Lecture 1: Introduction to MLE

Tomáš lan Lukány

Types of ML

in ML

Báča, Jan Brabec,

Introduction to Machine Lecture Engineering BECM33MLE — Machine Learning Engineering

Dr. Tomáš Báča¹, Dr. Jan Brabec², Jan Lukány, MSc³

¹Multi-Robot Systems group, CTU in Prague ²CISCO ³Datamole

Lecture 1: Introduction to MLE

CISCO DATAMOLE

Introduction — Machine Learning Engineering Course

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine

Types of M

Types of N systems Challenges in ML

Real-work

Reference

What is Machine Learning Engineering?

Research (ML)

- ideas & experiments
- exploration
- feature design
- modeling
- evaluation & benchmarking

Engineering (E)

- robust software
- system design
- ML pipelines
- data management
- scalability, testing

Operations (MLOps)

- production lifecycle
- deployment
- monitoring & alerting
- automation & infrastructure
- user interface

Lecturers

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course structure

Machine Learning Landsca

tasks

systems Challenges in ML

examples

Reference

Dr. Tomáš Báča (TB)

- Assistant professor @ Multi-robot Systems Group (MRS)
- Co-founder of Fly4Future, and Eagle.one
- PhD on Multi-UAV Distributed Sensing
- Research in Aerial robotics, Control, Realtime Mapping and Localization

Dr. Jan Brabec (JB)

- Principal Al Researcher @ Cisco
- Building systems detecting cybersecurity threats
- Ph.D. on ML in Cybersecurity @ CTU in Prague

Jan Lukány, M.Sc. (JL)

- ML/Data Engineering Team Lead @ Datamole
- Graduated at CTU FIT (Machine Learning)
- Main technical focus: "Engineering" part of MLE
- 10 years of experience from industry (agritech, biotech)

Lectures

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course structure

Machine Learning Landscape Types of ML

Types of ML systems Challenges in ML

Real-worl examples silues a

Time plan

- lectures are optional, no need to contact us in case you can not come
- slides and other materials will be available on CourseWare at the day of the lecture

Week	Date (lecturer)	Торіс
1	Sep, 23 (TB)	Introduction
2	Sep, 30 (TB)	Classical MLE tools and methods, datasets
3	Oct, 07 (TB)	Deep MLE tools and methods, datasets
4	Oct, 14 (JB)	ML System Design and Architecture
5	Oct, 21 (JL)	Data storage frameworks
-	Oct, 28 (-)	Canceled - National holiday
6	Nov, 04 (JL)	Machine learning model execution paradigms
7	Nov, 11 (JB+TB)	Ground truth management
8	Nov, 18 (JB)	Production metrics and observability
9	Nov, 25 (JB)	ML and AI technical debt
10	Dec, 02 (TB)	AI engineering, MCP
11	Dec, 09 (TB)	Containerization (Docker, Apptainer)
12	Dec, 16 (TB)	Development workflows (git, CI-CD, BDD)
13	Jan, 06 (TB)	MLE and AI on the "edge"

Practicals

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Course structure

Types of ML Types of ML

in ML

practicals are compulsory

slides and other materials will be available on CourseWare

Time plan

Week	Date	Topic
1	Sep, 23	Introduction
2	Sep, 30	GUI + Project setup
3	Oct, 07	Datasets
4	Oct, 14	Reinforcement learning in a virtual environment
5	Oct, 21	Machine learning basics
-	Oct, 28	Canceled - National holiday
6	Nov, 04	Implementation details
7	Nov, 11	Machine learning advanced
8	Nov, 18	Deployment
9	Nov, 25	Going to market
10	Dec, 02	Workshop
11	Dec, 09	Workshop
12	Dec, 16	Workshop
13	Jan, 06	Project presentations

Semestral project

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course structure

Machine

tasks Types of

Challenge in ML

example

- practicals will revolve around team semestral project
- students will pick their own project topic: (ML-equipped service or product development)
- students work on the project throughout the semester, reporting on the progress regularly
- presentation of the project in the final weeks
- practical mini-lectures and tips during the semester

Vaguely inspired by How to make (almost) anything

- MIT course by prof. Neil Gershenfeld
- Successfully replicated at CTU by Dr. Jiri Zemanek as JVC (Jak Vyrobit (temer)Cokoliv)

Evaluation

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course structure

Machine Learning Landsca

tasks

Challenge in ML

example:

• final evaluation in the form of graded assessment (klasifikovany zapocet)

- no final exam
- the activity in the practicals is what defines if & what mark you obtain
- up to 100 points from the semester

ECTS score

The total amount of points is the summation of

- ints for the project (up to 50 points),
- The points for homeworks (up to 15 points),
- The points for documentation (up to 15 points),
- The points for the project presentation (up to 20 points),

Points	[0,50)	[50,60)	[60,70)	[70,80)	[80,90)	[90,100]
Mark	F	E	D	С	В	A

Recommended literature

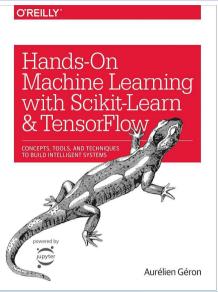
Course structure

Learning Landsca

> Types of ML tasks Types of ML

Challenge in ML

examples Reference



- comprehensive introduction the ML concepts and common problems faced in ML (the research part of MLE)
- practical examples for classical methods shown in Scikit-Learn
- deep learning examples in TensorFlow
- project-oriented approach
- basis for Lectures 1–2
- 1st edition (but technically a 4th edition)
- A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. "O'Reilly Media, Inc.", 2022

The example code snippets available in the author's Github: https://github.com/ageron/handson-ml3

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Course structure

Types of ML

in ML

O'REILLY'

Designing **Machine Learning Systems**

- comprehensive overview of the whole MLE field
- includes:
 - data engineering
 - feature engineering
 - model deployment
 - continual learning and testing in production

[2] C. Huyen, Designing machine learning systems. O'Reilly Media, Inc.", 2022

Lecture 1: Introduction to MLE

Course structure

Recommended literature

Recommended literature

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Course structure

Types of ML

in ML

- going beyond MLE
- Engineering of robust, reliable software systems
- databases, data models
- [3] M. Kleppmann, Designing data-intensive applications: The big ideas behind reliable, scalable, and maintainable systems. "O'Reilly Media, Inc.", 2017

Martin Kleppmann

Lecture 1: Introduction to MLE Course structure

Recommended literature

Recommended literature

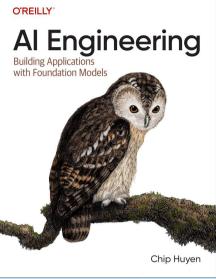
Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Course structure

Types of ML

Challenges in ML



- Going from ML Engineering to AI engineering
- LLMs and beyond
- RAG
- Prompt engineering
- Foundation models
- [4] C. Huyen, AI Engineering: Building Applications with Foundation Models. O'Reilly Media, Incorporated, 2024

Lecture 1: Introduction to MLE Course structure

2025-10-11

Recommended literature

Relation to other courses

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning Landsca

Types of M systems Challenges in ML

Real-wor examples D

Deep Learning Essentials (BECM33DPL0), $1^{\rm st}$ semester

Course going *deep* into the underlying theory of Deep Learning, focusing on ANL structures, learning algorithms, reinforcement learning.

Computer Vision Methods (BE4M33MPV), 2st semester

Course focusing solely in computer vision techniques and algorithms, of which many are ML-based.

Machine Learning Fundamentals (BECM33MLF), 2st semester

Course going into the underlying theory of machine learning, why and how it even works (VC dimension, PAC learning), and theory behind some fundamental ML models.

Machine Learning Methods (BECM36MLM), 2st semester

Course about advanced ML algorithms, ML working with relationship databases, graph neural networks, neuro-symbolic networks, model interpretability, RL.

- The MLE course should provide more hands-on knowledge than the other courses.
- We won't focus on how and why the algorithms work, but how to use them in practice.

Machine Learning Evolution

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan

Course

Machine Learning Landscape

Types of ML tasks

systems Challenge in ML

Real-wor examples

Lukány

Evolution of Machine Learning: 2000-2025

Lecture 1: Introduction to MLE Tomáš Báča, Jan Brabec, Jan

Lukány Course structure

Machine Learning Landscape

Types of ML tasks

systems Challenges in MI

examples

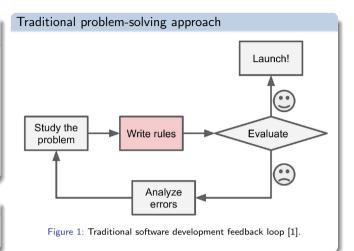
Example of the "traditional" approach

Fabrication of spam-filter by hand:

- gaining expert knowledge on the particular problem, i.e., finding what words are common in spam
- a fabricating a complex tree of nested conditions and rules
- evaluating your program
- tweaking the set of rules and conditions to work on new data

Is it good enough?

- For many problems, yes!
- For many problems, not at all!



- Many real-world problems are totally solvable (and so far better solvable) by using an expert knowledge and handcrafting
 an algorithm that will just do the thing.
 - sorting and search algorithms
 - hard-real time control, control engineering for traditional systems
 - motion planning, path planning, mapping, Localization
 - robotics bread and butter: inverse and direct kinematics and dynamics
 - state estimation of dynamic systems
- the problem is often:
 - lack of explainability and guarantees
 - computational resources (often on embedded hardware)
 - requirement of impractically large datasets

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Machine Learning Landscape

in ML

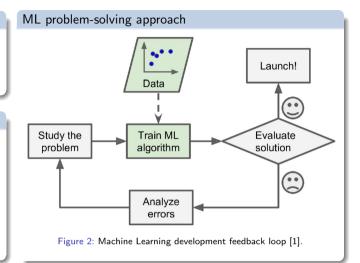
Types of ML

The core of MI

- Data (or simulated environment in reinforcement learning)
- A model
- A training process

When to use it?

- The problems that have many parameters that need to be tuned.
- The problems where real-time adaptation to change is crucial.
- The problems that too complex for handcrafting a solution.
- The problems where even the experts don't know how the solution would even look like.



Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

Machine Learning Landscape

What is machine learning?

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning Landscape

Types of ML tasks

systems Challenge in ML

Real-wor examples

examples

Continuous deployment

- new data might come in from the users
- e.g., new emails being flagged as spam
- the ML algorithm will rel-learn on the fly to flag those emails automatically

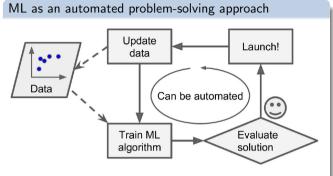


Figure 3: Machine Learning automated development feedback loop [1].

Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

Lecture 1: Introduction to MLE

Machine Learning Landscape

What is machine learning?

What is machine learning?

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Machine Learning Landscape

Types of ML

in ML

Complex problems & data science

- some ML algorithms can be inspected to see what they have learned
 - spam filters' most common patterns contained in spam email
 - pattern recognition and segmentation: finding patterns. relationship and clusters in data where humans would not be able to
 - feature recognition: finding hidden relationships in data, finding which features are responsible for outcomes

ML helping understand the problem

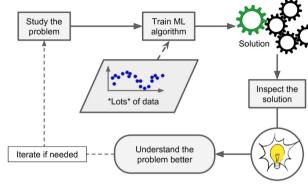


Figure 4: Machine Learning can help understand the problem [1].

Lecture 1: Introduction to MLE

Machine Learning Landscape

What is machine learning?

Types of Machine Learning Tasks - Classification

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning Landscape Types of ML

tasks

challenges in ML

examples

 deciding if a data sample belongs to a class

- a classspam detection (spam or ham)
- medical diagnosis (positive on disease)
- image recognition (dog detected)
- classical methods: KNN, SVM, Decision trees, Random forests

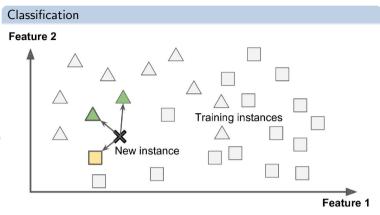


Figure 5: Illustration of classification [1].

Types of Machine Learning Tasks - Regression

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning Landscape Types of ML

tasks

Challenges in ML

example

prediction a continuous variable

- commodity price prediction
 medical diagnosis and medical analysis
- financial forecasting
- classical methods: Linear regression, SVM, Random forests

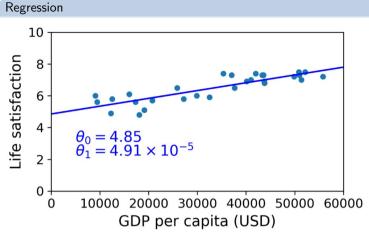


Figure 6: Illustration of linear regression [1].

Types of Machine Learning Tasks - Clustering

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course structure

Machine Learning Landscap

Types of ML tasks

Challenge in ML

examples

finding groups in data with common properties

- data exploration and visualization
- customer segmentation
- anomaly detection
- classical methods: K-Means, Gaussian mixture models, DBSCAN

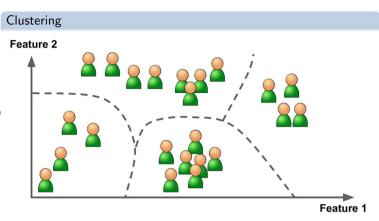


Figure 7: Illustration of clustering [1].

Types of Machine Learning Tasks - Natural language processing

Lecture 1: Introduction to MLE Tomáš

Báča, Jan Brabec, lan Lukány

in ML

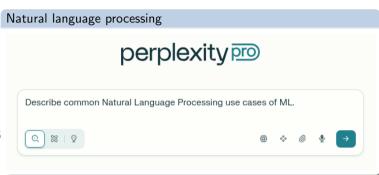
Types of ML

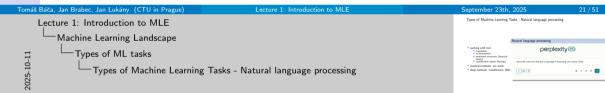
 classical methods: not much · deep methods: transformers, RAG

sentiment extraction (financial classification (spam filtering)

working with text

 translation summarization





Types of Machine Learning Tasks - Content creation

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning

> Types of ML tasks

Challenges in ML

example

in ML Real-wor generating content

- image generation
- synthetic data generation
- classical methods: not much
- deep methods: transformers, generative adversarial networks, RAG

Types of Machine Learning Tasks - Content creation

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Learning

Types of ML tasks

Challenges in ML

example

Content creation

- generating content
 - image generation
 - synthetic data generation
- · classical methods: not much
- deep methods: transformers, generative adversarial networks, RAG

Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

Lecture 1: Introduction to MLE

Machine Learning Landscape

Types of ML tasks

Types of Machine Learning Tasks - Content creation

Types of Machine Learning Systems - Supervised/Unsupervised

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Types of ML systems in ML

- requires labelled dataset
- manual labelling
- nowadays almost gone
- ML-aided labelling
 - Segment Anything 2 as an aid for labelling videos [5]
- example problems:
 - classification
 - pattern recognition
 - speech recognition
 - image classification

 - spam detection

Figure 8: Supervised learning illustration in the form of spam filter classification [1].

Types of Machine Learning Systems - Supervised/Unsupervised

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Types of ML systems in ML

- unlabelled dataset
- we often want to understand what is in the dataset / what is in the data coming into a live system
- typical problems:
 - clustering
 - data visualization
 - dimensionality reduction
 - anomaly detection (cybersecurity, network traffic patterns)
 - association mining (people who buy X also buy Y)

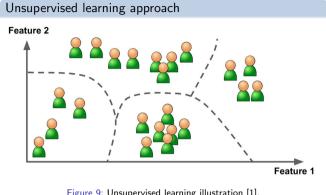


Figure 9: Unsupervised learning illustration [1].

Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague) Lecture 1: Introduction to MLE Machine Learning Landscape Types of ML systems Types of Machine Learning Systems - Supervised/Unsupervised

Types of Machine Learning Systems - Supervised/Unsupervised

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

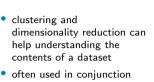
Learning Landscap

tasks
Types of ML

systems Challenges in ML

examples

Reference



 often used in conjunction with semi-supervised learning (at least something is known to help guide the process)

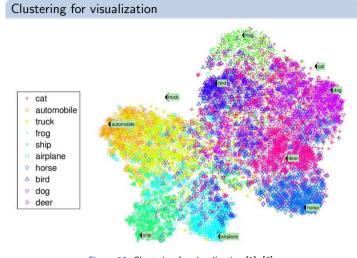


Figure 10: Clustering for visualization [1], [6].

Tomás Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

Lecture 1: Introduction to MLE

Machine Learning Landscape

Types of ML systems

Types of Machine Learning Systems - Supervised/Unsupervised

Types of Machine Learning Systems - Supervised/Unsupervised

Types of Machine Learning Systems - Semi-supervised learning

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course structur

Learning Landscap

Types of ML

systems Challenges in ML

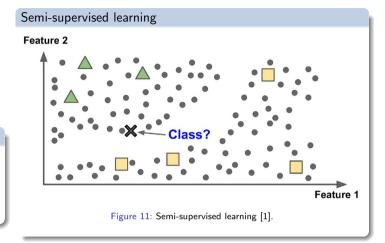
examples

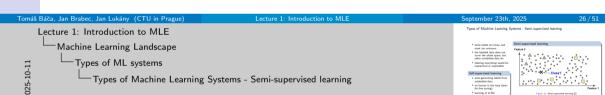
 some labels are know, but most are unknown

- the labelled data does not cover the whole space, but other unlabelled data do
- labeling everything would be impractical or impossible

Self-supervised learning

- auto-generating labels from unlabelled data
- no human in the loop (later for fine tuning)
- learning of LLMs





Types of Machine Learning Systems - Semi-supervised learning

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning Landsca

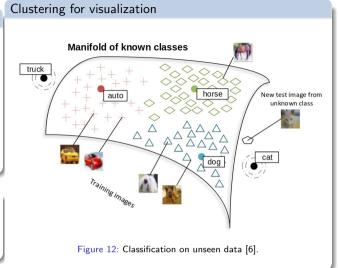
> tasks Types of ML

systems Challenges in ML

examples Reference

Example

- dataset of partially-labelled images
- unlabelled open-vocabulary language corpus
- learned mapping between space of images and text
- when classifying a new image as an unknown class, a connection can be made between the vector in the image space into a vector in the language space
- [6] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, "Zero-shot learning through cross-modal transfer," Advances in neural information processing systems, vol. 26, 2013





• The technique is an example of One-shot learning, where the model is able to recognize previously-unseen data.

Types of Machine Learning Systems

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Learning Landscan

tasks
Types of ML

systems Challenge in ML

examples

- an agent lives in an environment (real or simulated)
- action can be made in the environment by using a policy
- actions can lead to positive reward or negative penalty
- the policy is updated as a part of the learning step
- both supervised and unsupervised learning are special cases of reinforcement learning

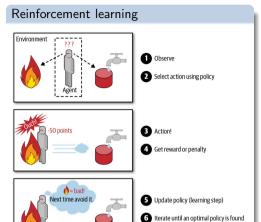


Figure 13: Reinforcement learning [1].

Tomás Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

Lecture 1: Introduction to MLE

Machine Learning Landscape

Types of ML systems

Types of Machine Learning Systems

Types of Machine Learning Systems

Types of Machine Learning Systems - Batch/Online learning

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning Landscap

tasks

Types of ML systems Challenges in ML

examples

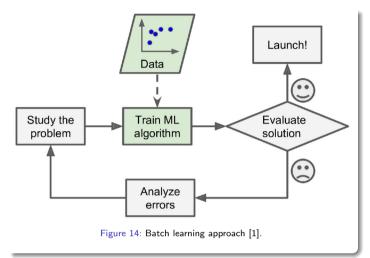
in ML Real-world

Batch learning

- ML algorithm is learned once (often a model)
- dataset is obtained, processed and used once
- suitable in some situations:
 - the domain does not change in time
 - the dataset is good, it covers the domain well

Examples

- image classification and object detection in industrial (controlled) environment
- natural language processing (all the common language transformers are initially batch-learned, and then)



Types of Machine Learning Systems - Batch/Online learning

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Types of ML

systems in ML

Examples

Online learning

- spam email filtering
- financial forecasting (check FreqTrade and FreqAI)

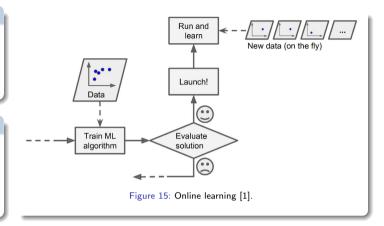
the ML algorithm / model is

continuously with new data

initially trained using a

priming dataset the learning is run

- fraud detection
- smart counters in Albert ;-)



Types of Machine Learning Systems - Batch/Online learning

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning Landscap

tasks

Types of ML systems Challenges in ML

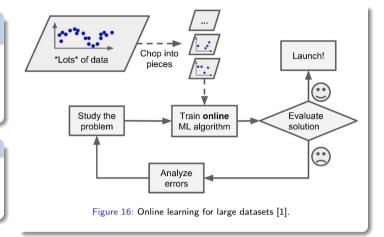
examples

Learning with extra large datasets

- when dataset can not be efficiently stored in memory
- distills to online learning
- large dataset is chopped into small pieces

Examples

- social media feed moderation
- financial transactions analysis



- Financial transactions analysis:
 - Banks and credit card providers process millions of transactions per hour.
 - Online learning algorithms identify fraud or abnormal spending as data flows in, never attempting to retrain on the entire transaction history simultaneously.

Types of Machine Learning Systems - Instance/Model-based learning

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course structur

Machine Learning Landscap

tasks
Types of ML

systems Challenges in ML

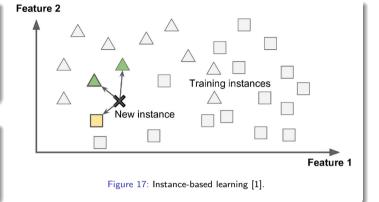
examples

Instance learning

- data samples from the dataset are used directly in the algorithm
- Most commonly: K-nearest neighbour (KNN),
 Case-base reasoning

Examples

- Classical image classification (KNN)
- Handwritten OCR
- Medical diagnosis



Tomás Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

Lecture 1: Introduction to MLE

Machine Learning Landscape

Types of ML systems

Types of Machine Learning Systems - Instance/Model-based learning

Types of Machine Learning Systems - Instance/Model-based learning

Types of Machine Learning Systems - Instance/Model-based learning

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course structur

Machine Learning Landscap

tasks
Types of ML

systems Challenge in ML

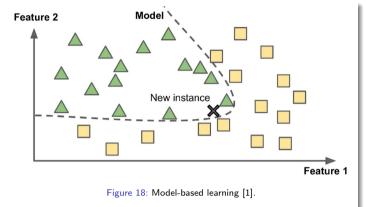
examples

the dataset is

- SVM classifier is the staple in model-based learning
- Decision Tree-based methods
- All the Deep Neural Network algorithms
- Bayesian models
- Reinforcement learning

Examples

- Medical diagnostics
- Image recognition, natural language processing



Types of Machine Learning Systems - Model-based learning in detail

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Types of ML systems in ML

• it only reflects the neighbourhood but not the trend)

- the data is sparse (max 195 samples) and noisy
- is more susceptible to noise in the local neighbourhood
- we observe linear trend

learning to estimate a

life satisfaction [0, 10] instance-based learning

well

relationship between GDP

per capita of a country and

(e.g., KNN) does not work

let's try to find an affine function that fits the data

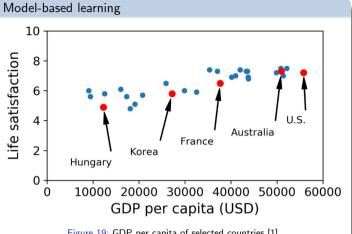
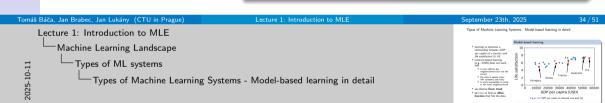


Figure 19: GDP per capita of selected countries [1].



Types of Machine Learning Systems - Model-based learning in detail

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Types of ML

systems in ML

Finding the parameters

possibly finding a different

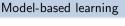
The approach:

model

model selection

g finding parameters evaluating the model

- Optimization problem
- Optimization criterion (fitness function, performance measure):
 - sum of squares of distance
 - max error



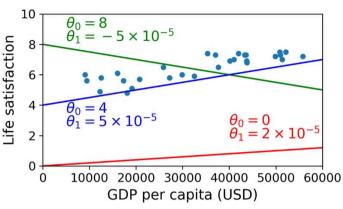
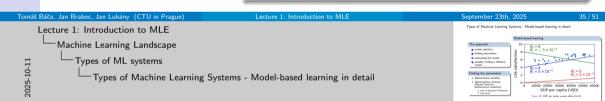


Figure 20: GDP per capita various affine fits [1].



Types of Machine Learning Systems - Model-based learning in detail

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Types of ML

systems in ML

- least squares fit given the training dataset
- we can use the model to create predictions for new data
- you can compare the results of the LinearRegression to KNN, KNN will be worse

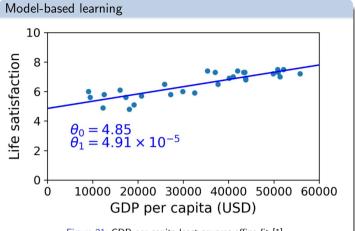
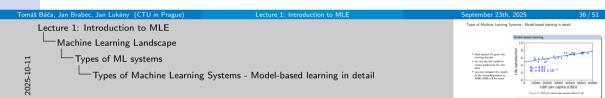


Figure 21: GDP per capita least-squares affine fit [1].



Challenges in ML - Quality of training data

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course structur

Machine Learning Landscap

Types of ML tasks

Types of I systems

Challenges in ML

example:

Referenc

2025-10-11

The Unreasonable Effectiveness of Data

- with poor dataset, various ML models perform equally bad
- the ML engineer must do a clever decision:
 - if spend more time on finding the right model,
 - if spending time on getting more data or improving the dataset,
 - if spending time on tuning the training process,
- however, getting more data is often very expensive, so in the end, finding the right model might be worth it

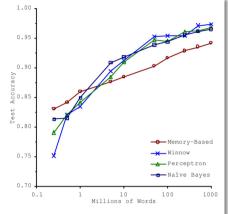


Figure 22: With bad data, various ML models perform equally bad [1], [7].

Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MI

C . I 03/I 000F

Lecture 1: Introduction to MLE

Machine Learning Landscape

Challenges in ML

iallenges in IVIL

Challenges in ML - Quality of training data

Challenges in ML - Non-representative data

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Types of ML

Challenges

in ML

Non-representative data

- outliers or purely missing coverage of the whole domain
- the original fit we had suddenly does not look so good

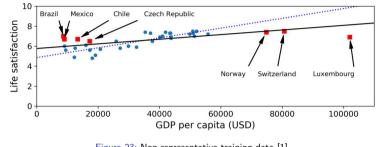


Figure 23: Non-representative training data [1].

Challenges in ML - Irrelevant features

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Challenges in ML

- proper feature selection and feature design is key
 - improves model accuracy
 - reduces overfitting,
 - leads to faster training,
 - enhances interpretability,
 - might make collecting data easier,

Example 1: Medical diagnosis

- dataset may include hundreds of features, including non-medical data
- predicting the risk of diabetes based on
 - eve color.
 - ZIP code.
 - shoe size. parents' shoe size.
- might not yield good results.

Example 2: Image processing

- using pure pixel values
 - histogram normalization
- using color space when color is irrelevant
- using a wrong color space, e.g., RGB
- learning resolution-dependent models

Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague) Lecture 1: Introduction to MLE Machine Learning Landscape Challenges in ML Challenges in ML - Irrelevant features

Challenges in ML - Overfitting

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning Landscap

Types of ML tasks

systems Challenges

in ML

Poforonco

- the model has too much free parameters
- the data is too sparse for the dimensionality of the model
- is hard to spot during training: the error on the training dataset is smaller with more complex model
- can be detected with cross-validation

Example

 fitting a high-order polynomial to data that follow a linear trend

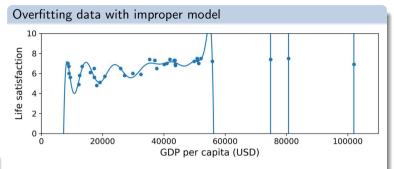


Figure 24: Overfitting illustration [1].

Challenges in ML - Underfitting

Lecture 1: Introduction to MLE

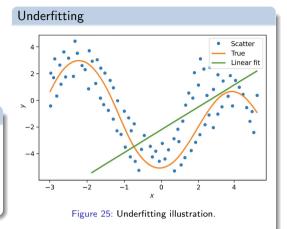
Tomáš Báča, Jan Brabec, lan Lukány

Challenges in ML

- the model is too simple for the data and it does not generalize well
- learning process converges too soon with fitness being bad
- bringing it more data does not help

Deep learning

- Finding the right shape and size of a neural net is a field of study of its own
- too complex and it easily overfits the problem, practically learning the whole dataset
- too simple and it underfits the dataset and generalizes poorly



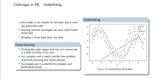
Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

Machine Learning Landscape

Challenges in ML

Challenges in ML - Underfitting



Challenges in ML - Labelling

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Learning Landscap

tasks

Challenges in ML

examples

- for many problems, labelling is tricky
- image recognition of specialized object

ML can help you with labelling

- by leveraging ML to automate a simpler-subtask of the labelling
- e.g., image segmentation and tracking to automatically label a part of a Video-based dataset

Ground truth management

- Lecture 7
- sometimes, knowing the truth from the real-world data is difficult
- building simulators / emulators for initial training might help

Labelling objects in images

Figure 26: How to label objects in an image?

Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

— Machine Learning Landscape

Challenges in ML

—Challenges in ML - Labelling

Challenges in ML - Labeling

* for many prolines, labeling is viciny
* many recognition of westeries adject

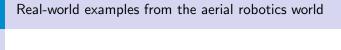
ML can being you with labeling

 by leveraging ML to automate a displer-solate is of the labelling

 e.g., image regressration and tracking to automatically label a past of a Video-based dutaset

 Ground trush management

 locker 7



Lecture 1: Introduction to MLE Tomáš

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning

Types of tasks

Types of N systems Challenges in ML

Real-world examples

What ML-related (research-related) real-world problems are we solving in aerial robotics?

Note

• Realworld examples from other fields will be provided in future lectures by the experts from the industry.

Marker-less drone detection in camera images

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning

tasks

systems Challenge in ML

Real-world examples

ıre

• motivated by eagle.one (http://eagle.one)

- detection of a flying drone from another drone
- requirements: real-time (max 100 ms execution), onboard computation, RGB camera input
- related tasks: 3D pose estimation, outlier rejection, tracking

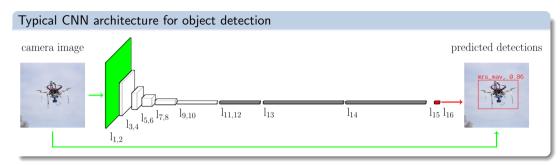
[8] M. Vrba and M. Saska, "Marker-less micro aerial vehicle detection and localization using convolutional neural networks," *IEEE Robotics and Automation Letters*, vol. 5, no. 2, pp. 2459–2466, 2020

Marker-less drone detection in camera images

Types of ML

in ML

Real-world examples



Typical input data

Lecture 1: Introduction to MLE Real-world examples

Marker-less drone detection in camera images



Marker-less drone detection in camera images

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machin Learnin

tasks

systems Challenges in ML

Real-world examples

Deference

Engineering problems:

- gathering custom dataset is costly and difficult
- labelling the dataset is impractical
- ullet estimating size of the drone? small & close = large & far away
- how to make a dataset with precise 3D relative pose

Possible solutions

- flying with a custom drones which know where they are (not ideal, not scalable)
- using onboard-markers for automatic labelling (also not scalable)
- generating large simulated datasets (Generative models)
- [9] V. Walter, M. Vrba, and M. Saska, "On training datasets for machine learning-based visual relative localization of micro-scale uavs," in 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 10674–10680

Tomás Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

Lecture 1: Introduction to MLE

Real-world examples

Marker-less drone detection in camera images

When the size of the control o

Autonomous drone racing

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

Types of ML

in ML

Real-world examples

 real-time detection of gates under extreme motion

- feedback and feedforward control of a drone on the edge of the control envelope
- computer vision, reinforcement learning
- lucrative research field
 - ≈\$500,000 grant for fundamental research
 - (almost) winners of the Autonomous Racing League (2025)
- contact Dr. Robert Penicka if you are interested (https://mrs.fel.cvut.cz/members/ postdocs/penicka)

Video: https://youtu.be/6f0621ZTTBA

Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague) Lecture 1: Introduction to MLE Real-world examples

2025-10-11

Autonomous drone racing

Autonomous semantic mapping and localization

Lecture 1: Introduction to MLE

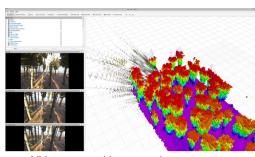
Tomáš Báča, Jan Brabec, lan Lukány

Types of ML

in ML

Real-world examples

- real-time processing of multi-modal data
- dense open-vocabulary object detection
- dense mapping of semantic data
- abstracting concepts into semantic graphs
- localization by matching semantic graphs with prior data
- challenge by SPRIN-D (https: //www.sprind.org/en/actions/challenges/ funke-fully-autonomous-flight-2.0)
- lucrative research field
 - ≈\$500,000 grant for fundamental research
 - ≈\$350,000 funding from SPRIN-D agency
 - cooperation with Lockheed Martin
- contact Dr. Tomas Baca if you are interested



Video: https://youtu.be/JtxhlhZRs1A

SPRIN-D challenge 2.0: Task query

Land near a red car parked on a drive way of a house no.5.

Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

Real-world examples

2025-10-11

Autonomous semantic mapping and localization

Real-world examples of the almost impossible

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, lan Lukány

in ML

Real-world examples

drone should send an alert signal to a wearable device, such as a smartwatch, through radio connection. Specifically, we would need your team to develop:

Quotation from a client (anonymized)

- The computer vision algorithm The alert signal transmission
- A patrolling function (ideally a circular pattern around the designated area)
- An automatic landing feature for low-battery situations.

Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague) Lecture 1: Introduction to MLE Real-world examples Be ready to tackle problems that are seemingly unsolvable Real-world examples of the almost impossible

Be ready to tackle problems that are seemingly unsolvable.

We would like your support in developing a drone system to help improve safety for surfers and swimmers. The idea is for the drone to patrol sea areas and use computer vision to detect sharks. If a shark is identified, the

Lecture 1: Introduction to MLE Tomáš Báča, Jan Brabec, Jan Lukány Thanks for your attention Types of ML Types of ML Real-world examples Tomáš Báča, Jan Brabec, Jan Lukány (CTU in Prague) Lecture 1: Introduction to MLE Real-world examples Thanks for your attention

Conclusion

Conclusion

References I

Lecture 1: Introduction to MLE

Tomáš Báča, Jan Brabec, Jan Lukány

Course

Machine Learning Landscap

tasks Types of N

Challenge in ML

example

References

- [1] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow." O'Reilly Media, Inc.", 2022.
- [2] C. Huyen, Designing machine learning systems." O'Reilly Media, Inc.", 2022.
- [3] M. Kleppmann, Designing data-intensive applications: The big ideas behind reliable, scalable, and maintainable systems." O'Reilly Media, Inc.", 2017.
- [4] C. Huyen, AI Engineering: Building Applications with Foundation Models. O'Reilly Media, Incorporated, 2024.
- [5] N. Ravi, V. Gabeur, Y.-T. Hu, et al., "Sam 2: Segment anything in images and videos," arXiv preprint arXiv:2408.00714, 2024.
- [6] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, "Zero-shot learning through cross-modal transfer," Advances in neural information processing systems, vol. 26, 2013.
- [7] M. Banko and E. Brill, "Mitigating the paucity-of-data problem: Exploring the effect of training corpus size on classifier performance for natural language processing," in Proceedings of the first international conference on Human language technology research, 2001.
- [8] M. Vrba and M. Saska, "Marker-less micro aerial vehicle detection and localization using convolutional neural networks," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2459–2466, 2020.
- [9] V. Walter, M. Vrba, and M. Saska, "On training datasets for machine learning-based visual relative localization of micro-scale uavs," in 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 10674–10680.

Tomás Báča, Jan Brabec, Jan Lukány (CTU in Prague)

Lecture 1: Introduction to MLE

References

I I I References

References

References

I I References

I