& ... PRG-PROGRAMMING ESSENTIALS

Lecture 4 — Compound data types, Traversals

Milan Nemy

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics

https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz



https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

17/10/25

Everything in Python is

Python is language

(type changes with reference)

The methods and variables are created on the
The objects and instances are created on the

New is created on invocation of a

function / method and references are assigned & counted
Stack frames are destroyed as soon as the

function / method returns

Mechanism to clean up the dead objects is

(algorithm used is and immediate object
removal if count == 0)

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

Milan Nemy, Czech Technical University in Prague


https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s
https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s
https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s
https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

CTU

COMPOUND DATATYPES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

@ example_06.py

/opt/local/bin/python3.6 "/Users/mi
HELLO, WORLD!
hello, world!
__hame__ hELLO, WORLD!'
example

(example.upper()) Process finished with exit code ©

(example. lower())

(example.swapcase()]]

e So far built-in types like
* Compound data types:
; : , and are different from the
others because they are made up of smaller pieces
(characters in case of a string, items in case of a list)

* Types comprising smaller pieces are

source http://openbookproject.net/thinkcs/python/english3e/strings.html

17/10/25 Milan Nemy, Czech Technical University in Prague


http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

CTU

STRINGS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

 Example: is @ method that
can be invoked on any string
object to create a new string,
where all the characters are in

uppercase

([ ]
) 4

* Use documentation & help!

source http://openbookproject.net/thinkcs/python/english3e/strings.html

17/10/25 Milan Nemy, Czech Technical University in Prague



http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

CTU

STRINGS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

if word < "banana":

print("Your word, " + word + ", comes before banana.")
elif word > "banana":

print("Your word, " + word + ", comes after banana.")
else:

print("Yes, we have no bananas!")

greeting = "Hello, world!" greeting = "Hello, world!"
greeting[@] = 'J°' # ERROR! new_greeting = "J" + greeting[1:]
print(greeting) print(new_greeting)

 Comparing strings: strings are in the alphabetical order
(except that all uppercase letters come before the lowercase)

* Strings are

(existing string cannot be changed, new one should be
created instead)

source http://openbookproject.net/thinkcs/python/english3e/strings.html

17/10/25 Milan Nemy, Czech Technical University in Prague



http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

CTU

STRINGS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def find(strng, ch):

Find and return the index of ch in strng.
Return -1 if ch does not occur in strng.

>>> llpll in llapplell )
True ix =@ .
- o1 1e" while ix < len(strng):

>>> “1° 1n “app if strng[ix] == ch:

False . return ix

>>> "ap" in "apple” ix += 1

True return -1

>>> "pa" in "apple"

False test(find("Compsci”, "p") == 3)
test(find("Compsci”, "C") == @)
test(find("Compsci”, "i") == 6)
test(find("Compsci”, "x") == -1)

* Thein/ operator tests for

* Method is the opposite of the indexing operator:
it takes a character (item in case of a list) and finds the index

of the character / item (if not found then exception is raised)

 Method works for strings in a similar way

(if the character is not found, the function returns -1)

source http://openbookproject.net/thinkcs/python/english3e/strings.html

17/10/25 Milan Nemy, Czech Technical University in Prague


http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

17/10/25

STRINGS

»>»> ss = "Well I never did said Alice"
>>> wds = ss.split()
>>> wds

[ '"Well', 'I', 'never', 'did', 'said', 'Alice']

e The method:

it splits a single multi-word string into a list of individual
words, removing all the whitespace between them
(whitespace are: tabs, newlines, spaces)

* Explore the method on your own!

sentence = .join(words)
print(sentence)
What is your name ?

=
oo words = [
®

e
+

source http://openbookproject.net/thinkcs/python/english3e/strings.html

Milan Nemy, Czech Technical University in Prague


http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

17/10/25

STRINGS

sl = "His name is {@}!".format("Arthur")
print(s1)

name = "Alice" His name is Arthur!

age = 10 I am Alice and I am 10 years old.

s2 = "I am {1} and I am {@} years old.".format(age, name) 2%*¥10 = 1024 and 4 * 5 = 20.000000
print(s2)

nl
n2 5

s3 "2*%*¥19 = {@} and {1} * {2} = {3:f}".format(2**10, nl, n2, nl * n2)
print(s3)

4

The method substitutes its arguments into the place holders

( )

Format specification — it is always introduced by the colon
Field is aligned to the <, A or >

Width allocated to the field within the result string
Type conversion

Specification of

(.2f is useful for when rounding to two decimal places.)

source http://openbookproject.net/thinkcs/python/english3e/strings.html

Milan Nemy, Czech Technical University in Prague


http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

CTU

LISTS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>>> vocabulary = ["apple", "cheese", "dog"]
>>> numbers = [17, 123]

>>> an_empty list = []

»>>> print(vocabulary, numbers, an_empty list)
["apple”, "cheese", "dog"] [17, 123] []

e A IS an
* Values of a list are called its or
e Similar to strings (
except that the elements of a list can be of

— and other collections that maintain the
order of their items — are called

is said to be
EECEDR list, and is denoted

source http://openbookproject.net/thinkcs/python/english3e/lists.html

17/10/25 Milan Nemy, Czech Technical University in Prague


http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

CTU

LISTS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

students = [ >>> a = [1, 2, 3]
("John", ["CompSci", "Physics"]), >>> b = [4, 5, 6]
("Vusi", ["Maths", "CompSci", "Stats"]), B ’ bJ
("Jess", ["CompSci", "Accounting", "Economics", "Management"]), S
("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]), >>> C
("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])] [1, 2, 3, 4, 5, 6]

# Count how many students are taking CompSci

counter = 0

for (name, subjects) in students: >>> [0] * 4
if "CompSci" in subjects:

counter += 1 [0, @, @, @]
>»> [1, 2, 3] * 3
print("The number of students taking CompSci is", counter) [, 2, 3,1, 2, 3, 1, 2, 3]

Expression evaluating to an integer can be used as an index
Function returns (number of its elements)

Testing membership using in /
Operators + ( ) and

source http://openbookproject.net/thinkcs/python/english3e/lists.html

17/10/25 Milan Nemy, Czech Technical University in Prague


http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

CTU

LISTS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>>> a_list = [llall, "d", ||_F||]
>»> a_list[1:1] = ["b", "c"]

>>> a_list

>>> a_list = [llall, llbll, Ilcll, Ildll, Ilell, Ilfll] [IaI, ‘b‘, ‘C‘J 'd', 'f']
>>> a_list[1:3] >>> a_list[4:4] = ["e"]
['b", "c'] >>> a_list
>3 a_list[:4] [Ialj ‘b‘, ‘C‘, IdI, leI, I'FI]
[Ialj |er ‘C‘, Idl]
>>> a_list[3:]
[Idl, Iet, I_F!] %> a_list - ["a", "b", "C", "d", ||e||, u_Fu]
>>> a list[:] >>> a_list[1:3] = []
[Ial, Ibt, ‘C‘, ldi, 'e', '-F'] >>> a_list

[Ial, Id!, teI, l-FI]

>>> my_string = "TEST"
>>>» my_string[2] = "X"
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
TypeError: 'str' object does not support item assignment

>>> my_].ist = I:ll-l-llJ "E", "S",
>>> my_list[2] = "X"

>>> my_list
[ITI, lEt,

“T]

Ixt, ITI]

e Lists are
e Use same
e Use

(we can change list elements)

as for strings
to delete list elements

source http://openbookproject.net/thinkcs/python/english3e/lists.html

17/10/25 Milan Nemy, Czech Technical University in Prague 11


http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

CTU

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

17/10/25

TUPLES

>»> julia = ("Julia", "Roberts", 1967, "Duplicity"”, 2009, "Actress", "Atlanta, Georgia")

>>> julia[2] >>> julia[e] = "X"
1967 TypeError: 'tuple' object does not support item assignment

The pair data example is an example of a
Tuple groups any number of items into a
Tupleis a

Other languages often call it

(some related information that belongs together)

Important: strings and tuples are (once Python creates a tuple
in memory, it cannot be changed)
Elements of a tuple cannot be modified,

should always be made instead!

source http://openbookproject.net/thinkcs/python/english3e/tuples.html

Milan Nemy, Czech Technical University in Prague

12


http://openbookproject.net/thinkcs/python/english3e/tuples.html
http://openbookproject.net/thinkcs/python/english3e/tuples.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

17/10/25

TUPLES

(name, surname, b _year, movie, m_year, profession, b _place) = julia

»>>> b = ("Bob", 19, "CS") # tuple packing

>»> b = ("Bob", 19, "CS")

>>> (name, age, studies) = b # tuple unpacking
>>> name

'Bob’

>>> age

Powerful

>>> (a, b, ¢, d) = (1, 2, 3)
ValueError: need more than 3 values to unpack

(remember variable swapping?)

Equivalent of

Requirement: the number of

the

in the tuple

Tuple assignment is called tuple

source http://openbookproject.net/thinkcs/python/english3e/tuples.html

Milan Nemy, Czech Technical University in Prague

must match

13


http://openbookproject.net/thinkcs/python/english3e/tuples.html
http://openbookproject.net/thinkcs/python/english3e/tuples.html

CTU

TUPLES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def f(r):
""" Return (circumference, area) of a circle of radius r
C 2 * math.pi * r
a = math.pi * r * p
return (c, a)

mimwrn

Use of tuples in functions as

Function can always only return a single value, but by making
that value a tuple, as many values can be as
is needed (e.g. find the mean and the standard deviation)

Tuple items can themselves be other tuples ( )

: can be composed of elements
of different types (tuples, strings, lists)

source http://openbookproject.net/thinkcs/python/english3e/tuples.html

17/10/25 Milan Nemy, Czech Technical University in Prague 14



http://openbookproject.net/thinkcs/python/english3e/tuples.html
http://openbookproject.net/thinkcs/python/english3e/tuples.html

CTU

UNPACKING - PAIRED DATA

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

celebs = [("Brad Pitt", 1963), ("Jack Nicholson", 1937),
("Justin Bieber"”, 1994)]

print(celebs) [("Brad Pitt", 1963), ("Jack Nicholson", 1937), ("Justin Bieber", 1994)]
print(len(celebs) 3

for (nm, yr) in celebs:
if yr < 1980:
print(nm)

Brad Pitt
Jack Nicholson

 Example of paired data: lists of names and lists of numbers

* Advanced way of representing data: making a pair of things is
as simple as putting them into parentheses (i.e. )

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

17/10/25 Milan Nemy, Czech Technical University in Prague

15


http://openbookproject.net/thinkcs/python/english3e/iteration.html
http://openbookproject.net/thinkcs/python/english3e/iteration.html

CTU

CZECH TECHNICAL I N D EXI N G
>>> fruit = "banana” >>> m = fruit[9]
>>> m = fruit[1] >>> print(m)
>>> print(m) b

Python uses to enclose the index —

The expression in brackets is called an
Example: The expression fruit[1] selects character number 1
from fruit, and creates a new string containing just this one

character

Computer scientists always start

An index specifies a

(in this case the collection of characters in the string)
Index indicates which one you want, hence the name
Index can be any (not only value)

source http://openbookproject.net/thinkcs/python/english3e/strings.html

17/10/25 Milan Nemy, Czech Technical University in Prague 16



http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

17/10/25

INDEXING

>>> fruit = "banana"
>>> list(enumerate(fruit))

[(01 ‘b‘)l (1-’ 'a')J (2-1 'n'), (3, IaI)J (4.1 'n‘), (5-’ ‘a')]

>>> prime_nums = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

>>> prime_nums[4]

11

>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
>>> friends[3]

"Angelina’

Use to visualize indices
Note that indexing strings returns a string: Python has no

special type for a single character (string of length = 1)
Use to extract elements from a list

source http://openbookproject.net/thinkcs/python/english3e/strings.html

Milan Nemy, Czech Technical University in Prague

17


http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

CTU

INDEXING

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

17/10/25

>>> ;rui; = "banana” sz = len(fruit) sz = len(fruit)
;>> en(fruit) last = fruit[sz] # ERROR! last = fruit[sz-1]

IndexError: string index out of range.

Use to extract the (indexing from 0!)
Negative indices count backward from the end of the string

The expression fruit[-1] yields the last letter
Traversals: VS. comparison again!

ix = 0

while ix < len(fruit):
letter = fruit[ix]
print(letter)
ix += 1

for ¢ in fruit:
print(c)

source http://openbookproject.net/thinkcs/python/english3e/strings.html

Milan Nemy, Czech Technical University in Prague

18


http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

CTU

SLICING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

n

>>> s = "Pirates of the Caribbean
>>> print(s[@:7])

Pirates wt—"hbanana"
>>> print(s[11:14]) P—
the index 0 1 2 3 4 5 6
>>> print(s[15:24])
Caribbean

>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
>>> print(friends[2:4])

['Brad’, 'Angelina']

A of a string is obtained by taking a

Slice a list to refer to some of the items in the list

The operator returns the part of the string from the n’th character
to the m’th character, (indices

pointing between the characters)
Slice operator [n:m] out the part of the paper between

the n and m positions
Result of will be of

source http://openbookproject.net/thinkcs/python/english3e/strings.html

17/10/25 Milan Nemy, Czech Technical University in Prague


http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

17/10/25

SLICING

»>> fruit = "banana"
>>> fruit[:3]

'ban’

>>> fruit[3:]

‘ana'

>>> fruit[3:999]
‘ana'

If you (before the colon), the slice starts at

the beginning of the string (or list)
If you , the slice extends to the end of

the string (or list)

If you provide value for n that is bigger than the length of the
string (or list), the slice will take all the values up to the end
No like the normal indexing operation

source http://openbookproject.net/thinkcs/python/english3e/strings.html

Milan Nemy, Czech Technical University in Prague

20


http://openbookproject.net/thinkcs/python/english3e/strings.html
http://openbookproject.net/thinkcs/python/english3e/strings.html

CTU

an TRAVERSAL -THE FORLOOP

UNIVERSITY
IN PRAGUE

def mysum(xs):
""" Sum all the numbers in the list xs, and return the total. """
running total = ©
for x in xs:
running total = running_total + x
return running_total

# Add tests Like these to your test suite ...

test(mysum([1, 2, 3, 4]) == 18)

test(mysum([1.25, 2.5, 1.75]) == 5.5)

test(mysum([1, -2, 3]) == 2)

test(mysum([ ]) == 9)

test(mysum(range(11)) == 55) # 11 is not included in the List.

Automate without errors
Repeated execution of a set of statements is called

Already explored for, now explore
Running through all items in a list is

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

17/10/25 Milan Nemy, Czech Technical University in Prague


http://openbookproject.net/thinkcs/python/english3e/iteration.html
http://openbookproject.net/thinkcs/python/english3e/iteration.html

CTU

TRAVERSAL - THE WHILE LOOP

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def sum_to(n):
""" Return the sum of 1+2+3 ... n """
ss =0
v =1
while v <= n:
SS = SS + V
v=yVv+1
return ss

# For your test suite
test(sum_to(4) == 10)
test(sum_to(1000) == 500500)

The statement has the same meaning as in English
Evaluate the condition (at line 5) either or :
If the value is , exit the while statement and continue execution at

the next statement (/ine 8 in this case)

If the value is , execute each of the statements in the body (/ines 6 and
7), then go back to the statement

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

17/10/25 Milan Nemy, Czech Technical University in Prague


http://openbookproject.net/thinkcs/python/english3e/iteration.html
http://openbookproject.net/thinkcs/python/english3e/iteration.html

CTU

TRAVERSAL - THE WHILE LOOP

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def sum _to(n):

""" Return the sum of 1+2+3 ... n """

ss =0

v=1 def sum_to(n):

while v <= n: """ Return the sum of 1+2+3 ...
SS = SS + V ss =0
V=vVv+1 for v in range(n+l):

return ss SS = SS + V

return ss
# For your test suite

test(sum _to(4) == 19)
test(sum_to(1000) == 500500)

* The while loop is than the equivalent for loop
* Needto . give it an value,
, update it in the body to enable

wmnn

n

* Note: range generates a list up to but excluding the last value

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

17/10/25 Milan Nemy, Czech Technical University in Prague

23


http://openbookproject.net/thinkcs/python/english3e/iteration.html
http://openbookproject.net/thinkcs/python/english3e/iteration.html

17/10/25

TRAVERSAL —- WHILE vs. FOR

e Usea loop if you know how many times the loop will
execute ( — we know ahead some definite

bounds for what is needed)

Use a to loop over (to be explored in later
classes) usually in combination with

Use loop if you are required to repeat computation until
given condition is met, and you cannot calculate in advance

when this will happen ( — we do not know
how many iterations will be needed)

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

Milan Nemy, Czech Technical University in Prague

24


http://openbookproject.net/thinkcs/python/english3e/iteration.html
http://openbookproject.net/thinkcs/python/english3e/iteration.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

17/10/25

TRAVERSAL - BREAK vs. CONTINUE

while True:
play the game_once()
response = input("Play again? (yes or no)")
if response != "yes":
break
print("Goodbye!")

for 1 in [12, 16, 17, 24, 29, 30]: 12
ifi% 2 ==1: # If the number is odd 16
continue # Don't process it 24
print(i) 30
print("done") done

The statement in Python terminates the current loop
and resumes execution at the next statement

The statement in Python returns the control to the

beginning of the current loop

The statement rejects all the remaining statements
in the current iteration of the loop ...

Source http://www.tutorialspoint.com/python/python_loop_control.htm

Milan Nemy, Czech Technical University in Prague

25


http://www.tutorialspoint.com/python/python_loop_control.htm
http://www.tutorialspoint.com/python/python_loop_control.htm

CTU

EXAMPLE

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

import random # We cover random numbers in the
rng = random.Random() # modules chapter, so peek ahead.
number = rng.randrange(l, 1000) # Get random number between [1 and 1060).

guesses = 0
msg - nmn

while True:
guess = int(input(msg + "\nGuess my number between 1 and 10@0: "))
guesses += 1
if guess > number:
msg += str(guess) + " is too high.\n"
elif guess < number:
msg += str(guess) + " is too low.\n"
else:
break

* Guessing
* This program makes use of the mathematical law

of (given real numbers a and b, exactly one of
these three must be true: a>b, a<b, or a == b)

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

17/10/25 Milan Nemy, Czech Technical University in Prague 26


http://openbookproject.net/thinkcs/python/english3e/iteration.html
http://openbookproject.net/thinkcs/python/english3e/iteration.html

CTU

NESTED DATA

students = [
("John", ["CompSci", "Physics"]),
("Vusi", ["Maths", "CompSci", "Stats"]),
("Jess", ["CompSci", "Accounting", "Economics", "Management"]),
("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),
("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

John takes 2 courses

# Print all students with a count of their courses. Vusi takes 3 courses
for (name, subjects) in students: Jess takes 4 courses
print(name, "takes", len(subjects), "courses" Sarah takes 4 courses

Zuki takes 5 courses

# Count how many students are taking CompSci

counter = 0
for (name, subjects) in students:

for s in subjects: # A nested Loop!
if s == "CompSci”:
counter += 1 The number of students taking CompSci is 3

print("The number of students taking CompSci is", counter)

e Data structure — a mechanism for data to make

it easier to use

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

17/10/25 Milan Nemy, Czech Technical University in Prague 27


http://openbookproject.net/thinkcs/python/english3e/iteration.html
http://openbookproject.net/thinkcs/python/english3e/iteration.html

CTU

e REFERENCES — STRINGS vs. LISTS

UNIVERSITY
IN PRAGUE

Strings a = "banana" a— >>> a is b
n " "banana’
b = "banana b — True
LIStS >»»> a=1[1, 2, 3]
»>»> b = [1, 2, 3]
>»> a == b a—»[1, 2, 3]
True >
>>> a is b - (1, 2, 3]
False

Variables a and b refer to string object with letters "banana”
Use is operator or id function to find out the
Strings are

Python optimizes resources by making two names that refer to the same
string value refer to the same object

Not the case of lists: a and b have the same value (content) but do not
refer to the same object

source http://openbookproject.net/thinkcs/python/english3e/lists.html

17/10/25 Milan Nemy, Czech Technical University in Prague

28


http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

CTU

LISTS — ALIASING, CLONING

CZECH TECHNICAL
UNIVERSITY

»> a = [1, 2, 3] R 5> b[O] = 5

>>>b?a \“ 2, 3) os 3

>»> ais b b—" o4y (5. 2, 3]

True 7

asin® M [a—n 2, 3| e obiel - s
>>> a

>»> b b—s(1, 2, 3] ' 3, 3]

[1, 2, 3] > 2,

If we assign one variable to another, both variables refer to the same
object
The we say that it is (changes

made with one alias affect the other)

Recommendation:
Avoid aliasing when you are working with mutable objects!
If need to modify a list and keep a copy of the original use the

(taking any slice of creates a new list)

source http://openbookproject.net/thinkcs/python/english3e/lists.html

17/10/25 Milan Nemy, Czech Technical University in Prague


http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

CTU

LIST PARAMETERS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def double stuff(a_list):
""" Ooverwrite each element in a_List with double 1its value. """
for (idx, val) in enumerate(a_list):
a_list[idx] = 2 * val

things = [2, 5, 9] .
double_stuff(things) __main__ |a list
print(things) . ~a [2.5, 9

double_stuff [things

[4, 10, 18]

* Passing a passes a to the list,
of the list!

* So parameter passing creates an

source http://openbookproject.net/thinkcs/python/english3e/lists.html

17/10/25 Milan Nemy, Czech Technical University in Prague

30


http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

17/10/25

LISTMETHODS

»>> mylist = []

»>>> mylist.append(5)

»>>> mylist.append(27)
»>> mylist.append(3)

»>>> mylist.append(12)
>>> mylist

[5,

>>>
>>>
[5,
55>
2
55>
55>
[5,
>>>
6
>>>
55>

[11,

>>>
>>>
[3,
>>>
>>>
[3,

27, 3, 12]

mylist.insert(1, 12) # Insert 12 at pos 1, shift other items up
mylist

12, 27, 3, 12]

mylist.count(12) # How many times is 12 in mylist?

mylist.extend([5, 9, 5, 11]) # Put whole List onto end of mylist
mylist

12, 27, 3, 12, 5, 9, 5, 11])

mylist.index(9) # Find index of first 9 in mylist

mylist.reverse()
mylist
5, 9, 5, 12, 3, 27, 12, 5]
mylist.sort()
mylist
5, 5, 5, 9, 11, 12, 12, 27]
mylist.remove(12) # Remove the first 12 in the List
mylist
5, 5, 5, 9, 11, 12, 27]

Source by Tomas Svoboda PRG 2016/2017

Milan Nemy, Czech Technical University in Prague

31



CTU

LIST PARAMETERS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def double stuff(a_list):
""" Return a new List which contains
doubles of the elements in a List.

new_liSt - [] def doubl ff(a_list)
. q . ef double_stuff(a_list):
for value in a_].lSt. """ Qgverwrite each element in a_list with double its value. ""'
new _elem = 2 * value for (idx, val) in enumerate(a_list):

new_list.append(new_elem) a_list[idx] = 2 * val

return new list

Concept: VS.
Pure function does not produce !

Pure function communicates with the calling program

(it does not modify) and a
Do not alter the input parameters unless really necessary
Programs that use pure functions are and
than programs that use modifiers

Source by Tomas Svoboda PRG 2016/2017
17/10/25 Milan Nemy, Czech Technical University in Prague



CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

REFERENCES

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under

Version date: October 2012
by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Mevyers)

Source repository is at

For offline use, download a zip file of the html or a pdf version
from

17/10/25 Milan Nemy, Czech Technical University in Prague



http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

	Snímek 1
	Snímek 2: MORE ABOUT PYTHON
	Snímek 3: COMPOUND DATA TYPES
	Snímek 4: STRINGS
	Snímek 5: STRINGS
	Snímek 6: STRINGS
	Snímek 7: STRINGS
	Snímek 8: STRINGS
	Snímek 9: LISTS
	Snímek 10: LISTS
	Snímek 11: LISTS
	Snímek 12: TUPLES
	Snímek 13: TUPLES
	Snímek 14: TUPLES
	Snímek 15: UNPACKING – PAIRED DATA
	Snímek 16: INDEXING
	Snímek 17: INDEXING
	Snímek 18: INDEXING
	Snímek 19: SLICING
	Snímek 20: SLICING
	Snímek 21: TRAVERSAL – THE FOR LOOP
	Snímek 22: TRAVERSAL – THE WHILE LOOP
	Snímek 23: TRAVERSAL – THE WHILE LOOP
	Snímek 24: TRAVERSAL – WHILE vs. FOR
	Snímek 25: TRAVERSAL – BREAK vs. CONTINUE
	Snímek 26: EXAMPLE
	Snímek 27: NESTED DATA
	Snímek 28: REFERENCES – STRINGS vs. LISTS
	Snímek 29: LISTS – ALIASING, CLONING
	Snímek 30: LIST PARAMETERS
	Snímek 31: LIST METHODS
	Snímek 32: LIST PARAMETERS
	Snímek 33: REFERENCES

