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Introduction

Ing. Jan Brabec Ph.D.

® Principal Al Researcher @ Cisco

® Building systems detecting cybersecurity threats
® Ph.D. on ML in Cybersecurity @ CTU Prague

® Thesis: “Class-Imbalanced Data in Cybersecurity”

Jan Brabec (Cisco, CTU in Prague)
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Lecture 4: ML System Design and Architecture

Lecture 4:
ML
%y::i‘;? "The [ML] algorithm is only a small part of an ML system in production.”
a"t:c’xf:" — Chip Huyen, Designing Machine Learning Systems
Jan

Brabec Production ML is a multidisciplinary engineering challenge:
S ® Software engineering — deployment, APls, infrastructure
Industrial N . . L I
ML Data engineering — pipelines, storage, versioning
Land . - s .
;"cjj,i‘f ® Distributed systems — scalability, availability, consistency, fault
RezeE tolerance
ML . . .
St ® Product design — stakeholder requirements, user experience
Desig . . . L
S S ® QOperations — monitoring, maintenance, incident response
tal . . . ..

b ® Model lifecycle management — experimentation, retraining,
Production .
Lifecycle & eV0|Ut|on
Organiza:

T ® Governance — compliance, privacy, regulatory requirements

References

Today: Map the problem space, explore key architectural principles, and
understand fundamental design trade-offs and constraints

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML System Design and Architecture October 14th, 2025
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MLOps and ML Systems Design

MLOps (Machine Learning Operations)

"An ML engineering culture and practice that aims at unifying ML system development (Dev) and ML system
operation (Ops).”

[Google Cloud, 2020] )

ML Systems Design

" Takes a system approach to MLOps [...] considers an ML system holistically to ensure that all the components
and their stakeholders can work together to satisfy the specified objectives and requirements.”

[Huyen, 2022] )

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML System Design and Architecture October 14th, 2!



MLOps: The Component View
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ML
Landscape X
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code

Serving
infrastructure

ML verification
System

Design Process

Fundamen
tals management

Production Automation Feature engineering Monitoring
Lifecycle & Metadata management

Organiza-
tion

References

Source: [Google Cloud, 2020]
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Research ML vs Production ML
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tecture
on Research Production
Brabec Requirements State-of-the-art model performance  Different stakeholders have different
The on benchmarks requirements
ustriel Computational priority Fast training, high throughput Fast inference, low latency
e Data Static Constantly shifting
Roadmap . .
. Fairness Often not a focus Must be considered
R Interpretability Often not a focus Must be considered
Fundamen . . . . . . .
s Lifecycle Projects have defined endpoints Requires continuous operation

Production

Adapted and extended from [Huyen, 2022], Table 1-1

tion

Note: Generalized comparison — trends vary by domain and exceptions exist.

References
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The Reality of Production ML
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PhD Tesla

: Datasets ® Datasets
Models and ® Models and

Algorithms Algorithms

(j\l SPARK-+AI

> D *Prohramming with the

Building the Software 2 0 Stack (Andrej Karpathy)

Andrej Karpathy, " Building the Software 2.0 Stack,” Spark+Al Summit (2018)
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7 Years Later: Same Message With LLMs
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Indestrial Context Enginnering over Prompt Engineering
ML

za'&dscape " After a few years of prompt engineering being the focus of attention in applied Al, [...] Building with language
Roadmap models is becoming less about finding the right words and phrases for your prompts, and more about answering

ML the broader question of “what configuration of context is most likely to generate our model’s desired
System behavior?"”

Design

Fundamen:
tals

Source: Anthropic Engineering Blog (September 2025)
Production

Lifecycle &

Organiza

tion
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The ML/AI Ecosystem: 2024 Landscape

Lecture 4:

s Mt'- The 2024 MAD (ML, Al & Data) Landscape
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® 2,011 companies in the 2024 MAD (Machine Learning, Al & Data) Landscape
® Overwhelming number of alternatives

References

® We focus on core concepts rather than specific tool recommendations

Source: https://mad.firstmark.com/ (FirstMark)
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Course Structure: From Model Development to Production

Lecture 4:
ML
o Today's transition
a"t:cfu'f:' We begin a lecture block where we transition from how to build models to how to build systems that run models reliably at scale)
Jan
Brabec
. Lecture Overview
"a‘i“s“ia' Week | Date Topic
Landscape 1 Sep, 23 (TB) Introduction
& Course 2 Sep, 30 (TB) Classical MLE tools and methods, datasets
Roadmap 3 Oct, 07 (TB) Deep MLE tools and methods, datasets
ML 4 Oct, 14 (JB) ML System Design and Architecture
R 5 Oct, 21 (JL) Data storage frameworks
Fundamen - Oct, 28 (-) Canceled - National holiday
tals 6 Nov, 04 (JL) Machine learning model execution paradigms
EURR—— 7 Nov, 11 (JB4+TB) | Ground truth management
8 Nov, 18 (JB) Production metrics and observability
9 Nov, 25 (JB) ML and Al technical debt
10 Dec, 02 (TB) Al engineering, MCP
References 11 Dec, 09 (TB) Containerization (Docker, Apptainer)
12 Dec, 16 (TB) Development workflows (git, CI-CD, BDD)
13 Jan, 06 (TB) MLE and Al on the "edge”
)
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Systems Must Survive Dynamic Environments (1)
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et Most software systems operate in changing environments

The

Industrial
. * Business logic ch
e usiness logic changes

& Course

Reden ® Load patterns shift

® User requirements evolve

ML ® Dependencies update
System

Design ® External systems change
Fundamen-

tals

Production This drives core software engineering practices: Agile development, ClI/CD, monitoring, incident response
Lifecycle &

Organiza

tion
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Systems Must Survive Dynamic Environments (2)

ML systems face additional change vectors:

® Data distribution shifts — input patterns change over time (covariate shift)
® Concept drift — the relationship between inputs and outputs evolves

® Feedback loops — model predictions influence future training data, often implicitly unlike explicit control
flows in traditional software

® Adversarial dynamics — in domains like fraud detection or security, adversaries adapt based on model
decisions

® Silent degradation — performance declines gradually without explicit failures

Limited interpretability — complex models function as black boxes, unlike traditional software where logic
is directly inspectable in code

® Development more experimental - trying new techniques should be quick and we need to keep track of
what worked and how well.

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML System Design and Architecture October 14th, 2025



Scope: What Systems Are We Discussing?
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Jan .

Brabec We speak in context of:
e ® Industry-scale systems with production workloads and real users
Ind al .. . .
o ® Team-developed and operated systems requiring cross-functional collaboration
Landscape . re . . .
& Course ® Systems under load that justifies infrastructure investment and complexity
Roadmap
L Important caveats:
System
FDes'g" ® Design principles scale down, but not all patterns are needed at smaller scale
undamen-
als ® Edge and embedded ML have different constraints (covered in Lecture 13)
Production

Lifecycle &
Organiza:

tion

References
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Key Operational Constraints

Lecture 4:

Sy?ttm Every design decision is constrained by requirements that are often in tension
anDde:ﬁ:li-

“ej‘"'e Response Time Requirements

lan

Biabec How fast must the system respond?
The ® Synchronous (ms to & 3s): Search, fraud detection, recommendations
;"“i"“”“‘ ® Models pre-loaded, over-provision for peak load, often simpler models
‘@’(’“m\: ® Asynchronous (seconds to minutes): Spam filtering, content moderation
Roadmap ® Workers scale with queue depth, more cost-efficient than synchronous

ML ® Batch (hours to days): Churn prediction, credit scoring
SD‘/:;ZT ® Load models on-demand, efficient batching, resources released after completion

F
tals

Producion Throughput Needs

References ® Requests per second, predictions per day

How much load must the system handle?

® Peak vs. average load patterns (e.g., regular email volume spikes)

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML System Design and Architecture October 14th, 2025



Consider Response Time Distribution vs Single Number

Lecture 4:
ML

Sgsﬁem Average Response Time Does Not Tell the Full Story
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= pso P75 P90 je5  285.85M Durations
Brabec

max 28,123 ms
The
Industrial
ML
Landscape
& Course
Roadmap

pe9 1,028 ms
P95 500 ms
po0 37 ms
p75 253 ms
ps0 157 ms
min 9.27 ms

ML
System
Design
Fundamen-
tals

Durations

Production
Lifecycle &
Organiza-
tion

References

Example: Response time distribution of our email security service

Jan Brabec (Cisco, CTU in Prague) Lecture stem Design and Architecture



Vertical vs Horizontal Scaling

Lecture 4:
ML
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Design
and Archi-

tecture Two approaches to handle increased load:

Jan

Brabec Vertical Scaling Horizontal Scaling
The ® Bigger machines (CPU, RAM, GPU) ® More machines in parallel
Industrial
o ® Reduces latency ® Increases throughput
andscape
i;(t;mse ® Hardware ceiling ® No practical limit
g’“— Capacity in cloud is effectively unbounded — the constraint is cost, not capability
ystem
Design
Fundamen- : ; ;
. ® Load peaks and low response time requirements drive up costs

Production ® Faster startup times enable more efficient scaling strategies

Life &

® Design optimizes for unit economics: $ per prediction, $ per user/year

tion

References
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CPU vs. GPU for Inference

Lecture 4:

ML
?ay:stiegT CPU inference:
a"c:c/:\:::i- ® Simpler deployment (no drivers, standard tooling, works everywhere)
B'J:;‘ec ® Default for serverless (Lambda, SageMaker Serverless, Cloud Functions)
® Cost-effective for low or unpredictable traffic patterns
\Tnt\lw\ ® Models are often made CPU-viable: INT8 quantization on Llama/Mistral improves throughput
o 25-45% [AMD, 2024]

et GPU inference:

ML .
System ® Heavier models

Design . )

o ® Batch processing amortizes costs

tal . .

- ® High sustained throughput
Production

Lifecycle &

Orgz
tion

References AWS SageMaker Serverless Inference: CPU-only [Amazon Web Services, 2025]. Google Cloud Run added GPU
support 2025 [Google Cloud, 2025].

Trade-off evolves as models and hardware improve, but remains.

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML System Design and Architecture October 14th, 2025



The Fundamental Trade-offs
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One can often be
improved at the
expense of others

& Course
Roadmap

ML
System

Design Speed COSt

Fundamen-
tals

Production

® Search autocomplete: Speed critical — accept accuracy ceiling, pay for infrastructure

Medical diagnosis: Accuracy paramount — tolerate longer processing, higher compute costs

References

Email subject line suggestions: Cost-effective + speed — accept " good enough” accuracy

® Credit scoring: Accuracy + cost optimized — batch processing relaxes speed constraint

Jan Brabec (Cisco, CTU in Prague) 9 ign and Architecture
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Modular ML System Design

Separate concerns to manage complexity and enable independent evolution

Key boundaries:
® Data pipelines — ingestion, validation, storage
® Feature engineering — computation, storage
® Training — experimentation, model selection

® Serving — inference, scaling, monitoring

Benefits:
® |ndependent evolution of components
® [solated testing and debugging
® Team scaling through component ownership

® Reusability across models and use cases

Critical as systems grow — early systems can be monolithic

Jan Brabec (Cisco, CTU in Prague)

ign and Architecture




Compound Al Systems

Lecture 4:
ML

System

Design
ond Arehi- Definition: Systems combining multiple interacting components to solve Al tasks — [Zaharia et al., 2024]
o Why compound systems?
. ® Beyond model limits: Access current data, use external

he .
Industrial tools, verify outputs
ML
Landscape ® Specialization wins: Composed components outperform 4.\
o single model (AlphaCode 2: 80% vs. 35%) 3 i E °
Roadmap . . - _ = o ps: 3
ML . Contro!: Visible logic, modifiable behavior, guaranteed el =) S
Sy constraints = = W
Design b
Readareny ® Economics: Match model cost to task difficulty -
&b Source: [Zaharia et al., 2024]

Ceducion Examples: AlphaCode 2 (LLM + execution + filter), RAG (LLM

Lifecycle &
olL,,W + retriever) Modularity enables building better systems through

tion

component composition

References
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Case Study: Modular System for Email Threat Detection

CAPE: Business Email Compromise detection system (production 5+ years, Cisco) — [Brabec et al., 2023]

Architecture:

® Detection layer: 90+ independent detectors

® NLU models (urgency, call-to-action)
® Computer vision (OCR, image analysis)
® Graph-based communication patterns

® Classification layer: Model combining detections %_
cet

Design rationale:

® Data sensitivity limits ML access

® Extreme class imbalance (1073 to 107%)

® Explainability requirements

Jan Brabec (Cisco, CTU in Prague)

Detection Layer
g:ExC—D

Lecture 4: ML System Design and Architecture

Detector 1 NLU
-%' Mail Graph

Q.

Classification Layer

h:D—)Y

[

knowledge where data

Modularity enables combining ML with domain

is insufficient

October 14th, 2025



The ML Production Lifecycle
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Business Data
Vlie Evaluation Engineering
Industrial
ML
Landscape
& Course
Roadmap

ML

System

Design
e Monitoring & Model
tals .

Iteration Development

Production
Lifecycle &
Organiza-
tion

Deployment

References

Adapted from [Huyen, 2022], Figure 2-2: The ML lifecycle is highly iterative with continuous feedback between stages

Jan Brabec (Cisco, CTU in Prague) ystem Design and Architecture



MLOps Maturity Levels

Lecture 4:
ML
System . . . .
Dyesign Maturity reflects velocity of deploying new models and level of automation [Google Cloud, 2020]
and Archi-
tecture
Jan Level Characteristics Suitable When
Brab:
renee Level 0
Manual Notebooks, manual retraining, ad-hoc deploy-  Models rarely change or retrain; sufficient
ment, script-driven process for early ML adoption
Level 1
CT Pipeline Automated ML pipeline, continuous training Frequent retraining needed, data changes
(CT), modularized components, pipeline de-  often, ML approach stable
ployment
Level 2
Cl/CD/CT Full automation: continuous integration, de- Rapid experimentation, frequent pipeline
ployment, and training; automated testing and changes, multiple models in production
validation
Production
Lifecycle &
Organiza-
tion ® Level 1: "My data changes frequently, | need to retrain often” — automate retraining

® Level 2: "My ML approach changes frequently, | need to rapidly deploy pipeline changes” — automate pipeline updates

CT = Continuous Training (unique to ML); Cl/CD details in Lecture 12

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML Syste ign and Architecture



Deployment Strategies

Lecture 4:
ML

System

Design

d Archi- .
e How to safely release new models to production:

B'J:;‘ec ® Shadow deployment: New model runs in parallel, predictions logged but not used

® Validate behavior before impact, compare against existing model

The ® Cost: 2x inference compute during shadow period
Industrial . . .
ML ® Canary release: Gradual rollout to increasing traffic percentage
L'("Jm\‘: ® Example: 5% — 25% — 50% — 100% over days/weeks
Roadmap ® Monitor metrics at each stage, rollback if degradation detected

® Blue-green deployment: Instant switch between two production environments
® Blue = current, Green = new; route traffic to Green, keep Blue ready

esign

Fundamen: ® Fast rollback capability, but all-or-nothing risk

tals . . . .

' ® A/B testing: Run both models simultaneously, compare business metrics
firfzg;:femz ® Randomized user assignment, measure impact on KPls

Organiza- ® Requires statistical rigor, longer duration for significance

ticn ® Suitable for systems where we get feedback fast

References
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Team Organization: Horizontal vs. Vertical

Lecture 4:
ML
System
Design 3 3 . . i .
and Archi- Conway’s Law: System architecture mirrors organizational communication structure
tecture
A Two organizational axes:
Brabec
® Vertical (Embedded): ML practitioners within product/business teams
The
Industrial ® Horizontal (Centralized): ML practitioners in separate organization
ML
Landscape
& Course .
S Embedded Model Centralized Model

. . ° . .
® Fast iteration Consistent tooling

. ° i
® Business context Knowledge sharing

Fundamen

als . ® Specialization
- ® Clear ownership P

Production Tr . B H H

! . . . . rade-off: Slower iteration, handovers, business
Lifecycle & Trade-off: Duplicated effort, inconsistent practices .

Organiza- disconnect

tion

References Most organizations at scale use hybrid models
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Hybrid Model: Most Common at Scale

Lecture 4:
ML

System

Design
and Archi-

tecture . . . . . . .

on Combines horizontal infrastructure with vertical application teams

Brab .

revee Typical structure:
The O Platform/Infrastructure team (centralized)
Industrial . . L .
ﬂih - ® Builds shared ML tooling: pipelines, feature stores, model registry
Landscape ® Maintains standards and best practices
& Course . . .
e @ Applied ML practitioners (embedded in product teams)
ML ® Use platform tooling, own models end-to-end
System ® Report functionally to ML org, operationally to product team
Design . .
Fundamen © Research/R&D team (centralized) — optional
o ® Forward-looking exploration, specialized domains (NLP, CV)
Production
Lifecycle & . .
Orgonize. Examples: Google [Google Cloud, 2021], Cisco
tion

References

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML System Design and Architecture October 14th,



Research — Production Handoff Patterns

Lecture 4:
ML

System

Design
and Archi-

tecture . . . . .

on How do research/experimentation teams interact with production teams?
Brabec “ . .
O “Throw over the wall” (Anti-pattern)

The ® Research team trains model, hands off to engineering for deployment
;”‘i"“”“‘ ® Fails because: Different incentives, knowledge loss, no ownership continuity
e @ End-to-end ownership
& Course
Roadmap ® Same team owns research through production
v ® Works when: High ML maturity, strong engineering culture in DS team
System ® Challenge: Requires DS with production skills or dual-skilled engineers
[ .
S © Platform-based collaboration
Ell ® Shared tooling and processes rather than handoffs
Eredneton ® Researchers use production-grade tools from day one
gfecw_le& ® MLOps platform enables research — production without full handoff
rganiza-
tion
References
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Key takeaways

® Systems must survive dynamic environments — ML adds change vectors beyond traditional software
(data drift, feedback loops, silent degradation)

® Design constraints (response time, throughput, cost) are in tension — choose which to relax based on
requirements

® MLOps maturity evolves as needs demand: Manual (LO) — Continuous Training (L1) — Full CI/CD (L2)

® Team structure shapes architecture — horizontal (centralized) vs. vertical (embedded); hybrid models
combine both

Next: L5-9 cover storage, execution, ground truth, monitoring, technical debt; L12 covers CI/CD mechanics

Jan Brabec (Cisco, CTU in Prague) Lecture 4: ML System Design and Architecture October 14th, 2025
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