Lecture 4: ML System Design and Architecture

Jan Brabec

The Industria ML Landscap & Course Roadmap

ML System Design Fundamen tals

Production Lifecycle & Organization

References

ML System Design and Architecture BECM33MLE — Machine Learning Engineering

Ing. Jan Brabec Ph.D.

CISCO

Introduction

Lecture 4: ML System Design and Architecture

Jan Brabec

Industrial ML Landscape & Course Roadmap

System
Design
Fundametals

Production Lifecycle & Organization

Reference

Ing. Jan Brabec Ph.D.

- Principal Al Researcher @ Cisco
- Building systems detecting cybersecurity threats
- Ph.D. on ML in Cybersecurity @ CTU Prague
- Thesis: "Class-Imbalanced Data in Cybersecurity"

Lecture 4: ML System Design and Architecture

ML
System
Design
and Architecture

Jan Brabec

The Industrial ML Landscape & Course Roadmap

ML System Design Fundamentals

Production Lifecycle of Organization

References

"The [ML] algorithm is only a small part of an ML system in production."

— Chip Huyen, Designing Machine Learning Systems

Production ML is a multidisciplinary engineering challenge:

- Software engineering deployment, APIs, infrastructure
- Data engineering pipelines, storage, versioning
- Distributed systems scalability, availability, consistency, fault tolerance
- Product design stakeholder requirements, user experience
- Operations monitoring, maintenance, incident response
- Model lifecycle management experimentation, retraining, evolution
- Governance compliance, privacy, regulatory requirements

Today: Map the problem space, explore key architectural principles, and understand fundamental design trade-offs and constraints

MLOps and ML Systems Design

Lecture 4: ML System Design and Architecture

> Jan Brabec

The Industrial ML Landscape & Course Roadmap

ML System Design Fundam tals

Productio Lifecycle Organization

Reference

MLOps (Machine Learning Operations)

"An ML engineering culture and practice that aims at unifying ML system development (Dev) and ML system operation (Ops)."

[Google Cloud, 2020]

ML Systems Design

"Takes a system approach to MLOps [...] considers an ML system holistically to ensure that all the components and their stakeholders can work together to satisfy the specified objectives and requirements."

[Huyen, 2022]

MLOps: The Component View

Lecture 4: ML System Design and Architecture

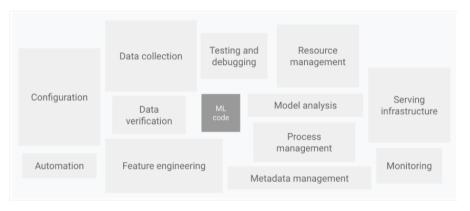
Jan Brabec

The Industrial ML Landscape & Course Roadmap

ML System Design Fundame tals

Production Lifecycle Organization

Reference



Source: [Google Cloud, 2020]

Research ML vs Production ML

ML
System
Design
and Architecture

Jan Brabec

The Industrial ML Landscape & Course Roadmap

ML System Design Fundame

Production Lifecycle Organization

References

	Research	Production
Requirements	State-of-the-art model performance on benchmarks	Different stakeholders have different requirements
Computational priority	Fast training, high throughput	Fast inference, low latency
Data	Static	Constantly shifting
Fairness	Often not a focus	Must be considered
Interpretability	Often not a focus	Must be considered
Lifecycle	Projects have defined endpoints	Requires continuous operation

Adapted and extended from [Huyen, 2022], Table 1-1

Note: Generalized comparison — trends vary by domain and exceptions exist.

The Reality of Production ML

Lecture 4: ML System Design and Architecture

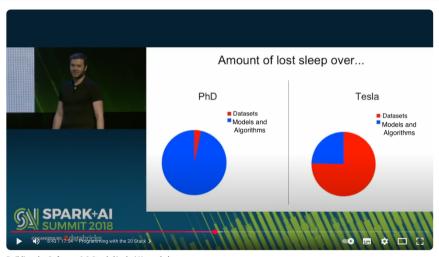
> Jan Brabec

The Industrial ML Landscape & Course Roadmap

ML System Design Fundamentals

Production Lifecycle & Organization

Reference



Building the Software 2 0 Stack (Andrej Karpathy)

Andrej Karpathy, "Building the Software 2.0 Stack," Spark+AI Summit (2018)

7 Years Later: Same Message With LLMs

Lecture 4: ML System Design and Architecture

> Jan Brabec

The Industrial ML Landscape & Course Roadmap

ML System Design Fundamer tals

Production Lifecycle of Organization

Reference

Context Enginnering over Prompt Engineering

"After a few years of prompt engineering being the focus of attention in applied AI, [...] Building with language models is becoming less about finding the right words and phrases for your prompts, and more about answering the broader question of "what configuration of context is most likely to generate our model's desired behavior?""

Source: Anthropic Engineering Blog (September 2025)

The ML/AI Ecosystem: 2024 Landscape

Lecture 4: ML System Design and Architecture

Jan Brabec

The Industrial ML Landscape & Course Roadmap

System Design Fundametals

Production Lifecycle Organization

Reference:

The 2024 MAD (ML, Al & Data) Landscape

- 2,011 companies in the 2024 MAD (Machine Learning, AI & Data) Landscape
- Overwhelming number of alternatives
- We focus on core concepts rather than specific tool recommendations

Source: https://mad.firstmark.com/ (FirstMark)

Course Structure: From Model Development to Production

Lecture 4: ML System Design and Archi-

> Jan Brabec

The Industrial ML Landscape & Course Roadmap

ML System Design Fundam tals

Productio Lifecycle & Organization

Defenses

Today's transition

We begin a lecture block where we transition from how to build models to how to build systems that run models reliably at scale

Lecture Overview

Week	Date	Topic
1	Sep, 23 (TB)	Introduction
2	Sep, 30 (TB)	Classical MLE tools and methods, datasets
3	Oct, 07 (TB)	Deep MLE tools and methods, datasets
4	Oct, 14 (JB)	ML System Design and Architecture
5	Oct, 21 (JL)	Data storage frameworks
-	Oct, 28 (-)	Canceled - National holiday
6	Nov, 04 (JL)	Machine learning model execution paradigms
7	Nov, 11 (JB+TB)	Ground truth management
8	Nov, 18 (JB)	Production metrics and observability
9	Nov, 25 (JB)	ML and AI technical debt
10	Dec, 02 (TB)	Al engineering, MCP
11	Dec, 09 (TB)	Containerization (Docker, Apptainer)
12	Dec, 16 (TB)	Development workflows (git, CI-CD, BDD)
13	Jan, 06 (TB)	MLE and AI on the "edge"

Systems Must Survive Dynamic Environments (1)

Lecture 4: ML System Design and Architecture

Jan Brabec

The Industria ML Landsca

& Course Roadmap

ML System Design Fundamentals

Producti Lifecycle Organiza tion

Reference

Most software systems operate in changing environments

- User requirements evolve
- Business logic changes
- Load patterns shift
- Dependencies update
- External systems change

This drives core software engineering practices: Agile development, CI/CD, monitoring, incident response

Systems Must Survive Dynamic Environments (2)

Lecture 4: ML System Design and Architecture

Jan Brabec

Industria ML Landscap & Course Roadmap

System Design Fundamentals

Productior Lifecycle & Organization

Reference

ML systems face additional change vectors:

- Data distribution shifts input patterns change over time (covariate shift)
- Concept drift the relationship between inputs and outputs evolves
- Feedback loops model predictions influence future training data, often implicitly unlike explicit control flows in traditional software
- Adversarial dynamics in domains like fraud detection or security, adversaries adapt based on model decisions
- Silent degradation performance declines gradually without explicit failures
- Limited interpretability complex models function as black boxes, unlike traditional software where logic
 is directly inspectable in code
- Development more experimental trying new techniques should be quick and we need to keep track of what worked and how well.

Scope: What Systems Are We Discussing?

ML
System
Design
and Architecture

Jan Brabec

The Industrial ML Landscape & Course Roadmap

ML System Design Fundamentals

Production Lifecycle & Organization

Reference

We speak in context of:

- Industry-scale systems with production workloads and real users
- Team-developed and operated systems requiring cross-functional collaboration
- Systems under load that justifies infrastructure investment and complexity

Important caveats:

- Design principles scale down, but not all patterns are needed at smaller scale
- Edge and embedded ML have different constraints (covered in Lecture 13)

Key Operational Constraints

Lecture 4: ML System Design and Architecture

Jan Brabec

Industria ML Landscap & Course Roadmap

ML System Design Fundamentals

Production Lifecycle Organization

Reference:

Every design decision is constrained by requirements that are often in tension

Response Time Requirements

How fast must the system respond?

- Synchronous (ms to \pm 3s): Search, fraud detection, recommendations
 - Models pre-loaded, over-provision for peak load, often simpler models
- Asynchronous (seconds to minutes): Spam filtering, content moderation
 - Workers scale with queue depth, more cost-efficient than synchronous
- Batch (hours to days): Churn prediction, credit scoring
 - · Load models on-demand, efficient batching, resources released after completion

Throughput Needs

How much load must the system handle?

- Requests per second, predictions per day
- Peak vs. average load patterns (e.g., regular email volume spikes)

Consider Response Time Distribution vs Single Number

Lecture 4: ML System Design and Architecture

Jan Brabec

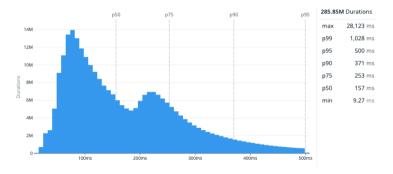
The Industria ML Landscap & Course Roadmap

ML System Design Fundamentals

Production Lifecycle & Organization

References

Average Response Time Does Not Tell the Full Story



Example: Response time distribution of our email security service

Vertical vs Horizontal Scaling

Lecture 4: ML System Design and Architecture

Jan Brabec

Industria ML Landsca & Cours Roadma

ML System Design Fundamentals

Production Lifecycle Organization

Reference

Two approaches to handle increased load:

Vertical Scaling

- Bigger machines (CPU, RAM, GPU)
- Reduces latency
- Hardware ceiling

Horizontal Scaling

- More machines in parallel
- Increases throughput
- No practical limit

Capacity in cloud is effectively unbounded — the constraint is cost, not capability

- Load peaks and low response time requirements drive up costs
- Faster startup times enable more efficient scaling strategies
- Design optimizes for unit economics: \$ per prediction, \$ per user/year

CPU vs. GPU for Inference

ML
System
Design
and Architecture

Jan Brabec

Industria ML Landscar & Cours Roadma

System Design Fundamentals

Production Lifecycle Organization

Reference

CPU inference:

- Simpler deployment (no drivers, standard tooling, works everywhere)
- Default for serverless (Lambda, SageMaker Serverless, Cloud Functions)
- Cost-effective for low or unpredictable traffic patterns
- Models are often made CPU-viable: INT8 quantization on Llama/Mistral improves throughput 25-45% [AMD, 2024]

GPU inference:

- Heavier models
- Batch processing amortizes costs
- High sustained throughput

Trade-off evolves as models and hardware improve, but remains.

AWS SageMaker Serverless Inference: CPU-only [Amazon Web Services, 2025]. Google Cloud Run added GPU support 2025 [Google Cloud, 2025].

The Fundamental Trade-offs

Lecture 4: ML System Design and Architecture

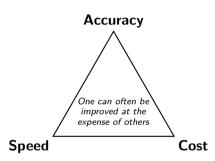
Jan Brabec

The Industria ML Landsca & Cours Roadma

ML System Design Fundamentals

Productio Lifecycle & Organization

Reference:



- ullet Search autocomplete: Speed critical o accept accuracy ceiling, pay for infrastructure
- ullet Medical diagnosis: Accuracy paramount o tolerate longer processing, higher compute costs
- Email subject line suggestions: Cost-effective + speed → accept "good enough" accuracy
- ullet Credit scoring: Accuracy + cost optimized o batch processing relaxes speed constraint

Modular ML System Design

ML System Design and Archi-

Jan Brabec

The Indust ML Lands

& Cour Roadma

System Design Fundamentals

Production Lifecycle Organization

Reference

Separate concerns to manage complexity and enable independent evolution

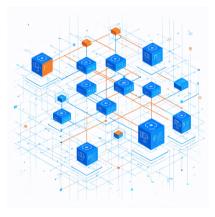
Key boundaries:

- Data pipelines ingestion, validation, storage
- Feature engineering computation, storage
- Training experimentation, model selection
- Serving inference, scaling, monitoring

Benefits:

- Independent evolution of components
- Isolated testing and debugging
- Team scaling through component ownership
- Reusability across models and use cases

Critical as systems grow — early systems can be monolithic



Compound AI Systems

ML System Design and Architecture

> Jan Brabec

Industria ML Landscap & Course Roadmap

ML System Design Fundamentals

Production Lifecycle Organiza tion

Reference

Definition: Systems combining multiple interacting components to solve AI tasks - [Zaharia et al., 2024]

Why compound systems?

- Beyond model limits: Access current data, use external tools, verify outputs
- Specialization wins: Composed components outperform single model (AlphaCode 2: 80% vs. 35%)
- Control: Visible logic, modifiable behavior, guaranteed constraints
- Economics: Match model cost to task difficulty

Examples: AlphaCode 2 (LLM + execution + filter), RAG (LLM + retriever) Modularity enables building better systems through component composition

Source: [Zaharia et al., 2024]

Case Study: Modular System for Email Threat Detection

ML
System
Design
and Architecture

Jan Brabec

Industria ML Landscap & Course Roadmap

ML System Design Fundamentals

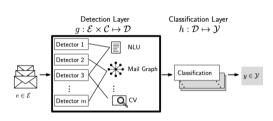
Productio Lifecycle & Organization CAPE: Business Email Compromise detection system (production 5+ years, Cisco) – [Brabec et al., 2023]

Architecture:

- Detection layer: 90+ independent detectors
 - NLU models (urgency, call-to-action)
 - Computer vision (OCR, image analysis)
 - Graph-based communication patterns
- Classification layer: Model combining detections

Design rationale:

- Data sensitivity limits ML access
- Extreme class imbalance (10^{-3} to 10^{-4})
- Explainability requirements



Modularity enables combining ML with domain knowledge where data is insufficient

The ML Production Lifecycle

Lecture 4: ML System Design and Architecture

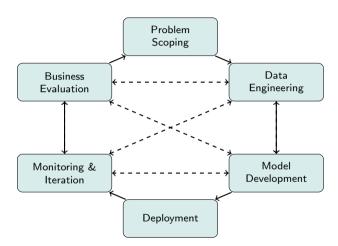
Jan Brabec

The Industria ML Landscap & Course Roadmap

ML System Design Fundame tals

Production Lifecycle & Organization

References



Adapted from [Huyen, 2022], Figure 2-2: The ML lifecycle is highly iterative with continuous feedback between stages

MLOps Maturity Levels

Lecture 4: ML System Design and Architecture

Jan Brabec

The Industria ML Landscal & Cours Roadma

ML System Design Fundam tals

Production Lifecycle & Organization

Reference

Maturity reflects velocity of deploying new models and level of automation [Google Cloud, 2020]

Level Characteristics		Suitable When	
Level 0			
Manual	Notebooks, manual retraining, ad-hoc deploy- ment, script-driven process	Models rarely change or retrain; sufficient for early ML adoption	
Level 1			
CT Pipeline	Automated ML pipeline, continuous training (CT), modularized components, pipeline deployment	Frequent retraining needed, data changes often, ML approach stable	
Level 2			
CI/CD/CT	Full automation: continuous integration, de- ployment, and training; automated testing and validation	Rapid experimentation, frequent pipeline changes, multiple models in production	

- Level 1: "My data changes frequently, I need to retrain often" → automate retraining
- Level 2: "My ML approach changes frequently, I need to rapidly deploy pipeline changes" → automate pipeline updates

CT = Continuous Training (unique to ML); CI/CD details in Lecture 12

Deployment Strategies

Lecture 4: ML System Design and Architecture

> Jan Brabec

The Industri ML Landsca & Cours Roadma

ML System Design Fundame tals

Production Lifecycle & Organization

Reference

How to safely release new models to production:

- Shadow deployment: New model runs in parallel, predictions logged but not used
 - Validate behavior before impact, compare against existing model
 - Cost: 2x inference compute during shadow period
- Canary release: Gradual rollout to increasing traffic percentage
 - Example: $5\% \rightarrow 25\% \rightarrow 50\% \rightarrow 100\%$ over days/weeks
 - Monitor metrics at each stage, rollback if degradation detected
- Blue-green deployment: Instant switch between two production environments
 - Blue = current, Green = new; route traffic to Green, keep Blue ready
 - Fast rollback capability, but all-or-nothing risk
- A/B testing: Run both models simultaneously, compare business metrics
 - Randomized user assignment, measure impact on KPIs
 - Requires statistical rigor, longer duration for significance
 - Suitable for systems where we get feedback fast

Team Organization: Horizontal vs. Vertical

ML System Design and Architecture

Jan Brabec

Industria ML Landscap & Course Roadmap

ML System Design Fundantals

Production Lifecycle & Organization

Reference:

Conway's Law: System architecture mirrors organizational communication structure

Two organizational axes:

- Vertical (Embedded): ML practitioners within product/business teams
- Horizontal (Centralized): ML practitioners in separate organization

Embedded Model

- Fast iteration
- Business context
- Clear ownership

Trade-off: Duplicated effort, inconsistent practices

Most organizations at scale use hybrid models

Centralized Model

- Consistent tooling
- Knowledge sharing
- Specialization

Trade-off: Slower iteration, handovers, business disconnect

Hybrid Model: Most Common at Scale

Lecture 4: ML System Design and Architecture

Jan Brabec

Industria ML Landscap & Course Roadmap

System Design Fundam tals

Production Lifecycle & Organization

Reference

Combines horizontal infrastructure with vertical application teams

Typical structure:

- Platform/Infrastructure team (centralized)
 - Builds shared ML tooling: pipelines, feature stores, model registry
 - Maintains standards and best practices
- Applied ML practitioners (embedded in product teams)
 - Use platform tooling, own models end-to-end
 - Report functionally to ML org, operationally to product team
- Research/R&D team (centralized) optional
 - Forward-looking exploration, specialized domains (NLP, CV)

Examples: Google [Google Cloud, 2021], Cisco

Research - Production Handoff Patterns

Lecture 4: ML System Design and Architecture

> Jan Brabec

Industria ML Landscap & Course Roadman

ML System Design Fundantals

Production Lifecycle & Organization

Reference

How do research/experimentation teams interact with production teams?

- Throw over the wall" (Anti-pattern)
 - Research team trains model, hands off to engineering for deployment
 - Fails because: Different incentives, knowledge loss, no ownership continuity
- End-to-end ownership
 - Same team owns research through production
 - Works when: High ML maturity, strong engineering culture in DS team
 Challenge: Requires DS with production skills or dual-skilled engineers
- Platform-based collaboration
 - Shared tooling and processes rather than handoffs
 - Researchers use production-grade tools from day one
 - MLOps platform enables research → production without full handoff

Key takeaways

Lecture 4: ML System Design and Architecture

Jan Brabec

The Industria ML Landscap & Course Roadmap

System Design Fundamentals

Production Lifecycle & Organization

Reference

- Systems must survive dynamic environments ML adds change vectors beyond traditional software (data drift, feedback loops, silent degradation)
- Design constraints (response time, throughput, cost) are in tension choose which to relax based on requirements
- ullet MLOps maturity evolves as needs demand: Manual (L0) o Continuous Training (L1) o Full CI/CD (L2)
- Team structure shapes architecture horizontal (centralized) vs. vertical (embedded); hybrid models
 combine both

Next: L5-9 cover storage, execution, ground truth, monitoring, technical debt; L12 covers CI/CD mechanics

Lecture 4: ML System Design and Architecture

> Jan Brabec

ML Landscap & Cours

ML System Design Fundamentals

Production Lifecycle & Organization

References

Thanks for your attention

References I

Lecture 4: ML System Design and Architecture

Jan Brabec

Industria ML Landscap & Course Roadmap

ML System Design Fundamentals

Production Lifecycle & Organization

References

Google Cloud. (2020). Mlops: Continuous delivery and automation pipelines in machine learning (tech. rep.). Google Cloud Architecture Center.

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Huyen, C. (2022). Designing machine learning systems. "O'Reilly Media, Inc.".

AMD. (2024, October). Leaner LLM inference with INT8 quantization on AMD GPUs using PyTorch [ROCm Blogs].

https://rocm.blogs.amd.com/artificial-intelligence/int8-quantization/README.html

Amazon Web Services. (2025). Deploy models with Amazon SageMaker serverless inference [Amazon SageMaker Al Documentation].

https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html

Google Cloud. (2025).Google cloud run now offers serverless GPUs for AI and batch processing. InfoQ. https://www.infoq.com/news/2025/06/google-cloud-run-nvidia-gpu/Zaharia, M., Khattab, O., Chen, L., Davis, J. Q., Miller, H., Potts, C., Zou, J., Carbin, M., Frankle, J., Rao, N., & Ghodsi, A. (2024). The shift from models to compound ai

systems.

Brabec, J., Šrajer, F., Starosta, R., Sixta, T., Dupont, M., Lenoch, M., Menšík, J., Becker, F., Boros, J., Pop, T., et al. (2023). A modular and adaptive system for business email compromise detection. arXiv preprint arXiv:2308.10776

Google Cloud. (2021). Ai adoption framework (tech. rep.). Google Cloud. https://services.google.com/fh/files/misc/ai_adoption_framework_whitepaper.pdf