
Program in C Values and Variables Expressions Standard Input/Output

Part II

Part 2 – Introduction to C Programming

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 22 / 77

Program in C Values and Variables Expressions Standard Input/Output

Outline

Program in C

Values and Variables

Expressions

Standard Input/Output

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 23 / 77

Program in C Values and Variables Expressions Standard Input/Output

C Programming Language
� Low-level programming language
� System programming language (operating system)

Language for (embedded) systems — MCU, cross-compilation

� A user (programmer) can do almost everything
Initialization of the variables, release of the dynamically allocated memory, etc.

� Very close to the hardware resources of the computer
Direct calls of OS services, direct access to registers and ports

� Dealing with memory is crucial for correct behaviour of the program
One of the goals of the CPL course is to acquire fundamental principles that can
be further generalized for other programming languages. The C programming
language provides great opportunity to became familiar with the memory model
and key elements for writting efficient programs.

It is highly recommended to have compilation of your
program fully under control.

It may look difficult at the beginning, but it is relatively easy and straight-
forward. Therefore, we highly recommend to use fundamental tools for your
program compilation. After you acquire basic skills, you can profit from them
also in more complex development environments.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 24 / 77

Program in C Values and Variables Expressions Standard Input/Output

C Programming Language
� Low-level programming language
� System programming language (operating system)

Language for (embedded) systems — MCU, cross-compilation

� A user (programmer) can do almost everything
Initialization of the variables, release of the dynamically allocated memory, etc.

� Very close to the hardware resources of the computer
Direct calls of OS services, direct access to registers and ports

� Dealing with memory is crucial for correct behaviour of the program
One of the goals of the CPL course is to acquire fundamental principles that can
be further generalized for other programming languages. The C programming
language provides great opportunity to became familiar with the memory model
and key elements for writting efficient programs.

It is highly recommended to have compilation of your
program fully under control.

It may look difficult at the beginning, but it is relatively easy and straight-
forward. Therefore, we highly recommend to use fundamental tools for your
program compilation. After you acquire basic skills, you can profit from them
also in more complex development environments.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 24 / 77

Program in C Values and Variables Expressions Standard Input/Output

Writing Your C Program

� Source code of the C program is written in text files
� Header files usually with the suffix .h
� Sources files usually named with the suffix .c

� Header and source files together with declaration and definition
(of functions) support

� Organization of sources into several files (modules) and libraries
� Modularity – Header file declares a visible interface to others

A description (list) of functions and their arguments without particular
implementation

� Reusability
� Only the “interface” declared in the header files is need to use

functions from available binary libraries

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 25 / 77

Program in C Values and Variables Expressions Standard Input/Output

Valid Characters for Writing Source Codes in C
� Lowercase and uppercase letters, numeric characters, symbols and
separators ASCII – American Standard Code for Information Interchange

� a–z A–Z 0—9
� ! " # % & ’ () * + , - . / : ; < = > ? [\] ˆ _ { | } ∼
� space, tabular, new line

� Escape sequences for writting special symbols
� \’ – ’, \" – ", \? – ?, \\– \

� Escape sequences for writting numeric values in a text string
� \o, \oo, where o is an octal numeral
� \xh, \xhh, where h is a hexadecimal numeral

1 int i = ’a’;
2 int h = 0x61;
3 int o = 0141;
4
5 printf("i: %i h: %i o: %i c: %c\n", i, h, o, i);
6 printf("oct: \141 hex: \x61\n");

E.g., \141, \x61 lec01/esqdho.c

� \0 – character reserved for the end of the text string (null
character)

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 26 / 77

Program in C Values and Variables Expressions Standard Input/Output

Writing Identifiers in C
� Identifiers are names of variables (custom types and functions)

Types and functions, viz further lectures

� Rules for the identifiers
� Characters a–z, A–Z, 0–9 a _
� The first character is not a numeral
� Case sensitive
� Length of the identifier is not limited

First 31 characters are significant – depends on the implementation / compiler

� Keywords32
auto break case char const continue default do
double else enum extern float for goto if int long
register return short signed sizeof static struct
switch typedef union unsigned void volatile while C98

C99 introduces, e.g., inline, restrict, _Bool, _Complex, _Imaginary
C11 further adds, e.g., _Alignas, _Alignof, _Atomic, _Generic,
_Static_assert, _Thread_local

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 27 / 77

Program in C Values and Variables Expressions Standard Input/Output

Writing Codes in C

� Each executable program must have at least one function and the
function has to be main()

� The run of the program starts at the beginning of the function
main(), e.g.,

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("I like BE5B99CPL!\n");
6
7 return 0;
8 }

� The form of the main() function is prescribed
See further examples in this lecture

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 28 / 77

Program in C Values and Variables Expressions Standard Input/Output

Simple C Program

1 #include <stdio.h>
2

3 int main(void)
4 {
5 printf("I like BE5B99CPL!\n");
6

7 return 0;
8 }

lec01/program.c

� Source files are compiled by the compiler to the so-called object
files usually with the suffix .o

Object code contains relative addresses and function calls or just ref-
erences to function without known implementations.

� The final executable program is created from the object files by
the linker

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 29 / 77

Program in C Values and Variables Expressions Standard Input/Output

Program Compilation and Execution
� Source file program.c is compiled into runnable form by the
compiler, e.g., clang or gcc

clang program.c
� There is a new file a.out that can be executed, e.g.,

./a.out
Alternatively the program can be run only by a.out in the case the
actual working directory is set in the search path of executable files

� The program prints the argument of the function printf()
./a.out
I like BE5B99CPL!

� If you prefer to run the program just by a.out instead of ./a.out you need
to add your actual working directory to the search paths defined by the
environment variable PATH

export PATH="$PATH:‘pwd‘"
Notice, this is not recommended, because of potentially many working directories.

� The command pwd prints the actual working directory, see man pwd

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 30 / 77

Program in C Values and Variables Expressions Standard Input/Output

Program Compilation and Execution
� Source file program.c is compiled into runnable form by the
compiler, e.g., clang or gcc

clang program.c
� There is a new file a.out that can be executed, e.g.,

./a.out
Alternatively the program can be run only by a.out in the case the
actual working directory is set in the search path of executable files

� The program prints the argument of the function printf()
./a.out
I like BE5B99CPL!

� If you prefer to run the program just by a.out instead of ./a.out you need
to add your actual working directory to the search paths defined by the
environment variable PATH

export PATH="$PATH:‘pwd‘"
Notice, this is not recommended, because of potentially many working directories.

� The command pwd prints the actual working directory, see man pwd

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 30 / 77

Program in C Values and Variables Expressions Standard Input/Output

Structure of the Source Code – Commented Example
� Commented source file program.c

1 /* Comment is inside the markers (two characters)
2 and it can be split to multiple lines */
3 // In C99 - you can use single line comment
4 #include <stdio.h> /* The #include direct causes to

include header file stdio.h from the C standard
library */

5

6 int main(void) // simplified declaration
7 { // of the main function
8 printf("I like BE5B99CPL!\n"); /* calling printf()

function from the stdio.h library to print string
to the standard output. \n denotes a new line */

9 return 0; /* termination of the function. Return
value 0 to the operating system */

10 }
Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 31 / 77

Program in C Values and Variables Expressions Standard Input/Output

Program Building: Compiling and Linking

� The previous example combines three steps of building the program
into a single call of the command (clang or gcc). The particular
steps can be performed individually

1. Text preprocessing by the preprocessor, which utilizes its own
macro language (commands with the prefix #)

All referenced header files are included into a single source file

2. Compilation of the source file into the object file
Names of the object files usually have the suffix .o

clang -c program.c -o program.o
The command combines preprocessor and compiler.

3. Executable file is linked from the particular object files and
referenced libraries by the linker (linking), e.g.,

clang program.o -o program

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 32 / 77

Program in C Values and Variables Expressions Standard Input/Output

Compilation and Linking Programs
� Program development is editing of the source code (files with suf-
fixes .c and .h); Human readable

� Compilation of the particular source files (.c) into object files (.o or
.obj) ; Machine readable

� Linking the compiled files into executable binary file;
� Execution and debugging of the application and repeated editing of
the source code.

a.out
Preprocesor

Compiler

Header files

.h.c

Source file

Linker

Object files

Lib files

.a/.lib

Object

File

.o/.obj

.o/.obj

Executable binary file

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 33 / 77

Program in C Values and Variables Expressions Standard Input/Output

Steps of Compiling and Linking

� Preprocessor – allows to define macros and adjust compilation
according to the particular compilation environment

The output is text (“source”) file.

� Compiler – Translates source (text) file into machine readable form
Native (machine) code of the platform, bytecode, or assembler alternatively

� Linker – links the final application from the object files
Under OS, it can still reference library functions (dynamic libraries linked
during the program execution), it can also contains OS calls (libraries).

� Particular steps preprocessor, compiler, and linker are usually
implemented by a “single” program that is called with appropriate
arguments.

E.g., clang or gcc

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 34 / 77

Program in C Values and Variables Expressions Standard Input/Output

Compilers of C Program Language

� In CPL, we mostly use compilers from the families of compilers:
� gcc – GNU Compiler Collection

https://gcc.gnu.org
� clang – C language family frontend for LLVM

http://clang.llvm.org

Under Win, two derived environments can be utilized: cygwin https://www.cygwin.com/ or
MinGW http://www.mingw.org/

� Basic usage (flags and arguments) are identical for both compilers
clang is compatible with gcc

� Example
� compile: gcc -c main.c -o main.o
� link: gcc main.o -o main

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 35 / 77

https://gcc.gnu.org
http://clang.llvm.org
https://www.cygwin.com/
http://www.mingw.org/

Program in C Values and Variables Expressions Standard Input/Output

Functions, Modules, and Compiling and Linking

� Function is the fundamental building block of the modular
programming language

Modular program is composed of several modules/source files

� Function definition consists of the
� Function header
� Function body Definition is the function implementation.

� Function prototype (declaration) is the function header to
provide information how the function can be called

It allows to use the function prior its definition, i.e., it allows to compile
the code without the function implementation, which may be located in
other place of the source code, or in other module.

� Declaration is the function header and it has the form

type function_name(arguments);

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 36 / 77

Program in C Values and Variables Expressions Standard Input/Output

Functions in C
� Function definition inside other function is not allowed in C.
� Function names can be exported to other modules

Module is an independent file (compiled independently)

� Function are implicitly declared as extern, i.e., visible
� Using the static specifier, the visibility of the function can be
limited to the particular module Local module function

� Function arguments are local variables initialized by the values
passed to the function Arguments are passed by value (call by value)

� C allows recursions – local variables are automatically allocated
at the stack Further details about storage classes in next lectures.

� Arguments of the function are not mandatory – void arguments
fnc(void)

� The return type of the function can be void, i.e., a function
without return value – void fnc(void);

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 37 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example of Program / Module

1 #include <stdio.h> /* header file */
2 #define NUMBER 5 /* symbolic constatnt */
3

4 int compute(int a); /* function header/prototype */
5

6 int main(int argc, char *argv[])
7 { /* main function */
8 int v = 10; /* variable declaration */
9 int r;

10 r = compute(v); /* function call */
11 return 0; /* termination of the main function */
12 }
13

14 int compute(int a)
15 { /* definition of the function */
16 int b = 10 + a; /* function body */
17 return b; /* function return value */
18 }

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 38 / 77

Program in C Values and Variables Expressions Standard Input/Output

Program Starting Point – main()
� Each executable program must contain at least one definition of
the function and that function must be the main()

� The main() function is the starting point of the program
� The main() has two basic forms

1. Full variant for programs running under an Operating System (OS)
int main(int argc, char *argv[])
{

...
}

� It can be alternatively written as
int main(int argc, char **argv)
{

...
}

2. For embedded systems without OS
int main(void)
{

...
}

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 39 / 77

Program in C Values and Variables Expressions Standard Input/Output

Arguments of the main() Function
� During the program execution, the OS passes to the program the
number of arguments (argc) and the arguments (argv)

In the case we are using OS

� The first argument is the name of the program

1 int main(int argc, char *argv[])
2 {
3 int v;
4 v = 10;
5 v = v + 1;
6 return argc;
7 }

lec01/var.c

� The program is terminated by the return in the main() function
� The returned value is passed back to the OS and it can be further
use, e.g., to control the program execution.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 40 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example of Compilation and Program Execution

� Building the program by the clang compiler – it automatically joins
the compilation and linking of the program to the file a.out

clang var.c
� The output file can be specified, e.g., program file var

clang var.c -o var
� Then, the program can be executed

./var
� The compilation and execution can be joined to a single command

clang var.c -o var; ./var
� The execution can be conditioned to successful compilation

clang var.c -o var && ./var

Programs return value — 0 means OK

Logical operator && depends on the command interpret, e.g., sh, bash, zsh

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 41 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example – Program Execution under Shell

� The return value of the program is stored in the variable $?
sh, bash, zsh

� Example of the program execution with different number of argu-
ments

./var

./var; echo $?
1

./var 1 2 3; echo $?
4

./var a; echo $?
2

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 42 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example – Processing the Source Code by Preprocessor

� Using the -E flag, we can perform only the preprocessor step
gcc -E var.c

Alternatively clang -E var.c

1 # 1 "var.c"
2 # 1 "<built-in>"
3 # 1 "<command-line>"
4 # 1 "var.c"
5 int main(int argc, char **argv) {
6 int v;
7 v = 10;
8 v = v + 1;
9 return argc;

10 }
lec01/var.c

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 43 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example – Compilation of the Source Code to Assembler

� Using the -S flag, the source code can be compiled to Assembler
clang -S var.c -o var.s

1 .file "var.c"
2 .text
3 .globl main
4 .align 16, 0x90
5 .type main,@function
6 main:

@main
7 .cfi_startproc
8 # BB#0:
9 pushq %rbp

10 .Ltmp2:
11 .cfi_def_cfa_offset 16
12 .Ltmp3:
13 .cfi_offset %rbp, -16
14 movq %rsp, %rbp
15 .Ltmp4:
16 .cfi_def_cfa_register %rbp
17 movl $0, -4(%rbp)
18 movl %edi, -8(%rbp)

19 movq %rsi, -16(%rbp)
20 movl $10, -20(%rbp)
21 movl -20(%rbp), %edi
22 addl $1, %edi
23 movl %edi, -20(%rbp)
24 movl -8(%rbp), %eax
25 popq %rbp
26 ret
27 .Ltmp5:
28 .size main, .Ltmp5-main
29 .cfi_endproc
30
31
32 .ident "FreeBSD clang

version 3.4.1 (tags/
RELEASE_34/dot1-final
208032) 20140512"

33 .section ".note.GNU-stack","
",@progbits

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 44 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example – Compilation to Object File

� The souce file is compiled to the object file
clang -c var.c -o var.o

% clang -c var.c -o var.o
% file var.o
var.o: ELF 64-bit LSB relocatable, x86-64, version 1

(FreeBSD), not stripped

� Linking the object file(s) provides the executable file
clang var.o -o var

% clang var.o -o var
% file var
var: ELF 64-bit LSB executable, x86-64, version 1 (

FreeBSD), dynamically linked (uses shared libs),
for FreeBSD 10.1 (1001504), not stripped

dynamically linked
not stripped

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 45 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example – Executable File under OS 1/2
� By default, executable files are “tied” to the C library and OS services
� The dependencies can be shown by ldd var

ldd – list dynamic object dependenciesldd var
var:

libc.so.7 => /lib/libc.so.7 (0x2c41d000)

� The so-called static linking can be enabled by the -static compiler
option
clang -static var.o -o var
% ldd var
% file var
var: ELF 64-bit LSB executable, x86-64, version 1 (

FreeBSD), statically linked, for FreeBSD 10.1
(1001504), not stripped

% ldd var
ldd: var: not a dynamic ELF executable

Check the size of the created binary files!
Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 46 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example – Executable File under OS 2/2

� The compiled program (object file) contains symbolic names (by
default)

E.g., usable for debugging.

clang var.c -o var
wc -c var

7240 var
wc – word, line, character, and byte count

-c – byte count

� Symbols can be removed by the tool (program) strip

strip var
wc -c var

4888 var

Alternatively, you can show size of the file by the command ls -l

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 47 / 77

Program in C Values and Variables Expressions Standard Input/Output

Outline

Program in C

Values and Variables

Expressions

Standard Input/Output

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 48 / 77

Program in C Values and Variables Expressions Standard Input/Output

Writting Values of the Numeric Data Types – Literals

� Values of the data types are called literals
� C has 6 type of constants (literals)

� Integer
� Rational

We cannot simply write irrational numbers
� Characters
� Text strings
� Enumerated Enum

� Symbolic – #define NUMBER 10
Preprocessor

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 49 / 77

Program in C Values and Variables Expressions Standard Input/Output

Integer Literals

� Integer values are stored as one of the integer type (keywords):
int, long, short, char and their signed and unsigned variants

Further integer data types are possible

� Integer values (literals)
� Decimal 123 450932
� Hexadecimal 0x12 0xFAFF (starts with 0x or 0X)
� Octal 0123 0567 (starts with 0)
� unsigned 12345U (suffix U or u)
� long 12345L (suffix L or l)
� unsigned long 12345ul (suffix UL or ul)
� long long 12345LL (suffix LL or ll)

� Without suffix, the literal is of the type typu int

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 50 / 77

Program in C Values and Variables Expressions Standard Input/Output

Literals of Rational Numbers

� Rational numbers can be written
� with floating point – 13.1
� or with mantissa and exponent – 31.4e-3 or 31.4E-3

Scientific notation

� Floating point numeric types depends on the implementation, but
they usually follow IEEE-754-1985 float, double

� Data types of the rational literals:
� double – by default, if not explicitly specified to be another type
� float – suffix F or f

float f = 10f;
� long double – suffix L or l

long double ld = 10l;

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 51 / 77

Program in C Values and Variables Expressions Standard Input/Output

Character Literals

� Format – single (or multiple) character in apostrophe
’A’, ’B’ or ’\n’

� Value of the single character literal is the code of the character
’0’∼ 48, ’A’∼ 65

Value of character out of ASCII (greater than 127) depends on the compiler.

� Type of the character constant (literal)
� character constant is the int type

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 52 / 77

Program in C Values and Variables Expressions Standard Input/Output

String literals
� Format – a sequence of character and control characters (escape
sequences) enclosed in quotation (citation) marks

"This is a string constant with the end of line character \n"
� String constants separated by white spaces are joined to single

constant, e.g.,

"String literal" "with the end of the line character\n"

is concatenate into

"String literal with end of the line character\n"
� Type

� String literal is stored in the array of the type char terminated by
the null character ’\0’
E.g., String literal "word" is stored as

’w’ ’o’ ’r’ ’d’ ’\0’

The size of the array must be about 1 item longer to store \0!

More about text strings in the following lectures and labs
Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 53 / 77

Program in C Values and Variables Expressions Standard Input/Output

Constants of the Enumerated Type
� Format

� By default, values of the enumerated type starts from 0 and each
other item increase the value about one

� Values can be explicitly prescribed

enum {
SPADES,
CLUBS,
HEARTS,
DIAMONDS

};

enum {
SPADES = 10,
CLUBS, /* the value is 11 */
HEARTS = 15,
DIAMONDS = 13

};

The enumeration values are usually written in uppercase

� Type – enumerated constant is the int type
� Value of the enumerated literal can be used in loops

enum { SPADES = 0, CLUBS, HEARTS, DIAMONDS, NUM_COLORS };

for (int i = SPADES; i < NUM_COLORS; ++i) {
...

}

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 54 / 77

Program in C Values and Variables Expressions Standard Input/Output

Symbolic Constant – #define
� Format – the constant is established by the preprocessor command
#define

� It is macro command without argument
� Each #define must be on a new line

#define SCORE 1
Usually written in uppercase

� Symbolic constants can express constant expressions
#define MAX_1 ((10*6) - 3)

� Symbolic constants can be nested
#define MAX_2 (MAX_1 + 1)

� Preprocessor performs the text replacement of the define
constant by its value

#define MAX_2 (MAX_1 + 1)
It is highly recommended to use brackets to ensure correct evaluation of
the expression, e.g., the symbolic constant 5*MAX_1 with the outer brackets
is 5*((10*6) - 3)=285 vs 5*(10*6) - 3=297.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 55 / 77

Program in C Values and Variables Expressions Standard Input/Output

Variable with a constant value
modifier (keyword) (const)

� Using the keyword const, a variable can be marked as constant
Compiler checks assignment and do not allow to set a new value to the variable.

� A constant value can be defined as follows
const float pi = 3.14159265;

� In contrast to the symbolic constant
#define PI 3.14159265

� Constant values have type, and thus it supports type checking

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 56 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example: Sum of Two Values
1 #include <stdio.h>
2

3 int main(void)
4 {
5 int sum; // definition of local variable of the int type
6

7 sum = 100 + 43; /* set value of the expression to sum */
8 printf("The sum of 100 and 43 is %i\n", sum);
9 /* %i formatting commend to print integer number */

10 return 0;
11 }

� The variable sum of the type int represents an integer number.
Its value is stored in the memory

� sum is selected symbolic name of the memory location, where the
integer value (type int) is stored

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 57 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example of Sum of Two Variables

1 #include <stdio.h>
2

3 int main(void)
4 {
5 int var1;
6 int var2 = 10; /* inicialization of the variable */
7 int sum;
8
9 var1 = 13;

10
11 sum = var1 + var2;
12

13 printf("The sum of %i and %i is %i\n", var1, var2, sum);
14
15 return 0;
16 }

� Variables var1, var2 and sum represent three different locations in
the memory (allocated automatically), where three integer values
are stored.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 58 / 77

Program in C Values and Variables Expressions Standard Input/Output

Variable Declaration

� The variable declaration has general form
declaration-specifiers declarators;

� Declaration specifiers are:
� Storage classes: at most one of the auto, static, extern,
register

� Type quantifiers: const, volatile, restrict
Zero or more type quantifiers are allowed

� Type specifiers: void, char, short, int, long, float, double,
signed, unsigned. In addition, struct and union type specifiers
can be used. Finally, own types defined by typedef can be used as
well.

Detailed description in further lectures.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 59 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 ,unsigned char var1;
2 ,unsigned char var2;
3 ,unsigned char sum;
4 ,
5 ,var1 = 13;
6 ,var2 = 10;
7 ,
8 ,sum = var1 + var2;

� Each variable allocate 1 byte
� Content of the memory is not de-
fined after allocation

� Name of the variable “refer-
ences” to the particular memory
location

� Value of the variable is the con-
tent of the memory location

0 99 55

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 ,unsigned char var1;
2 ,unsigned char var2;
3 ,unsigned char sum;
4 ,
5 ,var1 = 13;
6 ,var2 = 10;
7 ,
8 ,sum = var1 + var2;

� Each variable allocate 1 byte
� Content of the memory is not de-
fined after allocation

� Name of the variable “refer-
ences” to the particular memory
location

� Value of the variable is the con-
tent of the memory location

0 99 55

var1

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 ,unsigned char var1;
2 ,unsigned char var2;
3 ,unsigned char sum;
4 ,
5 ,var1 = 13;
6 ,var2 = 10;
7 ,
8 ,sum = var1 + var2;

� Each variable allocate 1 byte
� Content of the memory is not de-
fined after allocation

� Name of the variable “refer-
ences” to the particular memory
location

� Value of the variable is the con-
tent of the memory location

0 99 55

var1 var2

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 ,unsigned char var1;
2 ,unsigned char var2;
3 ,unsigned char sum;
4 ,
5 ,var1 = 13;
6 ,var2 = 10;
7 ,
8 ,sum = var1 + var2;

� Each variable allocate 1 byte
� Content of the memory is not de-
fined after allocation

� Name of the variable “refer-
ences” to the particular memory
location

� Value of the variable is the con-
tent of the memory location

0 99 55

var1 var2 sum

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 ,unsigned char var1;
2 ,unsigned char var2;
3 ,unsigned char sum;
4 ,
5 ,var1 = 13;
6 ,var2 = 10;
7 ,
8 ,sum = var1 + var2;

� Each variable allocate 1 byte
� Content of the memory is not de-
fined after allocation

� Name of the variable “refer-
ences” to the particular memory
location

� Value of the variable is the con-
tent of the memory location

13 99 55

var1 var2 sum

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 ,unsigned char var1;
2 ,unsigned char var2;
3 ,unsigned char sum;
4 ,
5 ,var1 = 13;
6 ,var2 = 10;
7 ,
8 ,sum = var1 + var2;

� Each variable allocate 1 byte
� Content of the memory is not de-
fined after allocation

� Name of the variable “refer-
ences” to the particular memory
location

� Value of the variable is the con-
tent of the memory location

13 10 55

var1 var2 sum

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 ,unsigned char var1;
2 ,unsigned char var2;
3 ,unsigned char sum;
4 ,
5 ,var1 = 13;
6 ,var2 = 10;
7 ,
8 ,sum = var1 + var2;

� Each variable allocate 1 byte
� Content of the memory is not de-
fined after allocation

� Name of the variable “refer-
ences” to the particular memory
location

� Value of the variable is the con-
tent of the memory location

13 10 23

var1 var2 sum

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 ,unsigned char var1;
2 ,unsigned char var2;
3 ,unsigned char sum;
4 ,
5 ,var1 = 13;
6 ,var2 = 10;
7 ,
8 ,sum = var1 + var2;

� Each variable allocate 1 byte
� Content of the memory is not de-
fined after allocation

� Name of the variable “refer-
ences” to the particular memory
location

� Value of the variable is the con-
tent of the memory location

13 10 23

var1 var2 sum

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization int

1 ,int var1;
2 ,int var2;
3 ,int sum;
4 ,
5 ,// 00 00 00 13
6 ,var1 = 13;
7 ,
8 ,// x00 x00 x01 xF4
9 ,var2 = 500;

10 ,
11 ,sum = var1 + var2;

� Variables of the int types allocate 4
bytes
Size can be find out by the operator sizeof(int)

� Memory content is not defined after the
definition of the variable to the memory

0x0 0x1 0x2 0x3 0x4 0x4 0x6 0x7

0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

500 (dec) is 0x01F4 (hex)

513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 61 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization int

1 ,int var1;
2 ,int var2;
3 ,int sum;
4 ,
5 ,// 00 00 00 13
6 ,var1 = 13;
7 ,
8 ,// x00 x00 x01 xF4
9 ,var2 = 500;

10 ,
11 ,sum = var1 + var2;

� Variables of the int types allocate 4
bytes
Size can be find out by the operator sizeof(int)

� Memory content is not defined after the
definition of the variable to the memory

0x0 0x1 0x2 0x3 0x4 0x4 0x6 0x7

var1

0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

500 (dec) is 0x01F4 (hex)

513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 61 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization int

1 ,int var1;
2 ,int var2;
3 ,int sum;
4 ,
5 ,// 00 00 00 13
6 ,var1 = 13;
7 ,
8 ,// x00 x00 x01 xF4
9 ,var2 = 500;

10 ,
11 ,sum = var1 + var2;

� Variables of the int types allocate 4
bytes
Size can be find out by the operator sizeof(int)

� Memory content is not defined after the
definition of the variable to the memory

0x0 0x1 0x2 0x3 0x4 0x4 0x6 0x7

var1 var2

0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

500 (dec) is 0x01F4 (hex)

513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 61 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization int

1 ,int var1;
2 ,int var2;
3 ,int sum;
4 ,
5 ,// 00 00 00 13
6 ,var1 = 13;
7 ,
8 ,// x00 x00 x01 xF4
9 ,var2 = 500;

10 ,
11 ,sum = var1 + var2;

� Variables of the int types allocate 4
bytes
Size can be find out by the operator sizeof(int)

� Memory content is not defined after the
definition of the variable to the memory

0x0 0x1 0x2 0x3 0x4 0x4 0x6 0x7

var1 var2

0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

sum

500 (dec) is 0x01F4 (hex)

513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 61 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization int

1 ,int var1;
2 ,int var2;
3 ,int sum;
4 ,
5 ,// 00 00 00 13
6 ,var1 = 13;
7 ,
8 ,// x00 x00 x01 xF4
9 ,var2 = 500;

10 ,
11 ,sum = var1 + var2;

� Variables of the int types allocate 4
bytes
Size can be find out by the operator sizeof(int)

� Memory content is not defined after the
definition of the variable to the memory

13 0 0 0 0x4 0x4 0x6 0x7

var1 var2

0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

sum

500 (dec) is 0x01F4 (hex)

513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 61 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization int

1 ,int var1;
2 ,int var2;
3 ,int sum;
4 ,
5 ,// 00 00 00 13
6 ,var1 = 13;
7 ,
8 ,// x00 x00 x01 xF4
9 ,var2 = 500;

10 ,
11 ,sum = var1 + var2;

� Variables of the int types allocate 4
bytes
Size can be find out by the operator sizeof(int)

� Memory content is not defined after the
definition of the variable to the memory

13 0 0 0 0xf4 0x01 0x00 0x00

var1 var2

0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

sum

500 (dec) is 0x01F4 (hex)

513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 61 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization int

1 ,int var1;
2 ,int var2;
3 ,int sum;
4 ,
5 ,// 00 00 00 13
6 ,var1 = 13;
7 ,
8 ,// x00 x00 x01 xF4
9 ,var2 = 500;

10 ,
11 ,sum = var1 + var2;

� Variables of the int types allocate 4
bytes
Size can be find out by the operator sizeof(int)

� Memory content is not defined after the
definition of the variable to the memory

13 0 0 0 0xf4 0x01 0x00 0x00

var1 var2

0x1 0x2 0x0 0x0 0xC 0xD 0xE 0xF

sum

500 (dec) is 0x01F4 (hex)

513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 61 / 77

Program in C Values and Variables Expressions Standard Input/Output

Outline

Program in C

Values and Variables

Expressions

Standard Input/Output

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 62 / 77

Program in C Values and Variables Expressions Standard Input/Output

Expressions

� Expression prescribes calculation value of some given input
� Expression is composed of operands, operators, and brackets
� Expression can be formed of

� literals

� variables

� constants

� unary and binary operators

� function calling

� brackets

� The order of operation evaluation is prescribed by the operator
precedence and associativity.

Example
10 + x * y // order of the evaluation 10 + (x * y)
10 + x + y // order of the evaluation (10 + x) + y

* has higher priority than +
+ is associative from the left-to-right

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 63 / 77

Program in C Values and Variables Expressions Standard Input/Output

Operators
� Operators are selected characters (or a sequences of characters)
dedicated for writting expressions

� Five types of binary operators can be distinguished
� Arithmetic operators – additive (addition/subtraction) and multi-

plicative (multiplication/division)
� Relational operators – comparison of values (less than, greater than,

. . .)
� Logical operators – logical AND and OR
� Bitwise operators – bitwise AND, OR, XOR, bitwise shift (left, right)
� Assignment operator = – a variables (l-value) is on its left side

� Unary operators
� Indicating positive/negative value: + and −

Operator − modifies the sign of the expression
� Modifying a variable : ++ and −−
� Logical negation: !
� Bitwise negation: ∼

� Ternary operator – conditional expression ? :
Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 64 / 77

Program in C Values and Variables Expressions Standard Input/Output

Variables, Assignment Operator, and Assignment Statement
� Variables are defined by the type and name

� Name of the variable are in lowercase
� Multi-word names can be written with underscore _

Or we can use CamelCase
� Each variable is defined at new line

int n;
int number_of_items;
int numberOfItems;

� Assignment is setting the value to the variable, i.e., the value is
stored at the memory location referenced by the variable name

� Assignment operator
〈l-value〉 = 〈expression〉

Expression is literal, variable, function calling, . . .
� The side is the so-called l-value – location-value, left-value

It must represent a memory location where the value can be stored.
� Assignment is an expression and we can use it everywhere it is

allowed to use the expression of the particular type.
� Assignment statement is the assignment operator = and ;

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 65 / 77

Program in C Values and Variables Expressions Standard Input/Output

Basic Arithmetic Expressions

� For an operator of the numeric types int and double, the
following operators are defined

Also for char, short, and float numeric types.

� Unary operator for changing the sign −
� Binary addition + and subtraction −
� Binary multiplication * and division /

� For integer operator, there is also
� Binary module (integer reminder) %

� If both operands are of the same type, the results of the
arithmetic operation is the same type

� In a case of combined data types int and double, the data type
int is converted to double and the results is of the double type.

Implicit type conversion

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 66 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example – Arithmetic Operators 1/2

1 int a = 10;
2 int b = 3;
3 int c = 4;
4 int d = 5;
5 int result;
6
7 result = a - b; // subtraction
8 printf("a - b = %i\n", result);
9

10 result = a * b; // multiplication
11 printf("a * b = %i\n", result);
12
13 result = a / b; // integer divison
14 printf("a / b = %i\n", result);
15
16 result = a + b * c; // priority of the operators
17 printf("a + b * c = %i\n", result);
18
19 printf("a * b + c * d = %i\n", a * b + c * d); // -> 50
20 printf("(a * b) + (c * d) = %i\n", (a * b) + (c * d)); // -> 50
21 printf("a * (b + c) * d = %i\n", a * (b + c) * d); // -> 350

lec01/arithmetic_operators.c

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 67 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example – Arithmetic Operators 2/2
1 #include <stdio.h>
2
3 int main(void)
4 {
5 int x1 = 1;
6 double y1 = 2.2357;
7 float x2 = 2.5343f;
8 double y2 = 2;
9

10 printf("P1 = (%i, %f)\n", x1, y1);
11 printf("P1 = (%i, %i)\n", x1, (int)y1);
12 printf("P1 = (%f, %f)\n", (double)x1, (double)y1);
13 printf("P1 = (%.3f, %.3f)\n", (double)x1, (double)y1);
14
15 printf("P2 = (%f, %f)\n", x2, y2);
16
17 double dx = (x1 - x2); // implicit data conversion to float
18 double dy = (y1 - y2); // and finally to double
19
20 printf("(P1 - P2)=(%.3f, %0.3f)\n", dx, dy);
21 printf("|P1 - P2|^2=%.2f\n", dx * dx + dy * dy);
22 return 0;
23 }

lec01/points.c

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 68 / 77

Program in C Values and Variables Expressions Standard Input/Output

Outline

Program in C

Values and Variables

Expressions

Standard Input/Output

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 69 / 77

Program in C Values and Variables Expressions Standard Input/Output

Standard Input and Output

� An executed program within Operating System (OS) environments
has assigned (usually text-oriented) standard input (stdin) and
output (stdout)

Programs for MCU without OS does not have them

� The stdin and stdout streams can be utilized for communication
with a user

� Basic function for text-based input is getchar() and for the output
putchar()

Both are defined in the standard C library <stdio.h>

� For parsing numeric values the scanf() function can be utilized
� The function printf() provides formatted output, e.g., a number
of decimal places

They are library functions, not keywords of the C language.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 70 / 77

Program in C Values and Variables Expressions Standard Input/Output

Formatted Output – printf()

� Numeric values can be printed to the standard output using printf()
man printf or man 3 printf

� The first argument is the format string that defines how the values
are printed

� The conversion specification starts with the character ’%’
� Text string not starting with % is printed as it is
� Basic format strings to print values of particular types are

char %c
_Bool %i, %u
int %i, %x, %o
float %f, %e, %g, %a
double %f, %e, %g, %a

� Specification of the number of digits is possible, as well as an align-
ment to left (right), etc.

Further options in homeworks and lab exercises.

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 71 / 77

Program in C Values and Variables Expressions Standard Input/Output

Formatted Input – scanf()
� Numeric values from the standard input can be read using the
scanf() function man scanf or man 3 scanf

� The argument of the function is a format string
Syntax is similar to printf()

� It is necessary to provide a memory address of the variable to set
its value from the stdin

� Example of readings integer value and value of the double type
1 #include <stdio.h>
2
3 int main(void)
4 {
5 int i;
6 double d;
7
8 printf("Enter int value: ");
9 scanf("%i", &i); // operator & returns the address of i

10
11 printf("Enter a double value: ");
12 scanf("%lf", &d);
13 printf("You entered %02i and %0.1f\n", i, d);
14
15 return 0;
16 } lec01/scanf.c

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 72 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example: Program with Output to the stdout 1/2

� Instead of printf() we can use fprintf() with explicit output
stream stdout, or alternatively stderr; both functions from the
<stdio.h>

1 #include <stdio.h>
2

3 int main(int argc, char **argv) {
4 fprintf(stdout, "My first program in C!\n");
5 fprintf(stdout, "Its name is \"%s\"\n", argv[0]);
6 fprintf(stdout, "Run with %d arguments\n", argc);
7 if (argc > 1) {
8 fprintf(stdout, "The arguments are:\n");
9 for (int i = 1; i < argc; ++i) {

10 fprintf(stdout, "Arg: %d is \"%s\"\n", i, argv[i]);
11 }
12 }
13 }

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 73 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example: Program with Output to the stdout 2/2

� Notice, using the header file <stdio.h>, several other files are in-
cluded as well to define types and functions for input and output.

Check by, e.g., clang -E print_args.c

clang print_args.c -o print_args
./print_args first second
My first program in C!
Its name is "./print_args"
It has been run with 3 arguments
The arguments are:
Arg: 1 is "first"
Arg: 2 is "second"

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 74 / 77

Program in C Values and Variables Expressions Standard Input/Output

Extended Variants of the main() Function

� Extended declaration of the main() function provides access to
the environment variables

For Unix and MS Windows like OS

int main(int argc, char **argv, char **envp) { ... }

The environment variables can be accessed using the function getenv()
from the standard library <stdlib.h>.

lec01/main_env.c

� For Mac OS X, there are further arguments
int main(int argc, char **argv, char **envp, char **apple)
{

...
}

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 75 / 77

Topics Discussed

Summary of the Lecture

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 76 / 77

Topics Discussed

Topics Discussed

� Information about the Course
� Introduction to C Programming

� Program, source codes and compilation of the program
� Structure of the souce code and writting program
� Variables and basic types
� Variables, assignment, and memory
� Basic Expressions
� Standard input and output of the program
� Formating input and output

� Next: Expressions and Bitwise Operations, Selection Statements
and Loops

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 77 / 77

Topics Discussed

Topics Discussed

� Information about the Course
� Introduction to C Programming

� Program, source codes and compilation of the program
� Structure of the souce code and writting program
� Variables and basic types
� Variables, assignment, and memory
� Basic Expressions
� Standard input and output of the program
� Formating input and output

� Next: Expressions and Bitwise Operations, Selection Statements
and Loops

Jan Faigl, 2017 BE5B99CPL – Lecture 01: Introduction to C Programming 77 / 77

