Robust Adaptive Floating-Point Geometric Predicates

Jonathan Richard Shewchuk

School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
jrs@cs.cmu.edu

+ additional notes by Petr Felkel, CTU Prague, 2020-2023

Version from 02.10.2024

Precise floats represented as expansions

Just the idea, not using IEEE float, but 4-digit decimal numbers ...

-1.5000000000000000000000000000080000000000000000000000000000000077 * 10~1

-1.500% 1071 | + [-8.000* 10731 | + |-7.700 % 10~

Expansion

 Sorted sequence of non-overlapping machine native numbers (float,

double) —each with its own exponent and significand (mantissa) 1020

e Sorted by absolute values -
1018.7

 Signum of the highest FP number is the signum of the expansion * ©-°

* Zero members of the expansion will be not added. felg:;;gg
lxal > xz]l > x> |xy] 1018.7195

represents x = +1018.7195
approximated x ~ + 1020 = x,

1020 -1.3 0.020 -0.0005

Expansions are not unique

binary
1001.1
Possibly stored as

1100 + (-10.1)
= 1100.0 - 10.1
= 1001 + 0.1
= 1000 + 1 + 0.1

decimal (overlap)

..9.5

12+ (—2.5)
.12 =25

9+0.5
8+1+05

Meaning of symbols

p-bit floating point operations with exact rounding (float, double):

@ addition
© subtraction
& multiplication

Perform the operation with higher precision
Round the result to the representable number

Exact rounding

Operations with exact rounding to p-bits (32 / 64) store result:

exact results store exact, and
non-precise results store rounded

More than 4-bits arithmetic (precise) With exact rounding to 4-bits

010 x 011 = 100 010 ® 011 = 100 if (possible)
2X3=6 2 3=6 store exact
else
111 x 101 = 100011 111 ® 101 = 1.001 x 2° store rounded

7 X5 =35 7Q® 5 =36

Operations on expansions

IEEE 754 standard on floating point format and computing rules.
Operations on expansions require exact rounding of each op. to 32 / 64bit.

Fast-Two-Sum(a, b) : (a>=b) -> (x, y), a+b=x+y

Two-Sum(a, b) -> (X, y)

Linear-Expansion-Sum(a interleaved with b) -> correct expansion
(non-overlapping)

Split (a) -> (a_hi, a_lo), a=ahi+ alo
Two-Product (a,b) -> (x, y)

numbers such that |a| > Then the following algorithm
will produce a nonoverlapping expansion x + y such that
a+ b= x +y, where(x)is an approximation to a + b and[y

Theorem 1 (Dekker [4]) Letf a and b be p-bit floating-point
b]

represents the roundoff error in the calculation of x. B
STT—— FAST-TWO-SUM(a, b)
8<6P1] r<=a®db // Rounded sum = approximation
28606) bVl rtual & I & @ //Whatwastruly added - Rounded
—1=102 3 y<=bo bvirtual // round-off error
return (8, —1) 4 return (r,y)

lal = |b|

FAST-TWO-SuM(a, b)
I r=a®b b —
2 bVirtual =roea
3 Yy <= b O byirtual x < a@ b
4 return (z,y) —a
bvirtual I

a+b=x+ y b _
=a® b+ bO byjriyal —byirtual I

I - =S y B

Fast TwoSum with result rounded up (on 4-digits decimal numbers)

Correct Rounded up Really added Correction
a = 5081 a = 5081 x = 5175 b= 935
b= 935 b= 935 —a = —5081 —Dyirtuar= —94
5174.5 x =5175 byirtuar = 94 y = —0.5

(a+b)=(x + y)

5081 + 93.5 = (5175 — 0.5)

Fast TwoSum with result rounded down (on 4-digits decimal numbers)

Correct

a = 5081
b = 93.4
5174.4

Rounded down Really added

Correction
a = 5081 x = 5174 b= 934
b= 934 —a = —5081 —Dyirtuar= —94
x =5174 byirtualr = 93 y = 0.4

(a+b)=(x + y)

5081 + 93.4 = (5174 + 0.4)

Theorem 2 (Knuth [10]) Let a and b be p-bit floating-point
numbers, where p > 3. Then the following algorithm will
produce a nonoverlapping expansion x + vy such that a + b =

T+ .

B
Two-SuM(a, b)
— <(Z (l @ b // Rounded sum = approximation
., bVIFtual {: T @ (1l // What b was truly added — Rounded
fora > b
avlftual =T e‘ bv ll'tual // What a was truly added — Rounded

forb > a

broundoff <=bo bvirtual 1/ round-off error of b
a“I'OLlI'ldOff <: a @ a’VlI’tllal // round-off error of a

Y <= aroundoff © broundoff
return (z,y)

NG e NN OEVE R NS R
|

|

Sum of two expansions (4-bit arithmetic)

Input: 1111+0.1001 and 1100+0.1
Output: 11100 + 0 +0.0001
Zeroes slow down thé computation — removed afterwards

1. Merge both input expansions into a single sequence g
respecting the order of magnitudes

1111+ 1100+ 0.1001 + 0.1 numbers in the sequence overlap
2. Use LINEAR-EXPANSION-SUM (g) to create a correct expansion
g5+ g4+g3+9g2+gl >h5+hd+h3+h2+hl
overlapping input = non-overlapping output

g3 > g2 > gl

Rounded
ult
() FAST
Two

SUM

Correction

\Y

Input expansion gs > 94

Output expansion

hs hy hs !
Figure 1. Operation of LINEAR-EXPANSION-SUM. The expansions g
and h are illustrated with their most significant components on the left.
@; + g; maintains an approximate running total. The FAST-TWO-Sum
operations in the bottom row exist to clip a high-order bit off each g;

term, if necessary, before outputting it.

LINEAR-EXPANSION-SUM

1111+ 1100 + 0.1001 + 0.1

1111 1100 0.1001
1111 1101 1 0.1
11700 = TTTUTTmITTTs o mmommmm o mmommmooes
0.1001 11100 1101+0 1+ 0.0001
0.1
--------------- 11100 + 0 + 0.0001

11100.0001 11100 + 0.0001

Multiplication

Multiplies two p-bit values a and b
1. Split both p-bit values into two halves (with ~p/2 bits)

2. perform four exact multiplications on these fragments.
Api X bpi api X by Q1o X bpi 1o X by

The trick is to find a way to split a floating-point value into two.

SPLIT(a) operation

* Splits p bits into two non-overlapping halves
(E‘ bits ap; and [ﬂ — 1 bits a;,)
* Missing bit is hidden in the signum of a,,
* Example
7bit number splits to two 3 bit significands
1001001 splits to 1010000 (101 x 2%) and -111
73=80-7

Theorem 4 (Dekker [4]) Let a be a p-bit floating-point
number, where p > 3. The following algorithm will pro-
duce a | 5 |-bit value ay,; and a nonoverlapping (| 5| — 1)-bit

value ay, such that |ay;| > |ajy| and a = ap; + ay, B
SpLIT(a)
1 c< (2Pl 1) ®a
2 abig = coa
3 Al <= CO a’big / \
4 Ao < @ O ap;
S return (ahij (110)

Theorem 5 (Veltkamp) Let a and b be p-bit floating-point
numbers, where p > 4. The following algorithm will produce
a nonoverlapping expansion T + 1y such that ab = x + .

N

TwoO-PRODUCT(a, b)

1 rT<<=a®b

(api, a1o) = SPLIT(a)

(bhi! bl{}) = SPL-I'I'(E))

ETT] < T O ({Ihi 0y bhi)
erry <= erry © (a)p ® bp;)
err3 <= erry © (ap; @ byp)
y < (a1 ® b)) © errs
return (z, y)

O ~1J] v B W9

Demonstration of SPLIT splitting a five-bit
number into two two-bit numbers

(

234

C

(

(J'bl g
“@hi

”’10

(2°+1)®

CSa

Cc 5 (hi g

a = a hi

a

|

|
|

29 > (32, —3)

x 23
x 2%

x 23

x 21

29
232
261 >256
—29
224 207
256 —224
32
29 —32
—3

Demonstration of TWO-PRODUCT in six-bit

arithmetic
a = 1 1 1 O 1 1
b = 1 1 1 O 1 1
€r o= R b = 1 1 0 1 1 O x 20
ahi @ bhl | = 1 1 0 0 0 1 x 26
erry = x&(a hl Dby) = 1 01 0 0 0 x 23
a 10 2 bhl = 1 01 0 1 O x 22
erry = erry S (”10 Aby) = 1 0 0 1 1 O x 22
ahi @ b1 = 1 01 0 1 O x 22
Crry = err, & (uhl Ab1g) = — 1 0 0 0 0
Ao @ blo = I 0 0 1
—y = err3 o (a)p@by) = — 1 1 0 0 1

The resulting expansion is 110110 x 2° + 11001
54 *2° + 25

562 = 3481 — (3456 + 25)

Adaptive arithmetic

* Expensive — avoid when possible

* Some applications need results with absolute error below a threshold
 Set of procedures with different precision (& speed) + error bounds

* For each input — compute the error bounds and choose the procedure
But

* Sometimes hard to determine error before computation

e Especially when relative error needed — like sign of expression compar.

* Result can be much larger than error bound — rounded arithmetic will suffice
* Result can be near zero — must be evaluated exactly

Shewchuk predicates

 Compute a sequence of increasingly accurate results
 Testing each for accuracy
* Not using separate procedures BUT

* Using intermediate results as steps to more accurate results
(work already done is not discarded, but refined)

* |dea: presented routines can be split to two parts
* Line 1 gives an approximate result - run each time
* Remaining lines compute the roundoff error — delayed until needed, if ever ...

Principle of adaptive computation

2
Distance of two points (b, — a,)?* + (by — ay)
Store b, —a, as xq +y;
and b, —a, as x, +y,

(xf 4 2x1y1 + ¥£) + (%3 + 2x,5, + V3)

Reorder terms according to their size

(xf + x5) + 2x1y; + 2x35,) + (VF +y5)

Compute them only if needed

Precise:

- Component
vy Expansion

@ Two-Product
E Expansion-Sum

rounded addition

aq a4 + bl

N

Ll

o ab,

first term:

Cy ... rounded
Aq ... precise

Y2 ¥y

pivot p
Orientation predicate - definition

1 px Dy
orientation(p,q,r) =sign | det |1 qx qy| | =
1 n n

= sign ((px — Tx)(CIy — Ty) - (py — ry)(qx - rx)),
where pointp = (px, py),

= third coordinate of = (U X V),

Three points orientation(p, q,r) =
* lie on common line
e form a left turn = +1 (positive)

e form aright turn = -1 (negative)

pivotr

Experiment with orientation predicate

r=[24, 24]

* orientation(p,q,r) = sign((p,-r,)(a,-r,)-(p,-,)(q,T,))
d ‘\

yl

|deal return

q=1[12, 12]
values

double

Value of the LSB

A /2N

Felkel: Computational geometry (27)

Standard floats

single double extended double (Intel)

celkovy pocet bitu 32 64 80

pocet bitu mantisy 24 53 64

pocet bitiu exponentu 8 11 15

rozsah exponentu [—126;+127] [—1022;+1023] |—16382; +16383]

platna desetinna

mista (priblizne) 7 16 19

mista na lib. Cisla v dané pfesnosti 9 17

2°Y = 16777216 riznych mantis
log 224 = 7.2

11111111111 11111 111111115 x 27129

2,35098856151472858345576598207153302664571798551 79808553659
26236850006129930346077117064851336181163787841796875 x 10~3*

	Snímek 1
	Snímek 2: Precise floats represented as expansions
	Snímek 3: Expansion
	Snímek 4: Expansions are not unique
	Snímek 5: Meaning of symbols
	Snímek 6: Exact rounding
	Snímek 7: Operations on expansions
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13: Sum of two expansions (4-bit arithmetic)
	Snímek 14
	Snímek 15: LINEAR-EXPANSION-SUM
	Snímek 16: Multiplication
	Snímek 17: SPLIT(a) operation
	Snímek 18
	Snímek 19
	Snímek 20: Demonstration of SPLIT splitting a five-bit number into two two-bit numbers
	Snímek 21: Demonstration of TWO-PRODUCT in six-bit arithmetic
	Snímek 22: Adaptive arithmetic
	Snímek 23: Shewchuk predicates
	Snímek 24: Principle of adaptive computation
	Snímek 25
	Snímek 26: Orientation predicate - definition
	Snímek 27: Experiment with orientation predicate
	Snímek 33: Standard floats

