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ML System Design and Architecture
BECM33MLE — Machine Learning Engineering
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Introduction

Ing. Jan Brabec Ph.D.

• Principal AI Researcher @ Cisco

• Building systems detecting cybersecurity threats

• Ph.D. on ML in Cybersecurity @ CTU Prague

• Thesis: “Class-Imbalanced Data in Cybersecurity”
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Lecture 4: ML System Design and Architecture

”The [ML] algorithm is only a small part of an ML system in production.”

— Chip Huyen, Designing Machine Learning Systems

Production ML is a multidisciplinary engineering challenge:

• Software engineering — deployment, APIs, infrastructure

• Data engineering — pipelines, storage, versioning

• Distributed systems — scalability, availability, consistency, fault
tolerance

• Product design — stakeholder requirements, user experience

• Operations — monitoring, maintenance, incident response

• Model lifecycle management — experimentation, retraining,
evolution

• Governance — compliance, privacy, regulatory requirements

Today: Map the problem space, explore key architectural principles, and
understand fundamental design trade-offs and constraints
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MLOps and ML Systems Design

MLOps (Machine Learning Operations)

”An ML engineering culture and practice that aims at unifying ML system development (Dev) and ML system
operation (Ops).”

[Google Cloud, 2020]

ML Systems Design

”Takes a system approach to MLOps [...] considers an ML system holistically to ensure that all the components
and their stakeholders can work together to satisfy the specified objectives and requirements.”

[Huyen, 2022]
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MLOps: The Component View

Source: [Google Cloud, 2020]
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Research ML vs Production ML

Research Production

Requirements State-of-the-art model performance
on benchmarks

Different stakeholders have different
requirements

Computational priority Fast training, high throughput Fast inference, low latency

Data Static Constantly shifting

Fairness Often not a focus Must be considered

Interpretability Often not a focus Must be considered

Lifecycle Projects have defined endpoints Requires continuous operation

Adapted and extended from [Huyen, 2022], Table 1-1

Note: Generalized comparison — trends vary by domain and exceptions exist.
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The Reality of Production ML

Andrej Karpathy, ”Building the Software 2.0 Stack,” Spark+AI Summit (2018)
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7 Years Later: Same Message With LLMs

Context Enginnering over Prompt Engineering

”After a few years of prompt engineering being the focus of attention in applied AI, [...] Building with language
models is becoming less about finding the right words and phrases for your prompts, and more about answering
the broader question of “what configuration of context is most likely to generate our model’s desired
behavior?””

Source: Anthropic Engineering Blog (September 2025)
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The ML/AI Ecosystem: 2024 Landscape

• 2,011 companies in the 2024 MAD (Machine Learning, AI & Data) Landscape

• Overwhelming number of alternatives

• We focus on core concepts rather than specific tool recommendations

Source: https://mad.firstmark.com/ (FirstMark)
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Course Structure: From Model Development to Production

Today’s transition

We begin a lecture block where we transition from how to build models to how to build systems that run models reliably at scale

Lecture Overview

Week Date Topic
1 Sep, 23 (TB) Introduction
2 Sep, 30 (TB) Classical MLE tools and methods, datasets
3 Oct, 07 (TB) Deep MLE tools and methods, datasets
4 Oct, 14 (JB) ML System Design and Architecture
5 Oct, 21 (JL) Data storage frameworks
- Oct, 28 (-) Canceled - National holiday
6 Nov, 04 (JL) Machine learning model execution paradigms
7 Nov, 11 (JB+TB) Ground truth management
8 Nov, 18 (JB) Production metrics and observability
9 Nov, 25 (JB) ML and AI technical debt
10 Dec, 02 (TB) AI engineering, MCP
11 Dec, 09 (TB) Containerization (Docker, Apptainer)
12 Dec, 16 (TB) Development workflows (git, CI-CD, BDD)
13 Jan, 06 (TB) MLE and AI on the ”edge”
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Systems Must Survive Dynamic Environments (1)

Most software systems operate in changing environments

• User requirements evolve

• Business logic changes

• Load patterns shift

• Dependencies update

• External systems change

This drives core software engineering practices: Agile development, CI/CD, monitoring, incident response
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Systems Must Survive Dynamic Environments (2)

ML systems face additional change vectors:

• Data distribution shifts — input patterns change over time (covariate shift)

• Concept drift — the relationship between inputs and outputs evolves

• Feedback loops — model predictions influence future training data, often implicitly unlike explicit control
flows in traditional software

• Adversarial dynamics — in domains like fraud detection or security, adversaries adapt based on model
decisions

• Silent degradation — performance declines gradually without explicit failures

• Limited interpretability — complex models function as black boxes, unlike traditional software where logic
is directly inspectable in code

• Development more experimental - trying new techniques should be quick and we need to keep track of
what worked and how well.
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Scope: What Systems Are We Discussing?

We speak in context of:

• Industry-scale systems with production workloads and real users

• Team-developed and operated systems requiring cross-functional collaboration

• Systems under load that justifies infrastructure investment and complexity

Important caveats:

• Design principles scale down, but not all patterns are needed at smaller scale

• Edge and embedded ML have different constraints (covered in Lecture 13)
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Key Operational Constraints

Every design decision is constrained by requirements that are often in tension

Response Time Requirements

How fast must the system respond?
• Synchronous (ms to ± 3s): Search, fraud detection, recommendations

• Models pre-loaded, over-provision for peak load, often simpler models

• Asynchronous (seconds to minutes): Spam filtering, content moderation
• Workers scale with queue depth, more cost-efficient than synchronous

• Batch (hours to days): Churn prediction, credit scoring
• Load models on-demand, efficient batching, resources released after completion

Throughput Needs

How much load must the system handle?

• Requests per second, predictions per day

• Peak vs. average load patterns (e.g., regular email volume spikes)
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Consider Response Time Distribution vs Single Number

Average Response Time Does Not Tell the Full Story

Example: Response time distribution of our email security service
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Vertical vs Horizontal Scaling

Two approaches to handle increased load:

Vertical Scaling

• Bigger machines (CPU, RAM, GPU)

• Reduces latency

• Hardware ceiling

Horizontal Scaling

• More machines in parallel

• Increases throughput

• No practical limit

Capacity in cloud is effectively unbounded — the constraint is cost, not capability

• Load peaks and low response time requirements drive up costs

• Faster startup times enable more efficient scaling strategies

• Design optimizes for unit economics: $ per prediction, $ per user/year
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CPU vs. GPU for Inference

CPU inference:

• Simpler deployment (no drivers, standard tooling, works everywhere)

• Default for serverless (Lambda, SageMaker Serverless, Cloud Functions)

• Cost-effective for low or unpredictable traffic patterns

• Models are often made CPU-viable: INT8 quantization on Llama/Mistral improves throughput
25-45% [AMD, 2024]

GPU inference:

• Heavier models

• Batch processing amortizes costs

• High sustained throughput

Trade-off evolves as models and hardware improve, but remains.

AWS SageMaker Serverless Inference: CPU-only [Amazon Web Services, 2025]. Google Cloud Run added GPU
support 2025 [Google Cloud, 2025].
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The Fundamental Trade-offs

Accuracy

Speed Cost

One can often be
improved at the
expense of others

• Search autocomplete: Speed critical → accept accuracy ceiling, pay for infrastructure

• Medical diagnosis: Accuracy paramount → tolerate longer processing, higher compute costs

• Email subject line suggestions: Cost-effective + speed → accept ”good enough” accuracy

• Credit scoring: Accuracy + cost optimized → batch processing relaxes speed constraint
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Modular ML System Design

Separate concerns to manage complexity and enable independent evolution

Key boundaries:

• Data pipelines — ingestion, validation, storage

• Feature engineering — computation, storage

• Training — experimentation, model selection

• Serving — inference, scaling, monitoring

Benefits:

• Independent evolution of components

• Isolated testing and debugging

• Team scaling through component ownership

• Reusability across models and use cases

Critical as systems grow — early systems can be monolithic
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Compound AI Systems

Definition: Systems combining multiple interacting components to solve AI tasks – [Zaharia et al., 2024]

Why compound systems?

• Beyond model limits: Access current data, use external
tools, verify outputs

• Specialization wins: Composed components outperform
single model (AlphaCode 2: 80% vs. 35%)

• Control: Visible logic, modifiable behavior, guaranteed
constraints

• Economics: Match model cost to task difficulty

Examples: AlphaCode 2 (LLM + execution + filter), RAG (LLM
+ retriever) Modularity enables building better systems through

component composition

Source: [Zaharia et al., 2024]
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Case Study: Modular System for Email Threat Detection

CAPE: Business Email Compromise detection system (production 5+ years, Cisco) – [Brabec et al., 2023]

Architecture:
• Detection layer: 90+ independent detectors

• NLU models (urgency, call-to-action)
• Computer vision (OCR, image analysis)
• Graph-based communication patterns

• Classification layer: Model combining detections

Design rationale:

• Data sensitivity limits ML access

• Extreme class imbalance (10−3 to 10−4)

• Explainability requirements

Modularity enables combining ML with domain
knowledge where data is insufficient
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The ML Production Lifecycle

Problem
Scoping

Data
Engineering

Model
Development

Deployment

Monitoring &
Iteration

Business
Evaluation

Adapted from [Huyen, 2022], Figure 2-2: The ML lifecycle is highly iterative with continuous feedback between stages

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML System Design and Architecture October 14th, 2025 22 / 30



Lecture 4:
ML

System
Design

and Archi-
tecture

Jan
Brabec

The
Industrial
ML
Landscape
& Course
Roadmap

ML
System
Design
Fundamen-
tals

Production
Lifecycle &
Organiza-
tion

References

MLOps Maturity Levels

Maturity reflects velocity of deploying new models and level of automation [Google Cloud, 2020]

Level Characteristics Suitable When

Level 0
Manual Notebooks, manual retraining, ad-hoc deploy-

ment, script-driven process
Models rarely change or retrain; sufficient
for early ML adoption

Level 1
CT Pipeline Automated ML pipeline, continuous training

(CT), modularized components, pipeline de-
ployment

Frequent retraining needed, data changes
often, ML approach stable

Level 2
CI/CD/CT Full automation: continuous integration, de-

ployment, and training; automated testing and
validation

Rapid experimentation, frequent pipeline
changes, multiple models in production

• Level 1: ”My data changes frequently, I need to retrain often” → automate retraining

• Level 2: ”My ML approach changes frequently, I need to rapidly deploy pipeline changes” → automate pipeline updates

CT = Continuous Training (unique to ML); CI/CD details in Lecture 12
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Deployment Strategies

How to safely release new models to production:

• Shadow deployment: New model runs in parallel, predictions logged but not used
• Validate behavior before impact, compare against existing model
• Cost: 2x inference compute during shadow period

• Canary release: Gradual rollout to increasing traffic percentage
• Example: 5% → 25% → 50% → 100% over days/weeks
• Monitor metrics at each stage, rollback if degradation detected

• Blue-green deployment: Instant switch between two production environments
• Blue = current, Green = new; route traffic to Green, keep Blue ready
• Fast rollback capability, but all-or-nothing risk

• A/B testing: Run both models simultaneously, compare business metrics
• Randomized user assignment, measure impact on KPIs
• Requires statistical rigor, longer duration for significance
• Suitable for systems where we get feedback fast
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Team Organization: Horizontal vs. Vertical

Conway’s Law: System architecture mirrors organizational communication structure

Two organizational axes:

• Vertical (Embedded): ML practitioners within product/business teams

• Horizontal (Centralized): ML practitioners in separate organization

Embedded Model

• Fast iteration

• Business context

• Clear ownership

Trade-off : Duplicated effort, inconsistent practices

Centralized Model

• Consistent tooling

• Knowledge sharing

• Specialization

Trade-off : Slower iteration, handovers, business
disconnect

Most organizations at scale use hybrid models
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Hybrid Model: Most Common at Scale

Combines horizontal infrastructure with vertical application teams

Typical structure:
1 Platform/Infrastructure team (centralized)

• Builds shared ML tooling: pipelines, feature stores, model registry
• Maintains standards and best practices

2 Applied ML practitioners (embedded in product teams)
• Use platform tooling, own models end-to-end
• Report functionally to ML org, operationally to product team

3 Research/R&D team (centralized) — optional
• Forward-looking exploration, specialized domains (NLP, CV)

Examples: Google [Google Cloud, 2021], Cisco
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Research – Production Handoff Patterns

How do research/experimentation teams interact with production teams?

1 “Throw over the wall” (Anti-pattern)
• Research team trains model, hands off to engineering for deployment
• Fails because: Different incentives, knowledge loss, no ownership continuity

2 End-to-end ownership
• Same team owns research through production
• Works when: High ML maturity, strong engineering culture in DS team
• Challenge: Requires DS with production skills or dual-skilled engineers

3 Platform-based collaboration
• Shared tooling and processes rather than handoffs
• Researchers use production-grade tools from day one
• MLOps platform enables research → production without full handoff
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Key takeaways

• Systems must survive dynamic environments — ML adds change vectors beyond traditional software
(data drift, feedback loops, silent degradation)

• Design constraints (response time, throughput, cost) are in tension — choose which to relax based on
requirements

• MLOps maturity evolves as needs demand: Manual (L0) → Continuous Training (L1) → Full CI/CD (L2)

• Team structure shapes architecture — horizontal (centralized) vs. vertical (embedded); hybrid models
combine both

Next: L5-9 cover storage, execution, ground truth, monitoring, technical debt; L12 covers CI/CD mechanics
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Thanks for your attention
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