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Lecture 4: ML System Design and Architecture

Lecture 4:
ML
Sg::i‘: "The [ML] algorithm is only a small part of an ML system in production.”
a"t:c’::f:" — Chip Huyen, Designing Machine Learning Systems
Jan
Brabec Production ML is a multidisciplinary engineering challenge:
S ® Software engineering — deployment, APls, infrastructure
Industrial e D . . . . . .
ML ata engineering — pipelines, storage, versioning
Land . - s .
B ® Distributed systems — scalability, availability, consistency, fault
[RezeinED tolerance
ML . . .
S ® Product design — stakeholder requirements, user experience
Desig . . . L
S Sl ® Operations — monitoring, maintenance, incident response

tals

® Model lifecycle management — experimentation, retraining,
evolution

Production

Lifecycle &
Organiza

e ® Governance — compliance, privacy, regulatory requirements

References

Today: Map the problem space, explore key architectural principles, and
understand fundamental design trade-offs and constraints
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MLOps and ML Systems Design
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Jan MLOps (Machine Learning Operations)
Brabec
"An ML engineering culture and practice that aims at unifying ML system development (Dev) and ML system

;Il;l:iistrial operation (Ops)'”
ML
Landscape [Google Cloud, 2020]
& Course o
Roadmap
ML .
System ML Systems Design
Design
e " Takes a system approach to MLOps [...] considers an ML system holistically to ensure that all the components
it and their stakeholders can work together to satisfy the specified objectives and requirements.”
S [Huyen, 2022]
tion

References
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MLOps: The Component View

) Testing and Resource
Data collection )
debugging management

Configuration )

At ML Model analysis
verification FEiE
Process
management
Automation Feature engineering

Metadata management

Source: [Google Cloud, 2020]
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Research ML vs Production ML

Lecture 4:
ML
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and Archi-
tecture
Jon Research Production
Brabec Requirements State-of-the-art model performance  Different stakeholders have different
The on benchmarks requirements
ustrial Computational priority Fast training, high throughput Fast inference, low latency
f'&f;;‘;e Data Static Constantly shifting
Roadmap . .
. Fairness Often not a focus Must be considered
R Interpretability Often not a focus Must be considered
Fundamen . . . . . . .
s Lifecycle Projects have defined endpoints Requires continuous operation

Adapted and extended from [Huyen, 2022], Table 1-1

Note: Generalized comparison — trends vary by domain and exceptions exist.
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The Reality of Production ML
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Amount of lost sleep over...
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& Course
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PhD Tesla

: Datasets ® Datasets
Models and ® Models and

Algorithms Algorithms

S\l SPARK-+AI

[S

Building the Software 2 0 Stack (Andrej Karpathy)

Andrej Karpathy, "Building the Software 2.0 Stack,” Spark+Al Summit (2018)
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7 Years Later: Same Message With LLMs
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Indesrial Context Enginnering over Prompt Engineering
ML

;a'&dscape " After a few years of prompt engineering being the focus of attention in applied Al, [...] Building with language
Roadmap models is becoming less about finding the right words and phrases for your prompts, and more about answering

o the broader question of “what configuration of context is most likely to generate our model’s desired
System behavior?"”

Design

Fundamen
tals

Source: Anthropic Engineering Blog (September 2025)
Production

Lifecycle &

Organiza

tion
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The ML/AI Ecosystem: 2024 Landscape
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® 2,011 companies in the 2024 MAD (Machine Learning, Al & Data) Landscape

Overwhelming number of alternatives

References

® We focus on core concepts rather than specific tool recommendations

Source: https://mad.firstmark.com/ (FirstMark)
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Course Structure: From Model Development to Production

Lecture 4:
ML
o Today's transition
a"icfu'f:' We begin a lecture block where we transition from how to build models to how to build systems that run models reliably at scale)
Jan
Brabec
. Lecture Overview
"a‘i“sma' Week | Date Topic
Landscape 1 Sep, 23 (TB) Introduction
& Course 2 Sep, 30 (TB) Classical MLE tools and methods, datasets
Roadmap 3 Oct, 07 (TB) Deep MLE tools and methods, datasets
4 Oct, 14 (JB) ML System Design and Architecture
5 Oct, 21 (JL) Data storage frameworks
Fundamen - Oct, 28 (-) Canceled - National holiday
tals 6 Nov, 04 (JL) Machine learning model execution paradigms
Sttt 7 Nov, 11 (JB4+TB) | Ground truth management
Lifecycle & 8 Nov, 18 (JB) Production metrics and observability
Organiza 9 Nov, 25 (JB) ML and Al technical debt
o 10 Dec, 02 (TB) Al engineering, MCP
References 11 Dec, 09 (TB) Containerization (Docker, Apptainer)
12 Dec, 16 (TB) Development workflows (git, CI-CD, BDD)
13 Jan, 06 (TB) MLE and Al on the "edge”
)
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Systems Must Survive Dynamic Environments (1)
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Jan Most softwar tem rate in changing environment
Erafes ost software systems operate in changing environments
e ® User requirements evolve
Industrial q
ML . .
Landscape ® Business logic changes
& Course .
Reden ® Load patterns shift
ML ® Dependencies update
System
Design ® External systems change
Fundamen-
tals
Production This drives core software engineering practices: Agile development, ClI/CD, monitoring, incident response
Lifecycle &
Organiza:

tion

References
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Systems Must Survive Dynamic Environments (2)

Lecture 4:

ML
System
Design
ond Arehi- ML systems face additional change vectors:
Jan
Brabec ® Data distribution shifts — input patterns change over time (covariate shift)
® Concept drift — the relationship between inputs and outputs evolves
® Feedback loops — model predictions influence future training data, often implicitly unlike explicit control
flows in traditional software
® Adversarial dynamics — in domains like fraud detection or security, adversaries adapt based on model
AL decisions
System
Ejjfa“men_ ® Silent degradation — performance declines gradually without explicit failures
tals ® Limited interpretability — complex models function as black boxes, unlike traditional software where logic

is directly inspectable in code

® Development more experimental - trying new techniques should be quick and we need to keep track of
what worked and how well.
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Scope: What Systems Are We Discussing?

Lecture 4:
ML
System
Design
and Archi-
tecture
Jan .
Brabec We speak in context of:
. ® Industry-scale systems with production workloads and real users
Indu al .. . .
o ® Team-developed and operated systems requiring cross-functional collaboration
Landscape . re . . .
& Course ® Systems under load that justifies infrastructure investment and complexity
Roadmap
AL Important caveats:
System
FDES'E" ® Design principles scale down, but not all patterns are needed at smaller scale
undamen-

tals

® Edge and embedded ML have different constraints (covered in Lecture 13)

Production

Lifecycle &
Organiza
tion

References
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Key Operational Constraints

Every design decision is constrained by requirements that are often in tension

Response Time Requirements

How fast must the system respond?
® Synchronous (ms to & 3s): Search, fraud detection, recommendations
® Models pre-loaded, over-provision for peak load, often simpler models
® Asynchronous (seconds to minutes): Spam filtering, content moderation
® Workers scale with queue depth, more cost-efficient than synchronous
® Batch (hours to days): Churn prediction, credit scoring

® Load models on-demand, efficient batching, resources released after completion

Throughput Needs
How much load must the system handle?
® Requests per second, predictions per day

® Peak vs. average load patterns (e.g., regular email volume spikes)

Jan Brabec (Cisco, CTU in Prague) ML System Design and Architecture October 14th
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Key Operational Constraints

Thioughput Nesds

Synchronous details:

— Request blocks waiting for response - user/system actively waiting

— Delay directly impacts user experience

— Must keep instances warm (no cold starts tolerated)

— Over-scale for traffic spikes (worse utilization: 30-40% average)

— Higher infrastructure costs: paying for idle capacity, need redundancy
— Optimization goal: responsiveness over efficiency

Asynchronous details:

— Processing triggered but not blocking

— Request submitted to queue/stream; results consumed when ready
— Can tolerate cold starts since nothing blocking

— Scale workers based on queue depth (better utilization)

— Allows more complex models without keeping them constantly warm
— Middle ground between sync and batch

Batch details:

— Scheduled processing of accumulated data

— Results computed offline and stored for later use

— Can use large/complex models - load them on-demand

— Process many predictions together (efficient batching, GPU utilization)

— Shut down resources after completion (can achieve 100% utilization during run)
Cost-optimized for throughput over latency

— Often uses MORE total compute but more efficiently packed

Key economic insight: Latency-sensitive = pay for availability and spare capacity. Batch = pay for total compute but optimize utilization. It's not architecturally impossible
to serve batch via sync API - it's economically wasteful.



Consider Response Time Distribution vs Single Number

Lecture 4:

ML
Sgsﬁem Average Response Time Does Not Tell the Full Story
esign
and Archi-
tecture

Jan 285.85M Durations

pso p7S pso pas
Brabec
max 28,123 ms

The P99 1,028 ms
Industrial
ML
Landscape
& Course
Roadmap

P95 500 ms
P90 371 ms
p75 253 ms
p50 157 ms
min 9.27 ms

Durations

ML
System
Design
Fundamen-
tals

Production
Lifecycle &
Organiza-
tion

500ms

References

Example: Response time distribution of our email security service
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Vertical vs Horizontal Scaling

Lecture 4:
ML

System

Design
and Archi-

tecture Two approaches to handle increased load:

Jan

Brabec Vertical Scaling Horizontal Scaling
The ® Bigger machines (CPU, RAM, GPU ® More machines in parallel
Industrial 68 P
ndustria
‘HLJ ® Reduces latency ® [ncreases throughput
andscape
i)—(‘;“'* ® Hardware ceiling ® No practical limit
gm_ Capacity in cloud is effectively unbounded — the constraint is cost, not capability
ystem
Design
Fundamen- . . .
i ® Load peaks and low response time requirements drive up costs
Production ® Faster startup times enable more efficient scaling strategies
Life: &
Organiza ® Design optimizes for unit economics: $ per prediction, $ per user/year
tion
References
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CPU vs. GPU for Inference

Lecture 4:
ML
s
gj:g’: CPU inference:
d Archi-
ey ® Simpler deployment (no drivers, standard tooling, works everywhere)
B'J:;‘ec ® Default for serverless (Lambda, SageMaker Serverless, Cloud Functions)
® Cost-effective for low or unpredictable traffic patterns
The
Industrial ® Models are often made CPU-viable: INT8 quantization on Llama/Mistral improves throughput
- 25-45% [AMD, 2024]
& Course
IREZENER GPU inference:
;”y;em ® Heavier models
Fszf:men_ ® Batch processing amortizes costs
I . .
o ® High sustained throughput
Production
‘ol”“ b Trade-off evolves as models and hardware improve, but remains.
tion
References AWS SageMaker Serverless Inference: CPU-only [Amazon Web Services, 2025]. Google Cloud Run added GPU

support 2025 [Google Cloud, 2025].
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The Fundamental Trade-offs

Accuracy

One can often be
improved at the
expense of others

Speed

Cost

® Search autocomplete: Speed critical — accept accuracy ceiling, pay for infrastructure

® Medical diagnosis: Accuracy paramount — tolerate longer processing, higher compute costs

® Email subject line suggestions: Cost-effective + speed — accept "good enough” accuracy

® Credit scoring: Accuracy + cost optimized — batch processing relaxes speed constraint

Jan Brabec (C

isco, CTU in Prague)
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Modular ML System Design

Separate concerns to manage complexity and enable independent evolution

Key boundaries:
® Data pipelines — ingestion, validation, storage
® Feature engineering — computation, storage
® Training — experimentation, model selection

® Serving — inference, scaling, monitoring

Benefits: .
® |ndependent evolution of components
® [solated testing and debugging .
® Team scaling through component ownership

® Reusability across models and use cases

Critical as systems grow — early systems can be monolithic

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML System Design and Architecture
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October 14th,
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Compound Al Systems

Lecture 4:
ML

System

Design
ond Arehi- Definition: Systems combining multiple interacting components to solve Al tasks — [Zaharia et al., 2024]

o Why compound systems?
. ® Beyond model limits: Access current data, use external

Industrial tools, verify outputs

ML

Landscape ® Specialization wins: Composed components outperform ‘//..\\‘
et single model (AlphaCode 2: 80% vs. 35%) il W’ m
ML ® Control: Visible logic, modifiable behavior, guaranteed m.%
System constraints = W
Design i
RLadareny ® Economics: Match model cost to task difficulty =
il Source: [Zaharia et al., 2024]

e Examples: AlphaCode 2 (LLM + execution + filter), RAG (LLM

Lifecycle
{N‘;,m' + retriever) Modularity enables building better systems through
tion

component composition

References
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and Archi-

tecture
an .
Brabec Architecture:
® Detection layer: 90+ independent detectors

® NLU models (urgency, call-to-action)
® Computer vision (OCR, image analysis)
® Graph-based communication patterns

The
Industrial
ML

® Classification layer: Model combining detections
ML

System
Design
Fundamen-
tals

Design rationale:
® Data sensitivity limits ML access
® Extreme class imbalance (1073 to 107%)

® Explainability requirements

Jan Brabec (Cisco, CTU in Prague)
Lecture 4: ML System Design and Architecture
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Case Study: Modular System for Email Threat Detection
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Lecture 4: ML System Design and Architecture

Case Study: Modular System for Email Threat Detection

CAPE: Business Email Compromise detection system (production 5+ years, Cisco) — [Brabec et al., 2023]

Detection Layer
g:ExC—D

Detector 1 NLU

Mail Graph
2 &
c€f @cv

Modularity enables combining ML with domain

knowledge where data is insufficient

Classification Layer

h:D—Y

[

October 14th, 2025

Case Study: Modular System for Email Threat Detection
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The ML Production Lifecycle

Problem
Scoping

Business Data
Evaluation Engineering

Monitoring & Model
Iteration Development

Deployment

Adapted from [Huyen, 2022], Figure 2-2: The ML lifecycle is highly iterative with continuous feedback between stages
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MLOps Maturity Levels

Lecture 4:
ML
System . . . .
Dyesign Maturity reflects velocity of deploying new models and level of automation [Google Cloud, 2020]
and Archi-
tecture
Jan Level Characteristics Suitable When
Brab:
ronee Level 0
Manual Notebooks, manual retraining, ad-hoc deploy-  Models rarely change or retrain; sufficient
ment, script-driven process for early ML adoption
Level 1
CT Pipeline Automated ML pipeline, continuous training Frequent retraining needed, data changes
(CT), modularized components, pipeline de-  often, ML approach stable
ployment
Level 2
Cl/CD/CT Full automation: continuous integration, de- Rapid experimentation, frequent pipeline
ployment, and training; automated testing and changes, multiple models in production
validation
Production
Lifecycle &
Organiza-
tion ® Level 1: "My data changes frequently, | need to retrain often” — automate retraining

® Level 2: "My ML approach changes frequently, | need to rapidly deploy pipeline changes” — automate pipeline updates

CT = Continuous Training (unique to ML); Cl/CD details in Lecture 12
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Deployment Strategies

Lecture 4:
ML
System
Design
and Archi- . )
P How to safely release new models to production:
Jan . . -
el ® Shadow deployment: New model runs in parallel, predictions logged but not used
® Validate behavior before impact, compare against existing model
The ® Cost: 2x inference compute during shadow period
Industrial . . .
ML ® Canary release: Gradual rollout to increasing traffic percentage

Landscape

® Example: 5% — 25% — 50% — 100% over days/weeks
® Monitor metrics at each stage, rollback if degradation detected

® Blue-green deployment: Instant switch between two production environments
® Blue = current, Green = new; route traffic to Green, keep Blue ready

Fundamen: ® Fast rollback capability, but all-or-nothing risk

tals . . . .

' ® A/B testing: Run both models simultaneously, compare business metrics
firfzg;:femz ® Randomized user assignment, measure impact on KPls

Organiza- ® Requires statistical rigor, longer duration for significance

tEm ® Suitable for systems where we get feedback fast

References
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Team Organization: Horizontal vs. Vertical

Lecture 4:
ML
System
Design 3 3 . . i .
and Archi- Conway’s Law: System architecture mirrors organizational communication structure
tecture
Jan H H .
B Two organizational axes:
® Vertical (Embedded): ML practitioners within product/business teams
The
Industrial ® Horizontal (Centralized): ML practitioners in separate organization
ML
Landscape
Embedded Model Centralized Model
) . . . .
o Fast iteration Consistent tooling
. ° i
® Business context Knowledge sharing

Fundamen
tals

. ° e
® Clear ownership Specialization

Production Tr . B H H

! . . . . rade-off: Slower iteration, handovers, business
Lifecycle & Trade-off: Duplicated effort, inconsistent practices .

Organiza- disconnect

tion

References Most organizations at scale use hybrid models
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Hybrid Model: Most Common at Scale

Combines horizontal infrastructure with vertical application teams

Typical structure:
O Platform/Infrastructure team (centralized)

® Builds shared ML tooling: pipelines, feature stores, model registry
® Maintains standards and best practices

@ Applied ML practitioners (embedded in product teams)

® Use platform tooling, own models end-to-end
® Report functionally to ML org, operationally to product team

© Research/R&D team (centralized) — optional

® Forward-looking exploration, specialized domains (NLP, CV)

Examples: Google [Google Cloud, 2021], Cisco
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Research — Production Handoff Patterns

How do research/experimentation teams interact with production teams?

O “Throw over the wall” (Anti-pattern)

® Research team trains model, hands off to engineering for deployment

® Fails because: Different incentives, knowledge loss, no ownership continuity
@ End-to-end ownership

® Same team owns research through production

® Works when: High ML maturity, strong engineering culture in DS team

® Challenge: Requires DS with production skills or dual-skilled engineers
© Platform-based collaboration

® Shared tooling and processes rather than handoffs

® Researchers use production-grade tools from day one

® MLOps platform enables research — production without full handoff

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML System Design and Architecture
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Brabec ® Systems must survive dynamic environments — ML adds change vectors beyond traditional software
. (data drift, feedback loops, silent degradation)
‘["‘E»‘“”'r“ ® Design constraints (response time, throughput, cost) are in tension — choose which to relax based on

Landscape requirements
® MLOps maturity evolves as needs demand: Manual (LO) — Continuous Training (L1) — Full CI/CD (L2)

® Team structure shapes architecture — horizontal (centralized) vs. vertical (embedded); hybrid models
combine both

Fundamen
tals

Production Next: L5-9 cover storage, execution, ground truth, monitoring, technical debt; L12 covers ClI/CD mechanics
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Thanks for your attention
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