $s_i \notin T_i$
- $U_i(s_i, p_{-i}) = e_i$ for all $s_i \in T_i$
- 1. If the problem is infeasible, then there is no NE with supports T_1 , T_2
- 2. Any feasible solution is a NE with supports included in T_1 , T_2

SUPPORT ENUMERATION METHOD

- 1. Generate sets $T_1 \subseteq S_1$ and $T_2 \subseteq S_2$
- 2. Solve the linear feasibility problem for T_1 and T_2
 - a. If feasible, then end
 - b. If infesible, then 1.

Properties

- The method terminates and finds a single NE
- Order of the generation is crucial for finding NE with small supports

TEST OF NASH EQUILIBRIUM USING PURE STRATEGIES

Proposition

The following are equivalent for a strategy profile $\mathbf{p}^* \in \Delta$.

- 1. \mathbf{p}^* is a Nash equilibrium.
- 2. $U_i(\mathbf{p}^*) \ge U_i(s, \mathbf{p}_{-i}^*)$ for all $s \in S_i$.

OPTIMIZATION REFORMULATION

- Vector variable p_i represents a mixed strategy of player i ∈ N
- Real variable e_i represents an equilibrium value for player $i \in N$

Multilinear program

Minimize

$$\sum_{i\in N}(e_i-U_i(\mathbf{p}))$$

subject to

- $e_i U_i(s, \mathbf{p}_{-i}) \ge 0$ for each $i \in N$ and every $s \in S_i$
- $p_i \in \Delta_i$ for each $i \in N$
- $e_i \in \mathbb{R}$ for each $i \in N$

PROPERTIES OF THE MULTILINEAR PROGRAM

The following are equivalent:

- 1. \mathbf{p}^* is a Nash equilibrium with $e_i = U_i(\mathbf{p}^*)$
- 2. **p*** is a minimizer of the multilinear program with optimal value 0

The key observation (Fischer and Gupte, 2022)

A solver may quickly find a feasible solution with an objective value of 0, but takes considerable time to confirm that no feasible solution has an objective value < 0.

FROM MULTILINEAR PROGRAM TO FEASIBILITY PROBLEM

- Add the constraint expressing non-positivity of the objective
- Any feasible solution to the problem below is a NE

Multilinear feasibility problem

Find p_1, \ldots, p_n satisfying

•
$$\sum_{i \in N} (e_i - U_i(\mathbf{p}^*)) \leq 0$$

•
$$e_i - U_i(s, \mathbf{p}_{-i}) \ge 0$$
 for each $i \in N$ and every $s \in S_i$

- $p_i \in \Delta_i$ for each $i \in N$
- $e_i \in \mathbb{R}$ for each $i \in N$

MULTILINEAR METHOD VS BASELINE LP FOR ZERO-SUM GAMES

- RCI cluster AMD partition limited to 4 threads and 20s
- Julia + JuMP + Gurobi, 300 randomly generated games for each $n \le 40$

