Program in C Values and Variables Expressions Standard Input/Output

Part |

Part 2 — Introduction to C Programming

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 22 /77

Program in C Values and Variables Expressions Standard Input/Output

QOutline

= Program in C

ft

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 23 /77

Program in C Values and Variables Expressions Standard Input/Output

C Programming Language

Low-level programming language
System programming language (operating system)

Language for (embedded) systems — MCU, cross-compilation
A user (programmer) can do almost everything

Initialization of the variables, release of the dynamically allocated memory, etc.

Very close to the hardware resources of the computer

Direct calls of OS services, direct access to registers and ports

Dealing with memory is crucial for correct behaviour of the program

One of the goals of the CPL course is to acquire fundamental principles that can
be further generalized for other programming languages. The C programming
language provides great opportunity to became familiar with the memory model
and key elements for writting efficient programs.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 24 /77

Program in C Values and Variables Expressions Standard Input/Output

C Programming Language

Low-level programming language
System programming language (operating system)
Language for (embedded) systems — MCU, cross-compilation
A user (programmer) can do almost everything
Initialization of the variables, release of the dynamically allocated memory, etc.
Very close to the hardware resources of the computer
Direct calls of OS services, direct access to registers and ports

Dealing with memory is crucial for correct behaviour of the program

One of the goals of the CPL course is to acquire fundamental principles that can
be further generalized for other programming languages. The C programming
language provides great opportunity to became familiar with the memory model
and key elements for writting efficient programs.

It is highly recommended to have compilation of your
program fully under control.

It may look difficult at the beginning, but it is relatively easy and straight-
forward. Therefore, we highly recommend to use fundamental tools for your
program compilation. After you acquire basic skills, you can profit from them
also in more complex development environments.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Writing Your C Program

m Source code of the C program is written in text files

m Header files usually with the suffix .h
m Sources files usually named with the suffix .c

® Header and source files together with declaration and definition
(of functions) support
= Organization of sources into several files (modules) and libraries
m Modularity — Header file declares a visible interface to others

A description (list) of functions and their arguments without particular
implementation

= Reusability

® Only the “interface” declared in the header files is need to use
functions from available binary libraries

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Valid Characters for Writing Source Codes in C

m Lowercase and uppercase letters, numeric characters, symbols and
separators ASCII — American Standard Code for Information Interchange

m a—z A-Z 0—9
B HEBR& () + - /i< =>7[\]" _{I|}~
® space, tabular, new line

m Escape sequences for writting special symbols
AR A

m Escape sequences for writting numeric values in a text string
® \o, \oo, where o is an octal numeral
® \xh, \xhh, where h is a hexadecimal numeral

int i = ’a’;
int h = 0x61;
int o = 0141;

printf("i: %i h: %i o: %i c: %c\n", i, h, o, i);
printf("oct: \141 hex: \x61\n");

E.g., \141, \x61 lec01/esqdho.c
m \0 — character reserved for the end of the text string (null
character)

O hAW N

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 26 /77

Program in C Values and Variables Expressions Standard Input/Output

Writing Identifiers in C

= |dentifiers are names of variables (custom types and functions)
Types and functions, viz further lectures

® Rules for the identifiers

Characters a—z, A—Z, 0-9 a

The first character is not a numeral

Case sensitive

Length of the identifier is not limited

First 31 characters are significant — depends on the implementation / compiler

= Keywordss,

auto break case char const continue default do
double else enum extern float for goto if int long
register return short signed sizeof static struct
switch typedef union unsigned void volatile while

C98

C99 introduces, e.g., inline, restrict, _Bool, _Complex, _Imaginary
C11 further adds, e.g., _Alignas, _Alignof, _Atomic, _Generic,
_Static_assert, _Thread_local

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Writing Codes in C

® Each executable program must have at least one function and the
function has to be main()

® The run of the program starts at the beginning of the function
main(), e.g.,
#include <stdio.h>

int main(void)
{
printf("I like BESB99CPL!\n");

return O;

W NOoOU A W N

}

® The form of the main() function is prescribed

See further examples in this lecture

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 28 /77

Program in C Values and Variables Expressions Standard Input/Output

Simple C Program

1 #include <stdio.h>

3 int main(void)

s {

5 printf ("I like BE5B99CPL!\n");
6

7 return O;

8

lecO1/program.c

m Source files are compiled by the compiler to the so-called object

files usually with the suffix .o
Object code contains relative addresses and function calls or just ref-
erences to function without known implementations.

® The final executable program is created from the object files by
the linker

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Program Compilation and Execution

m Source file program. c is compiled into runnable form by the
compiler, e.g., clang or gcc
clang program.c
® There is a new file a.out that can be executed, e.g.,

./a.out
Alternatively the program can be run only by a.out in the case the
actual working directory is set in the search path of executable files

® The program prints the argument of the function printf ()
./a.out
I like BESB99CPL!

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 30/ 77

Program in C Values and Variables Expressions Standard Input/Output

Program Compilation and Execution

Source file program. c is compiled into runnable form by the
compiler, e.g., clang or gcc
clang program.c

There is a new file a.out that can be executed, e.g.,

./a.out
Alternatively the program can be run only by a.out in the case the
actual working directory is set in the search path of executable files

The program prints the argument of the function printf ()
./a.out
I like BESB99CPL!

Jan Faigl,

If you prefer to run the program just by a.out instead of ./a.out you need
to add your actual working directory to the search paths defined by the
environment variable PATH

export PATH="$PATH: ‘pwd‘"
Notice, this is not recommended, because of potentially many working directories.

The command pwd prints the actual working directory, see man pwd

2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Structure of the Source Code — Commented Example

m Commented source file program.c

1 /* Comment is inside the markers (two characters)

2 and it can be split to multiple lines */

3 // In C99 - you can use single line comment

4 #include <stdio.h> /* The #include direct causes to
include header file stdio.h from the C standard
library */

6 int main(void) // simplified declaration

7 { // of the main function

8 printf("I like BESB99CPL!\n"); /* calling printf()
function from the stdio.h library to print string
to the standard output. \n denotes a new line */

9 return 0; /* termination of the function. Return

value O to the operating system * ALy

P g sy / R

I A\t
SRS

10 }

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 31/ 77

Program in C Values and Variables Expressions Standard Input/Output

Program Building: Compiling and Linking

® The previous example combines three steps of building the program
into a single call of the command (clang or gcc). The particular
steps can be performed individually

1. Text preprocessing by the preprocessor, which utilizes its own
macro language (commands with the prefix #)

All referenced header files are included into a single source file
2. Compilation of the source file into the object file

Names of the object files usually have the suffix .o
clang -c program.c -o program.o

The command combines preprocessor and compiler.

3. Executable file is linked from the particular object files and
referenced libraries by the linker (linking), e.g.,
clang program.o -o program

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 32/ 77

Program in C

Compilation and Linking Programs

Program development is editing of the source code (files with suf-

fixes .c and h), Human readable

m Compilation of the particular source files (.c) into object files (.o or
ObJ)) Machine readable

m Linking the compiled files into executable binary file;

| |

Execution and debugging of the application and repeated editing of
the source code.

.C .h .a/.lib
Source file ¢ i Header files i Lib files

Preprocesor)
,,,,,,,,,, Linker —— a.out
Compiler Executable binary file
| Object T Object files
o File .0/.obj
.0/.0bj

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 33 /77

Program in C Values and Variables Expressions Standard Input/Output

Steps of Compiling and Linking

m Preprocessor — allows to define macros and adjust compilation
according to the particular compilation environment

The output is text (“source”) file.

= Compiler — Translates source (text) file into machine readable form

Native (machine) code of the platform, bytecode, or assembler alternatively

m Linker — links the final application from the object files
Under OS, it can still reference library functions (dynamic libraries linked

during the program execution), it can also contains OS calls (libraries).

m Particular steps preprocessor, compiler, and linker are usually
implemented by a “single” program that is called with appropriate
arguments.

E.g., clang or gcc

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 34 /77

Program in C Values and Variables Expressions Standard Input/Output

Compilers of C Program Language

® In CPL, we mostly use compilers from the families of compilers:
m gcc — GNU Compiler Collection
https://gcc.gnu.org
m clang — C language family frontend for LLVM
http://clang.llvm.org
Under Win, two derived environments can be utilized: cygwin https://wuw.cygwin.com/ or
MinGW http://www.mingw.org/
= Basic usage (flags and arguments) are identical for both compilers
clang is compatible with gcc
m Example

® compile: gcc -c main.c -o main.o
® |ink: gcc main.o -o main

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 35 /77

https://gcc.gnu.org
http://clang.llvm.org
https://www.cygwin.com/
http://www.mingw.org/

Program in C Values and Variables Expressions Standard Input/Output

Functions, Modules, and Compiling and Linking

® Function is the fundamental building block of the modular
programming language

Modular program is composed of several modules/source files
Function definition consists of the

®m Function header
= Function body

Definition is the function implementation.

Function prototype (declaration) is the function header to
provide information how the function can be called

It allows to use the function prior its definition, i.e., it allows to compile
the code without the function implementation, which may be located in
other place of the source code, or in other module.

Declaration is the function header and it has the form

type function_name(arguments);

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 36 /77

Program in C Values and Variables Expressions Standard Input/Output

Functions in C

® Function definition inside other function is not allowed in C.

® Function names can be exported to other modules

Module is an independent file (compiled independently)
® Function are implicitly declared as extern, i.e., visible
m Using the static specifier, the visibility of the function can be
limited to the particular module Local module function
® Function arguments are local variables initialized by the values
passed to the function Arguments are passed by value (call by value)
m C allows recursions — local variables are automatically allocated
at the stack Further details about storage classes in next lectures.
® Arguments of the function are not mandatory — void arguments
fnc(void)
® The return type of the function can be void, i.e., a function
without return value — void fnc(void);

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 37 /77

Program in C Values and Variables Expressions Standard Input/Output

Example of Program / Module

1 #include <stdio.h> /* header file */

2 #define NUMBER 5 /* symbolic constatnt */

3

4 int compute(int a); /* function header/prototype */
5

6 int main(int argc, char *argv[])

7 { /* main function */

8 int v = 10; /* variable declaration */

9 int r;

10 r = compute(v); /* function call */

11 return 0; /* termination of the main function */
12}

14 int compute(int a)

15 { /* definition of the function */

16 int b = 10 + a; /* function body */
17 return b; /* function return value */

18}

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Program Starting Point — main ()

® Each executable program must contain at least one definition of
the function and that function must be the main ()
® The main() function is the starting point of the program
® The main() has two basic forms
1. Full variant for programs running under an Operating System (OS)
int main(int argc, char *argv[])

{

® |t can be alternatively written as
int main(int argc, char **argv)

{

}
2. For embedded systems without OS
int main(void)

{

Jan Faigl, 2017 } BE5B99CPL — Lecture 01: Introduction to C Programming 39 /77

Program in C Values and Variables Expressions Standard Input/Output

Arguments of the main() Function

m During the program execution, the OS passes to the program the

number of arguments (argc) and the arguments (argv)
In the case we are using OS

® The first argument is the name of the program

1 int main(int argc, char *argv[])

2 {

3 int v;

4 v = 10;

5 v=v+1;

6 return argc;
7}

lecO1/var.c

® The program is terminated by the return in the main() function

® The returned value is passed back to the OS and it can be further
use, e.g., to control the program execution.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 40 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example of Compilation and Program Execution

Building the program by the clang compiler — it automatically joins
the compilation and linking of the program to the file a.out
clang var.c

The output file can be specified, e.g., program file var
clang var.c -o var

Then, the program can be executed
./var

The compilation and execution can be joined to a single command
clang var.c -o var; ./var

The execution can be conditioned to successful compilation
clang var.c -o var && ./var

Programs return value — 0 means OK

Logical operator && depends on the command interpret, e.g., sh, bash, zsh

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 41 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example — Program Execution under Shell

® The return value of the program is stored in the variable $7
sh, bash, zsh

® Example of the program execution with different number of argu-
ments

./var

./var; echo $7?
1

./var 1 2 3; echo $7
4

./var a; echo $7
2

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 42 /77

Program in C Values and Variables Expressions Standard Input/Output

Example — Processing the Source Code by Preprocessor

m Using the -E flag, we can perform only the preprocessor step
gcc -E var.c

Alternatively clang -E var.c

1 # 1 "var.c"

2 # 1 "<built-in>"

3 # 1 "<command-line>"

4 # 1 "var.c"

5 int main(int argc, char **argv) {
6 int v;

7 v = 10;

8 v=v+1;

9 return argc;

10 }

lecO1/var.c

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Example — Compilation of the Source Code to Assembler

m Using the -S flag, the source code can be compiled to Assembler
clang -S var.c -o var.s

1 .file "var.c" 19 movq %rsi, -16(%rbp)
2 .text . 20 movl $10, -20(%rbp)
i ‘giggi T21n0x90 21 movl -20(%rbp), Y%edi
5 .type main,@function 22 addl ?1,.Aed1 o
e main: 23 movl %edi, -20(%rbp)

4 Omain 24 movl -8(Yrbp), %eax
7 .cfi_startproc 25 popq %rbp
8 # BB#0: 6 ret
9 pushg Y%rbp 27 .Ltmpb:) .
10 .Ltmp2: 28 -size main, .Ltmp5-main
11 .cfi_def_cfa_offset 16 gg -cfi_endproc
12 .Ltmp3: 31
13 .cfi_offset %rbp, -16 32 .ident "FreeBSD clang
14 movq %4rsp, hrbp version 3.4.1 (tags/
15 .Ltmp4: RELEASE_34/dot1-final
16 .cfi_def_cfa_register Yrbp 208032) 20140512"
17 movl $0, -4(%rbp) 33 .section ".note.GNU-stack","
18 movl Y%edi, -8(%rbp) ",@progbits

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 44 | 77

Program in C Values and Variables Expressions Standard Input/Output

Example — Compilation to Object File

® The souce file is compiled to the object file
clang -c var.c -o var.o
% clang -c var.c -o var.o
% file var.o
var.o: ELF 64-bit LSB relocatable, x86-64, version 1
(FreeBSD), not stripped

® Linking the object file(s) provides the executable file
clang var.o -o var
% clang var.o -o var
% file var
var: ELF 64-bit LSB executable, x86-64, version 1 (
FreeBSD), dynamically linked (uses shared libs),
for FreeBSD 10.1 (1001504), not stripped

dynamically linked
not stripped

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 45 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example — Executable File under OS 1/2

m By default, executable files are “tied” to the C library and OS services
m The dependencies can be shown by 1dd var
1dd var Idd — list dynamic object dependencies
var:
libc.so.7 => /1ib/libc.so.7 (0x2c41d000)

® The so-called static linking can be enabled by the -static compiler

option
clang -static var.o -o var
% 1dd var

% file var

var: ELF 64-bit LSB executable, x86-64, version 1 (
FreeBSD), statically linked, for FreeBSD 10.1
(1001504) , not stripped

% 1dd var

1dd: var: not a dynamic ELF executable

Check the size of the created binary files!
Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 46 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example — Executable File under OS 2/2

® The compiled program (object file) contains symbolic names (by
default)

E.g., usable for debugging.

clang var.c -o var
WwCc -c var
7240 var

wc — word, line, character, and byte count

-c — byte count

® Symbols can be removed by the tool (program) strip

strip var
wC -c var
4888 var

Alternatively, you can show size of the file by the command 1s -1

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C

Values and Variables Expressions Standard Input/Output

QOutline

= Values and Variables

Jan Faigl, 2017

BE5B99CPL — Lecture 01: Introduction to C Programming 48 / 77

Program in C Values and Variables Expressions Standard Input/Output

Writting Values of the Numeric Data Types — Literals

® Values of the data types are called literals
m C has 6 type of constants (literals)

= |nteger
® Rational
We cannot simply write irrational numbers
m Characters
m Text strings
= Enumerated Enum

® Symbolic — #define NUMBER 10

Preprocessor

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Integer Literals

® Integer values are stored as one of the integer type (keywords):
int, long, short, char and their signed and unsigned variants

Further integer data types are possible

® Integer values (literals)

B Decimal 123 450932

B Hexadecimal 0x12 OxFAFF (starts with 0x or OX)
® Qctal 0123 0567 (starts with 0)
® unsigned 12345U (suffix U or u)
m long 12345L (suffix L or 1)
m unsigned long 12345ul (suffix UL or ul)
m long long 12345LL (suffix LL or 11)

m Without suffix, the literal is of the type typu int

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 50 / 77

Program in C

Values and Variables Expressions

Literals of Rational Numbers

®m Rational numbers can be written

= with floating point — 13.1
® or with mantissa and exponent — 31.4e-3 or 31.4E-3

Scientific notation

m Floating point numeric types depends on the implementation, but

they usually follow IEEE-754-1985

m Data types of the rational literals:

® double — by default, if not explicitly specified to be another type
m float — suffix F or £

float f

® long double —suffix L or 1

Jan Faigl, 2017

long double 1d

BE5B99CPL — Lecture 01: Introduction to C Programming

float, double

10f;

101;

Standard Input/Output

51 /77

Program in C Values and Variables Expressions Standard Input/Output

Character Literals

m Format — single (or multiple) character in apostrophe
’A’, ’B’ or ’\n’
® Value of the single character literal is the code of the character
’0°~ 48, A’ ~ 65
Value of character out of ASCII (greater than 127) depends on the compiler.
® Type of the character constant (literal)
m character constant is the int type

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 52 /77

Program in C Values and Variables Expressions Standard Input/Output

String literals

® Format — a sequence of character and control characters (escape
sequences) enclosed in quotation (citation) marks
"This is a string constant with the end of line character \n"

m String constants separated by white spaces are joined to single
constant, e.g.,

"String literal" "with the end of the line character\n"

is concatenate into
"String literal with end of the line character\n"
m Type
m String literal is stored in the array of the type char terminated by
the null character *\0’
E.g., String literal "word" is stored as

7d7

?\o)

T2 707 Iy

The size of the array must be about 1 item longer to store \0!

More about text strings in the following lectures and labs

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Constants of the Enumerated Type

B Format
m By default, values of the enumerated type starts from 0 and each
other item increase the value about one
= Values can be explicitly prescribed

enum { enum {
SPADES, SPADES = 10,
CLUBS, CLUBS, /* the value is 11 */
HEARTS, HEARTS = 15,
DIAMONDS DIAMONDS = 13
}s };

The enumeration values are usually written in uppercase
m Type — enumerated constant is the int type
® Value of the enumerated literal can be used in loops
enum { SPADES = O, CLUBS, HEARTS, DIAMONDS, NUM_COLORS };
for (int i = SPADES; i < NUM_COLORS; ++i) {
}

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 54 /77

Program in C Values and Variables Expressions Standard Input/Output

Symbolic Constant — #define

Format — the constant is established by the preprocessor command
#define
® |t is macro command without argument
® Each #define must be on a new line
#define SCORE 1

Usually written in uppercase

Symbolic constants can express constant expressions

#define MAX_1 ((10%6) - 3)
Symbolic constants can be nested

#define MAX_2 (MAX_1 + 1)
Preprocessor performs the text replacement of the define
constant by its value

#define MAX_2 (MAX_1 + 1)

It is highly recommended to use brackets to ensure correct evaluation of
the expression, e.g., the symbolic constant 5*MAX_1 with the outer brackets
is 5*((10%6) - 3)=285 vs 5%(10%6) - 3=297.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 55 /77

Program in C Values and Variables Expressions Standard Input/Output

Variable with a constant value
modifier (keyword) (const)

Using the keyword const, a variable can be marked as constant
Compiler checks assignment and do not allow to set a new value to the variable.

A constant value can be defined as follows
const float pi = 3.14159265;

In contrast to the symbolic constant
#define PI 3.14159265

Constant values have type, and thus it supports type checking

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Example: Sum of Two Values

1 #include <stdio.h>

3 int main(void)

« {

5 int sum; // definition of local variable of the int type
6

7 sum = 100 + 43; /* set value of the expression to sum */
8 printf ("The sum of 100 and 43 is %i\n", sum);

9 /* i formatting commend to print integer number */

10 return O;

11

® The variable sum of the type int represents an integer number.
Its value is stored in the memory

® sum is selected symbolic name of the memory location, where the
integer value (type int) is stored

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 57 /77

Program in C Values and Variables Expressions Standard Input/Output

Example of Sum of Two Variables

1 #include <stdio.h>

2

3 int main(void)

4+ {

5 int varl;

6 int var2 = 10; /* inicialization of the variable */
7 int sum;

8

9 varl = 13;

10

11 sum = varl + var2;

12

13 printf ("The sum of %i and %i is %i\n", varl, var2, sum);
14

15 return O;

16 F

® Variables var1, var2 and sum represent three different locations in
the memory (allocated automatically), where three integer values
are stored.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Variable Declaration

® The variable declaration has general form
declaration-specifiers declarators;

® Declaration specifiers are:
m Storage classes: at most one of the auto, static, extern,
register
®m Type quantifiers: const, volatile, restrict
Zero or more type quantifiers are allowed

m Type specifiers: void, char, short, int, long, float, double,
signed, unsigned. In addition, struct and union type specifiers
can be used. Finally, own types defined by typedef can be used as
well.

Detailed description in further lectures.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 59 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization
unsigned char

1 unsigned char vari; m Each variable allocate 1 byte

> unsigned char var2; = Content of the memory is not de-
3 unsigned char sum; fined after allocation

¢ ® Name of the variable ‘“refer-
s varl = 13; ences’ to the particular memory
¢ var2 = 10; location

® Value of the variable is the con-
tent of the memory location

0 [99]55]

8 sum = varl + var2;

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization
unsigned char

1 unsigned char varil; Each variable allocate 1 byte

> unsigned char var2; Content of the memory is not de-
3 unsigned char sum; fined after allocation

Name of the variable “refer-
ences’ to the particular memory
location

IS
|

5 varl = 13;
10;

6 var2

Value of the variable is the con-
tent of the memory location

0 [99]55]

8 sum = varl + var2;

varl

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization
unsigned char

1 unsigned char varl; Each variable allocate 1 byte

2 unsigned char var2;

Content of the memory is not de-
3 unsigned char sum; fined after allocation

Name of the variable “refer-
ences’ to the particular memory
location

IS
|

5 varl = 13;
10;

6 var2

Value of the variable is the con-
tent of the memory location

8 sum = varl + var2;

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization
unsigned char

1 unsigned char varl; Each variable allocate 1 byte

2 unsigned char var2;

Content of the memory is not de-
3 unsigned char sum; fined after allocation

Name of the variable “refer-
ences’ to the particular memory
location

IS
|

5 varl = 13;
10;

6 var2

Value of the variable is the con-
tent of the memory location

8 sum = varl + var2;

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization
unsigned char

1 unsigned char varl; Each variable allocate 1 byte

2 unsigned char var2;

Content of the memory is not de-
3 unsigned char sum; fined after allocation

Name of the variable “refer-
ences’ to the particular memory
location

IS
|

5 varl = 13;
10;

6 var2

Value of the variable is the con-
tent of the memory location

8 sum = varl + var2;

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization
unsigned char

1 unsigned char varl; Each variable allocate 1 byte

2 unsigned char var2;

Content of the memory is not de-
3 unsigned char sum; fined after allocation

Name of the variable “refer-
ences’ to the particular memory
location

IS
|

5 varl = 13;
10;

6 var2

Value of the variable is the con-
tent of the memory location

8 sum = varl + var2;

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization
unsigned char

1 unsigned char varl; Each variable allocate 1 byte

2 unsigned char var2;

Content of the memory is not de-
3 unsigned char sum; fined after allocation

Name of the variable “refer-
ences’ to the particular memory
location

IS
|

5 varl = 13;
10;

6 var2

Value of the variable is the con-
tent of the memory location

8 sum = varl + var2;

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization
unsigned char

1 unsigned char varil; Each variable allocate 1 byte

2 unsigned char var2;

Content of the memory is not de-
3 unsigned char sum; fined after allocation

Name of the variable “refer-
ences’ to the particular memory
location

IS
|

5 varl = 13;
10;

6 var2

Value of the variable is the con-
tent of the memory location

8 sum = varl + var2;

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 60 / 77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization int

1 int vari;
2 int var2;
3 int sum;

s // 00 00 00 13
6 varl = 13;

o var2 = 500;
10

11 sum = varl + var2;

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017

® Variables of the int types allocate 4
bytes
Size can be find out by the operator sizeof (int)
® Memory content is not defined after the
definition of the variable to the memory

AN AN

i N N
s // x00 x00 x01 xF4 | 0x0 [0x1 | 0x2 | 0x3 | 0x4 | 0x4 | 0x6 | 0x7 |

| 0x8 | 0x9 | 0xA | 0xB | 0xC | 0xD | OxE | OxF |
K~ 4
~

500 (dec) is 0x01F4 (hex)
513 (dec) is 0x0201 (hex)

BE5B99CPL — Lecture 01: Introduction to C Programming 61 /77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization int

1 int vari; ® Variables of the int types allocate 4
2 int var?2; bytes
3 int sum; Size can be find out by the operator sizeof (int)
4 ® Memory content is not defined after the
s // 00 00 00 13 definition of the variable to the memory
6 varl = 13;

varl
7 N AN

ya N BN
s // x00 x00 x01 xF4 00 [ox1 [0x2 [0x3 | 0x4 [0x4 [0x6 | 0x7 |
o var2 = 500;

10

| 0x8 | 0x9 | 0xA | 0xB | 0xC | 0xD | OxE | OxF |
N~ _/
~"

11 sum = varl + var2;

500 (dec) is 0x01F4 (hex)
513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 61 /77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization int

1 int vari; ® Variables of the int types allocate 4
2 int var?2; bytes

3 int sum; Size can be find out by the operator sizeof (int)
4 ® Memory content is not defined after the
s // 00 00 00 13 definition of the variable to the memory
6 varl = 13; vard e

7 N AN

ya N BN
s // x00 x00 x01 xF4 o0 [ox1 [0x2 [0x3 | 0x4 [0x4 [0x6 | 0x7 |
o var2 = 500;

10

| 0x8 | 0x9 | 0xA | 0xB | 0xC | 0xD | OxE | OxF |
N~ _/
~"

11 sum = varl + var2;

500 (dec) is 0x01F4 (hex)
513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 61 /77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization int

1 int varil; ® Variables of the int types allocate 4
2 int var?2; bytes

3 int sum; Size can be find out by the operator sizeof (int)
4 ® Memory content is not defined after the
s // 00 00 00 13 definition of the variable to the memory
o varl = 13; varl var2

7 N AN

ya N N
s // x00 x00 x01 xF4 [ox0 [ox1 [0x2 [0x3 | 0x4 | x4 | 0x6 [0x7 |
o var2 = 500;

10

| 0x8 | 0x9 | 0xA | 0xB | 0xC | oxD | 0xE | 0xF |
— _/

~

sum

11 sum = varl + var2;

500 (dec) is 0x01F4 (hex)
513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 61 /77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization int

1 int varil; ® Variables of the int types allocate 4
2 int var?2; bytes

3 int sum; Size can be find out by the operator sizeof (int)
4 ® Memory content is not defined after the
s // 00 00 00 13 definition of the variable to the memory
o varl = 13; varl var2

7 N AN

yau N BN
s // x00 x00 x01 xF4 7537 0 [0 | 0 | ox4 | Oxé | 0x6 | 0x7 |

o var2 = 500;

10

| 0x8 | 0x9 | 0xA | 0xB | 0xC | oxD | 0xE | 0xF |
— _/

~

sum

11 sum = varl + var2;

500 (dec) is 0x01F4 (hex)
513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 61 /77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization int

1 int varil; ® Variables of the int types allocate 4
2 int var?2; bytes

3 int sum; Size can be find out by the operator sizeof (int)
4 ® Memory content is not defined after the
s // 00 00 00 13 definition of the variable to the memory
o varl = 13; varl var2

7 N AN

s N N
s // x00 x00 x01 xF4 13T 0 [o [o | ox4o0x01]0x00 0x00]
o var2 = 500;

10

| 0x8 | 0x9 | 0xA | 0xB | 0xC | oxD | 0xE | 0xF |
— _/

~

sum

11 sum = varl + var2;

500 (dec) is 0x01F4 (hex)
513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 61 /77

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory — Visualization int

1 int varil; ® Variables of the int types allocate 4
2 int var?2; bytes

3 int sum; Size can be find out by the operator sizeof (int)
4 ® Memory content is not defined after the
s // 00 00 00 13 definition of the variable to the memory
o varl = 13; varl var2

7 N AN

=

N N
s // x00 x00 x01 xF4 13T 0 [0o [o |oxf4o0x01]0x00]0x00]
o var2 = 500;

10

| 0x1 | 0x2 | 0x0 | 0x0 | oxC | oxD | 0xE | 0xF |
— _/

~

sum

11 sum = varl + var2;

500 (dec) is 0x01F4 (hex)
513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 61 /77

Program in C Values and Variables Expressions Standard Input/Output

QOutline

= Expressions

ft

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 62 /77

Program in C Values and Variables Expressions Standard Input/Output

Expressions

Expression prescribes calculation value of some given input

Expression is composed of operands, operators, and brackets

® Expression can be formed of

m literals ® unary and binary operators
= variables m function calling
® constants ® brackets
® The order of operation evaluation is prescribed by the operator
precedence and associativity.
Example
10 + x *x y // order of the evaluation 10 + (x * y)
10+ x +y // order of the evaluation (10 + x) + y

* has higher priority than +
+ is associative from the left-to-right

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 63 /77

Program in C Values and Variables Expressions Standard Input/Output

Operators

m Operators are selected characters (or a sequences of characters)
dedicated for writting expressions
® Five types of binary operators can be distinguished
m Arithmetic operators — additive (addition/subtraction) and multi-
plicative (multiplication/division)
m Relational operators — comparison of values (less than, greater than,

® Logical operators — logical AND and OR
m Bitwise operators — bitwise AND, OR, XOR, bitwise shift (left, right)
® Assignment operator = — a variables (I-value) is on its left side
® Unary operators
® Indicating positive/negative value: + and —
Operator — modifies the sign of the expression
® Modifying a variable : ++ and ——
m Logical negation: !
= Bitwise negation: ~

® Ternary operator — conditional expression 7 :

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 64 /77

Program in C Values and Variables Expressions Standard Input/Output

Variables, Assignment Operator, and Assignment Statement

m Variables are defined by the type and name
® Name of the variable are in lowercase
® Multi-word names can be written with underscore _

i . . . Or we can use CamelCase
m Each variable is defined at new line

int n;
int number_of_items;
int numberOfItems;
® Assignment is setting the value to the variable, i.e., the value is
stored at the memory location referenced by the variable name
m Assignment operator
(I-value) = (expression)
Expression is literal, variable, function calling, . ..
® The side is the so-called |-value — location-value, left-value
It must represent a memory location where the value can be stored.
= Assignment is an expression and we can use it everywhere it is
allowed to use the expression of the particular type.

m Assignment statement is the assignment operator = and ;

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 65 / 77

Program in C Values and Variables Expressions Standard Input/Output

Basic Arithmetic Expressions

m For an operator of the numeric types int and double, the

following operators are defined
Also for char, short, and float numeric types.

® Unary operator for changing the sign —
= Binary addition + and subtraction —
® Binary multiplication * and division /
m For integer operator, there is also
® Binary module (integer reminder) %
m |f both operands are of the same type, the results of the
arithmetic operation is the same type

® |n a case of combined data types int and double, the data type
int is converted to double and the results is of the double type.

Implicit type conversion

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 66 / 77

Program in C Values and Variables Expressions Standard Input/Output

Example — Arithmetic Operators 1/2

int a = 10;
int b = 3;
int ¢ = 4;
int d = 5;

int result;

result = a - b; // subtraction
printf("a - b = %i\n", result);

©ow N OO s WNRH

10 result = a * b; // multiplication
11 printf("a * b = %i\n", result);

13 result = a / b; // integer divison
14 printf("a / b = Ji\n", result);

16 result = a + b *x c; // priority of the operators
17 printf("a + b * ¢ = %i\n", result);

18

19 printf("a * b + c * d = %i\n", a * b + ¢ * d); // -> 50
20 printf("(a * b) + (c * d) = %i\n", (a * b) + (c * d)); // -> 50
21 printf("a * (b + c) * d = %i\n", a * (b + c) * d); // -> 350

lecOl/arithmetic_operators.c

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 67 / 77

Program in C Values and Variables Expressions Standard Input/Output

o N O s W N

10
11
12
13

15
16

17

18
19

20
21
22
23

Example — Arithmetic Operators 2/2

#include <stdio.h>

int main(void)

{

int x1 = 1;

double y1 = 2.2357;
float x2 = 2.5343f;
double y2 = 2;

printf("P1 = (%i, %£)\n", x1, y1);

printf ("P1 (%i, %id)\n", x1, (int)yl);

printf("P1 = (%f, %f)\n", (double)xl, (double)yl);
printf("P1 = (%.3f, %.3f)\n", (double)xl, (double)yl);

6, ®E)\n", x2, y2);

printf ("P2

double dx = (x1 - x2); // implicit data conversion to float
double dy = (y1 - y2); // and finally to double

printf("(P1 - P2)=(%.3f, %0.3f)\n", dx, dy);
printf("|P1 - P2|~2=),.2f\n", dx * dx + dy * dy);
return O;

lecO1/points.c

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 68 / 77

Program in C Values and Variables Expressions Standard Input/Output

QOutline

= Standard Input/Output

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Standard Input and Output

® An executed program within Operating System (OS) environments
has assigned (usually text-oriented) standard input (stdin) and

output (stdout)
Programs for MCU without OS does not have them

® The stdin and stdout streams can be utilized for communication
with a user

® Basic function for text-based input is getchar () and for the output
putchar ()
Both are defined in the standard C library <stdio.h>

® For parsing numeric values the scanf () function can be utilized

® The function printf () provides formatted output, e.g., a number
of decimal places

They are library functions, not keywords of the C language.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 70 / 77

Program in C Values and Variables Expressions Standard Input/Output

Formatted Output — printf ()

Numeric values can be printed to the standard output using printf ()

man printf or man 3 printf

The first argument is the format string that defines how the values
are printed

The conversion specification starts with the character ’%’

Text string not starting with % is printed as it is

Basic format strings to print values of particular types are

char %he

_Bool %i, %u

int hi, %x, ho

float WE, he, he, ha

double %, hhe, he, ha
Specification of the number of digits is possible, as well as an align-
ment to left (right), etc.

Further options in homeworks and lab exercises.

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 71/ 77

Program in C Values and Variables Expressions Standard Input/Output

Formatted Input — scanf ()

® Numeric values from the standard input can be read using the
scanf() fUﬂCtiOﬂ man scanf or man 3 scanf

® The argument of the function is a format string
Syntax is similar to printf ()

® |t is necessary to provide a memory address of the variable to set
its value from the stdin
® Example of readings integer value and value of the double type

1 #include <stdio.h>

2

3 int main(void)

4 A

5 int i;

6 double d;

7

8 printf ("Enter int value: ");

9 scanf ("%i", &i); // operator & returns the address of i
10

11 printf ("Enter a double value: ");

12 scanf ("%1f", &d);

13 printf("You entered %02i and %0.1f\n", i, d);

14

15 } return 0; lecO1/scanf.c

16
Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 72 /77

Program in C

Values and Variables Expressions Standard Input/Output

Example: Program with Output to the stdout 1/2

® |nstead of printf () we can use fprintf () with explicit output
stream stdout, or alternatively stderr; both functions from the
<stdio.h>

O 00 N O O~ W N

10
11

12 }
13}

Jan Faigl, 2017

fprintf (
for (int i
fprintf(

#include <stdio.h>

int main(int argc,
fprintf(
fprintf(
fprintf(
if (argec > 1)

>

{

char **argv) {

"My first program in C!\n");

"Tts name is \"%s\"\n", argv[0]);
"Run with %d arguments\n", argc);

, "The arguments are:\n");
1; 1 < arge; ++i) {
, "Arg: %d is \"%s\"\n", i, argv[il);

BE5B99CPL — Lecture 01: Introduction to C Programming

Program in C Values and Variables Expressions Standard Input/Output

Example: Program with Output to the stdout 2/2

® Notice, using the header file <stdio.h>, several other files are in-
cluded as well to define types and functions for input and output.
Check by, e.g., clang -E print_args.c

clang print_args.c -o print_args
./print_args first second

My first program in C!

Its name is "./print_args"

It has been run with 3 arguments
The arguments are:

Arg: 1 is "first"

Arg: 2 is "second"

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 74 /77

Program in C Values and Variables Expressions Standard Input/Output

Extended Variants of the main () Function

m Extended declaration of the main() function provides access to
the environment variables
For Unix and MS Windows like OS
int main(int argc, char **argv, char *xenvp) { ... }
The environment variables can be accessed using the function getenv ()

from the standard library <stdlib.h>.
lecO1/main_env.c

m For Mac OS X, there are further arguments

int main(int argc, char #**argv, char **envp, char **apple)

{
}

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 75 /77

Topics Discussed

Summary of the Lecture

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 76 /77

Topics Discussed

Topics Discussed

® Information about the Course
® |ntroduction to C Programming

® Program, source codes and compilation of the program
Structure of the souce code and writting program
Variables and basic types

Variables, assignment, and memory

Basic Expressions

Standard input and output of the program

Formating input and output

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 77 /77

Topics Discussed

Topics Discussed

® Information about the Course
® |ntroduction to C Programming

® Program, source codes and compilation of the program
Structure of the souce code and writting program
Variables and basic types

Variables, assignment, and memory

Basic Expressions

Standard input and output of the program

Formating input and output

m Next: Expressions and Bitwise Operations, Selection Statements
and Loops

Jan Faigl, 2017 BE5B99CPL — Lecture 01: Introduction to C Programming 77 /77

