

Extensive-form games

Ondřej Kubíček

Artificial Intelligence Center Faculty of Electrical Engineering Czech Technical University in Prague

Game theory achievements

- Deep Blue Chess (1997)
- AlphaGo Go (2017)
- Deepstack and Libratus Poker (2017)
- OpenAl Five DotA II (2019)
- AlphaStar Starcraft II (2019)
- DeepNash Stratego (2022)
- Cicero Diplomacy (2022)

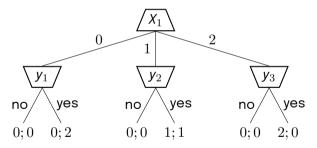
Multi-agent Sequential Decision-making

- Making decisions sequentially based on current information is more often associated with games.
- Pure strategy in sequential game needs to reflect all possible situations we can encounter in game.
- Pure strategy has to assign single action to each situation that can happen.
- Exponential growth of pure strategies based on the size of the game.

FEE CTU Extensive-form games 3/21

Extensive-form game

Using a tree structure seems more natural for sequential problems. This representation is called extensive-form game.



Extensive-form game

Extensive-from game (EFG) is defined by:

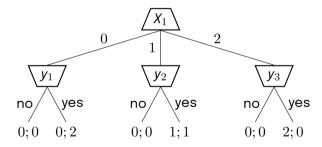
- Player set $\mathcal{N} = \{1, \dots, n\}$
- Actions $A = \bigcup_{i \in \mathcal{N}} A_i$, where A_i is action set of player i
- ullet Decision nodes (histories) ${\cal H}$
- Terminal nodes Z
- Player function $N: \mathcal{H} \to \mathcal{N}$
- Action function $A: \mathcal{H} \to 2^{\mathcal{A}}$
- Transition function $\mathcal{T}:\mathcal{H}\times\mathcal{A}\to\mathcal{H}\cup\mathcal{Z}$
- Utility function $u: \mathcal{Z} \to \mathbb{R}^{|\mathcal{N}|}$

A pure strategy of player i in EFG is assignment of single action for each decision node, in which player i acts

$$S_i := X A(h)$$
 $h \in \mathcal{H}, N(h) = i$

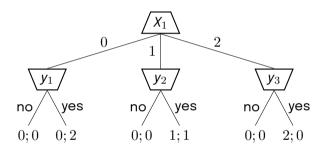
Example

What are the actions and pure strategies in this game?



FEE CTU Extensive-form games 6/21

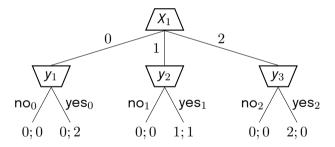
Example



 $\mathcal{A}_1=\{0,1,2\}, \mathcal{S}_1=\{(0),(1),(2)\}$ $\mathcal{A}_2=\{\text{no, yes}\}, \mathcal{S}_2=\{(\text{no, no, no}),(\text{no, no, yes}),\dots(\text{yes, yes, yes})\}, |\mathcal{S}_2|=8$ Note that in each decision node y_1,y_2,y_3 player is doing a different decision.

Labelling actions

We often use different labels to uniquely identify actions resulting from different histories



$$\begin{split} \mathcal{A}_2 &= \{\mathsf{no_0}, \mathsf{yes_0}, \mathsf{no_1}, \mathsf{yes_1}, \mathsf{no_2}, \mathsf{yes_2}\}, \\ \mathcal{S}_2 &= \{(\mathsf{no_0}, \mathsf{no_1}, \mathsf{no_2}), (\mathsf{no_0}, \mathsf{no_1}, \mathsf{yes_2}), \dots (\mathsf{yes_1}, \mathsf{yes_2}, \mathsf{yes_3})\} \end{split}$$

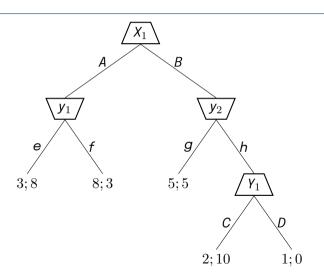
Converting EFG to NFG

FEE CTU

- Generate all pure strategies for both players
- Compute utilities corresponding to each pair of those strategies
- Create utility function based on those computed utilities
- Nash equilibrium in this underlying normal-form game is Nash equilibrium in the extensive-form game

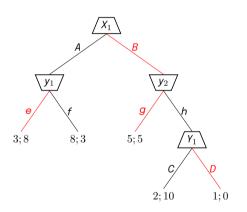
Extensive-form games 9/21

Converting EFG to NFG



FEE CTU Extensive-form games 10/21

Converting EFG to NFG



	e,g	e, h	f, g	f, h
A, C	3, 8	3 , 8	8, 3	8,3
A, D	3,8	3,8	8, 3	8, 3
B, C	5, 5	2,10	5, 5	2,10
B,D	5 , 5	1,0	5, 5	1,0

FEE CTU Extensive-form games 11/21

Rationality of Nash equilibria in EFG

- Some Nash equillibria in Extensive-form games do not have to be rational in all parts of the game tree independently.
- Player may choose irrational actions in parts of the tree, that are outside of the parts, where the Nash equilibrium plays.
- We can use some refinement of the Nash equilibrium, that ensures this rationality in all decision points.
- In EFGs with perfect information this refinement is called Subgame perfect equilibrium.
- It can be found algorithmically, by traversing the game tree from bottom and always choosing the action that yields the highest expected utility to each player.
- This algorithms is called Backward Induction, but in two-player zero-sum games with perfect information it is known as minimax.

Imperfect Information EFGs

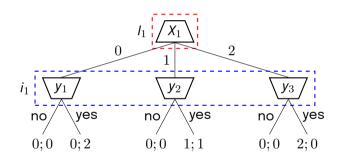
- Player set $\mathcal{N} = \{1, \dots, n\} \cup \mathbf{c}$
- Actions $A = \bigcup_{i \in \mathcal{N}} A_i$, where A_i is action set of player i
- Decision nodes (histories) ${\cal H}$
- Terminal nodes Z
- Player function $N: \mathcal{H} \to \mathcal{N}$
- Information sets $\mathcal{I} = (\mathcal{I}_1, \dots, \mathcal{I}_n)$, h, h' belong to the same infoset $l_i \in \mathcal{I}_i$ of player i, if it cannot distinguish between them
- Action function $A: \mathcal{H} \to 2^A$, Since player i cannot distinguish between histories in a same infoset I_i , it requires same available actions in each of those histories. We often use $A(I_i) := A(h)$
- Transition function $\mathcal{T}: \mathcal{H} \times \mathcal{A} \to \mathcal{H} \cup \mathcal{Z}$
- Utility function $u: \mathcal{Z} \to \mathbb{R}^{|\mathcal{N}|}$

Chance player

- Chance player can be viewed as an another player in a game that has fixed unchangable policy throughout the game, known to all the other players.
- In this case the transition function for chance player is defined analogously as for all the other players.
- Second equivalent way is to define a separate transition function, that is exclusive to the chance player and is publicly known by all the players.
- This does not mean that the outcome of chance is known to all the players.
- Imagine Poker as an example, the probability of dealing a card is known, but all players do not observe which card was dealt.

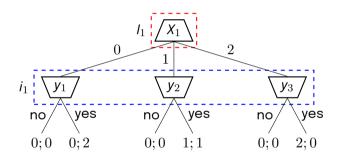
14/21 Extensive-form games

Example of Imperfect Information EFG



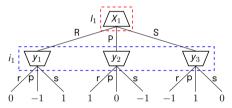
FEE CTU Extensive-form games 15/21

Example of Imperfect Information EFG



$$\begin{aligned} \mathcal{A}_1 &= \{0,1,2\}, \mathcal{S}_1 = \{(0),(1),(2)\} \\ \mathcal{A}_2 &= \{\mathsf{no},\mathsf{yes}\}, \mathcal{S}_2 = \{(\mathsf{no}),(\mathsf{yes})\} \end{aligned}$$

Nash Equilibria in Imperfect Information EFGs



	r	р	S
R	0	-1	1
Р	1	0	-1
S	-1	1	0

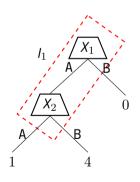
- Imperfect information games do not have to contain pure Nash equillibria as evidenced by the Rock-Paper-Scissors example.
- Every finite game can be represented as an imperfect information EFG.

FEE CTU Extensive-form games 17/21

Behavioral strategies

- Mixed strategy is a probability distribution between all pure strategies.
- In games it is more natural to think about strategies independently in each decision point.
- These strategies are called Behavioral strategies
- Behavior strategy is a mapping $\pi: \mathcal{I} \to \Delta A(h)$
- In some games, the behavioral strategy and mixed strategy do not coincide.

Example



- Mixed strategy is a probability distribution on pure strategies.
- Playing mixed strategy corresponds to selecting a single pure strategy at the beginning of the game bsaed on the corresponding probabilities
- Playing mixed strategy $p({\it A})=p({\it B})=0.5$, results in expected value $0.5\cdot 1+0.5\cdot 0=0.5$
- Behavioral strategy gives for each infoset probability distribution across the available actions.
- Playing behavioral strategy corresponds to selecting a single action when facing a decision in some decision node based on the corresponding probabilities
- Playing behavioral strategy $\pi(I_1, A) = \pi(I_1, B) = 0.5$, results in expected value $0.5 \cdot 0 + 0.5 \cdot (0.5 \cdot 1 + 0.5 \cdot 4) = 1.25$.

Perfect Recall

- No player forgets any information throughout the game.
- For any two histories $h, h' \in I_i$, that were formed with trajectories $h_0 a_0 \dots a_n h$ and $h'_0 a'_0 \dots a'_m h'$ it has to hold
 - *n* = *m*
 - for all $0 \le j \le n$, h_i and h'_i are in the same infoset
 - for all $0 \le j \le n$ if $N(h_j) = i$, then $a_j = a'_i$
- This is a standard assumption, required by most of the algorithms that solve imperfect information games

Summary

- Extensive-form is a more natural representation of sequential games.
- In perfect information EFG, there is at least one pure Nash equilibrium.
- Sequentially rational refinement of Nash equilibrium, subgame perfect equilibrium can be found with single traversal of the tree from bottom.
- Every finite game can be represented as an imperfect information EFG
- Imperfect information EFGs do not have to contain pure Nash equilibrium.
- Behavioral strategies in imperfect information EFGs are fundementally different than mixed strategies.
- In games with perfect recall, where neither player forgets any information, behavioral and mixed strategies are the same.

FEE CTU Extensive-form games 21/21