
Lecture 2 – Program flow, Conditionals, Loops

Milan Nemy
Czech Technical University in Prague,

Faculty of Electrical Engineering, Dept. of Cybernetics

https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

PRG – PROGRAMMING ESSENTIALS

https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

PROBLEM SOLVING!

03/10/25 Milan Nemy, Czech Technical University in Prague

• Problem formulation (input / output)

• Formalism (math?)

• Algorithm (steps)

• Implementation (engineering)

• Testing (are we good?)

2

VARIABLES

03/10/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.htmlsource http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

• We use variables to remember things!
• The assignment statement gives a value to a variable
• Do not confuse = and == !

= is assignment token such that name_of_variable = value
== is operator to test equality

• Key property of a variable that we can change its value
• Naming convention: with freedom comes responsibility!

3

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

VARIABLES

03/10/25 Milan Nemy, Czech Technical University in Prague

• The longer life the longer name: very_long_name_of_my_var
• The more important the longer name
• Meaningful name does not add the meaning just by itself, the code must

do this!
• Illegal name causes a syntax error
• Capitals: Variable vs variable

cannot begin with a number

this $ is illegal character

class is reserved keyword

4

KEYWORDS

03/10/25 Milan Nemy, Czech Technical University in Prague

• Python keywords have special purpose
• Always choose names meaningful to human readers
• Use comments (#) and blank lines to improve readability

5

BUILT -IN FUNCTIONS

03/10/25 Milan Nemy, Czech Technical University in Prague

https://docs.python.org/3.4/library/functions.html

• Built-in functions have special purpose
• Study https://docs.python.org/3.4/library/functions.html

6

https://docs.python.org/3.4/library/functions.html
https://docs.python.org/3.4/library/functions.html

DATA TYPES

03/10/25 Milan Nemy, Czech Technical University in Prague

• Integers (int) 1, 10, 124
• Strings (str) ”Hello, World!”
• Float (float) 1.0, 9.999

• Strings in Python can be enclosed in either single quotes (') or double
quotes ("), or three of each (''' or """)

7

OPERATORS & OPERANDS

03/10/25 Milan Nemy, Czech Technical University in Prague

• OPERAND OPERATOR OPERAND
• Operators are special tokens that represent computations like

addition, subtraction, multiplication, division etc
• The values the operator uses are called operands
• When a variable name appears in the place of an operand, it

is replaced with its value before the operation is performed
• Division / vs floor division //

8

ORDER OF OPERATIONS – PEMDAS

03/10/25 Milan Nemy, Czech Technical University in Prague

• Evaluation depends on the rules of precedence:
1. Parentheses (for order, readability)
2. Exponentiation
3. Multiplication and Division
4. Addition and Subtraction
• Order left-to-right evaluation on the same level, with the

exception of exponentiation (**)

9

MODULUS OPERATOR

03/10/25 Milan Nemy, Czech Technical University in Prague

• The modulus operator works on integers (integer expressions)
• Definition: modulus is the remainder when the first number is

divided by the second
• Modulus operator is a percent sign %
• Syntax is the same as for other operators
• The same precedence as the multiplication operator

10

TYPE CONVERSION

03/10/25 Milan Nemy, Czech Technical University in Prague

• Functions, int(), float() and str() convert their arguments into types int,
float and str respectively.

• The type converter float() can turn an integer, a float, or a syntactically
legal string into a float

• The type converter str() turns its argument into a string
• One symbol can have different meaning depending on the data type(s) -

try & explore & understand

11

OPERATIONS ON STRINGS

03/10/25 Milan Nemy, Czech Technical University in Prague

• You cannot perform mathematical operations on strings, even
if the strings look like numbers

• The + operator represents concatenation, not addition
• The * operator also works on strings; it performs repetition

(one of the operands has to be a string;
the other has to be an integer)

12

INPUT

03/10/25 Milan Nemy, Czech Technical University in Prague

• Built-in function to get input from a user:

 input(”Message to the user!”)

• User input is stored as string
• Combine with type conversion

13

COMPOSITION

03/10/25 Milan Nemy, Czech Technical University in Prague

• Combination of the elements of a program: variables,
expressions, statements, and function calls

• One of the most useful features of programming languages
• Take small building blocks and compose them into larger

chunks

14

THE FOR LOOP

03/10/25 Milan Nemy, Czech Technical University in Prague

• The variable friend at line 1 is the loop variable
• Lines 2 and 3 are the loop body
• The loop body is always indented
• The indentation determines exactly what statements are “in

the body of the loop”
• At the end of each execution of the body of the loop, Python

returns to the for statement, to see if there are more items to
be handled, and to assign the next one to the loop variable

15

THE FOR LOOP

03/10/25 Milan Nemy, Czech Technical University in Prague

On each iteration or pass of the loop:
• Check to see if there are still more items to be processed
• If there are none left (the terminating condition of the loop) the loop has

finished
• If there are items still to be processed, the loop variable is updated to

refer to the next item in the list
• Program execution continues at the next statement after the loop body
• To explore: early break, or for – else loop

16

THE FOR LOOP – CONTROL FLOW

03/10/25 Milan Nemy, Czech Technical University in Prague

• Control flow (control of the flow of
execution of the program)

• As program executes, the interpreter always
keeps track of which statement is about to
be executed

• Control flow until now has been strictly top
to bottom, one statement at a time,
the for loop changes this!

17

CONDITIONAL EXECUTION

03/10/25 Milan Nemy, Czech Technical University in Prague

• Condition IF – ELSE
• Conditional statement – the

ability to check conditions and
change the behavior of the
program accordingly

18

CONDITIONAL EXECUTION

03/10/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/conditionals.htmlsource http://openbookproject.net/thinkcs/python/english3e/conditionals.html

• Condition IF only
• No ELSE statement
• To control flow only for

specific condition

19

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

CONDITIONAL EXECUTION

03/10/25 Milan Nemy, Czech Technical University in Prague

• Condition chaining
 IF – ELIF – ELSE

• Recommendation: handle
all distinctive options by
separate condition, use else
to handle all other

20

CONDITIONAL EXECUTION

03/10/25 Milan Nemy, Czech Technical University in Prague

• Nesting conditions builds
hierarchy of decisions
(decision trees)

• Nesting may reduce
readability and clarity

21

CONDITIONAL EXECUTION

03/10/25 Milan Nemy, Czech Technical University in Prague

http://book.pythontips.com/en/latest/for_-_else.htmlsource http://book.pythontips.com/en/latest/for_-_else.html

• Early return / early break
• Can be used to speed-up code execution
• Special condition: FOR – ELSE

22

http://book.pythontips.com/en/latest/for_-_else.html
http://book.pythontips.com/en/latest/for_-_else.html
http://book.pythontips.com/en/latest/for_-_else.html
http://book.pythontips.com/en/latest/for_-_else.html

BOOLEAN VALUES & EXPRESSIONS

03/10/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/conditionals.htmlsource http://openbookproject.net/thinkcs/python/english3e/conditionals.html

• Test conditions and change the program behavior depending
on the outcome of the tests

• Boolean value is either True or False
• Named after the British mathematician, George Boole, who

first formulated Boolean algebra

23

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

BOOLEAN VALUES & EXPRESSIONS

03/10/25 Milan Nemy, Czech Technical University in Prague

• Boolean expression is an expression that evaluates to produce
a result which is a Boolean value

• Six common comparison operators which all produce
a bool result (different from the mathematical symbols)

24

LOGICAL OPERATORS

03/10/25 Milan Nemy, Czech Technical University in Prague

• three logical operators, and, or, and not, that allow to build
more complex expressions from simple Boolean expressions

• semantics (meaning) of these operators is similar to natural
language equivalent

25

TRUTH TABLES

03/10/25 Milan Nemy, Czech Technical University in Prague

Short-circuit evaluation:
• OR – if the expression on the left of the operator yields True,

Python does not evaluate the expression on the right
• AND – if the expression on the left yields False, Python does

not evaluate the expression on the right.
• Truth table – list of all the possible inputs to give the results

for the logical operators

26

BOOLEAN ALGEBRA – LOGIC OPPOSITES

03/10/25 Milan Nemy, Czech Technical University in Prague

• Each of the six relational operators has a logical opposite
• Recommendation: not operators may reduce readability, use

logical opposites instead

27

BOOLEAN ALGEBRA

03/10/25 Milan Nemy, Czech Technical University in Prague 28

DE MORGAN‘S LAWS

03/10/25 Milan Nemy, Czech Technical University in Prague

• De Morgan’s laws rules allow the expression
of conjunctions and disjunctions in terms of each other
via negation

• Example: suppose we can slay the dragon only if our magic
sword is charged to 90% or higher and we have 100 or more
energy units in our protective shield

29

DE MORGAN‘S LAWS

03/10/25 Milan Nemy, Czech Technical University in Prague

• Example: suppose we can slay the dragon only if our magic
sword is charged to 90% or higher and we have 100 or more
energy units in our protective shield

30

EXAMPLE

03/10/25 Milan Nemy, Czech Technical University in Prague

• Example: complete the table ..

31

REFERENCES

03/10/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/index.html

GNU Free Documentation License Version 1.3

https://code.launchpad.net/~thinkcspy-rle-

team/thinkcspy/thinkcspy3-rle

http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Meyers)

• Source repository is at https://code.launchpad.net/~thinkcspy-rle-
team/thinkcspy/thinkcspy3-rle

• For offline use, download a zip file of the html or a pdf version
from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

32

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

	Slide 1
	Slide 2: PROBLEM SOLVING!
	Slide 3: VARIABLES
	Slide 4: VARIABLES
	Slide 5: KEYWORDS
	Slide 6: BUILT-IN FUNCTIONS
	Slide 7: DATA TYPES
	Slide 8: OPERATORS & OPERANDS
	Slide 9: ORDER OF OPERATIONS – PEMDAS
	Slide 10: MODULUS OPERATOR
	Slide 11: TYPE CONVERSION
	Slide 12: OPERATIONS ON STRINGS
	Slide 13: INPUT
	Slide 14: COMPOSITION
	Slide 15: THE FOR LOOP
	Slide 16: THE FOR LOOP
	Slide 17: THE FOR LOOP – CONTROL FLOW
	Slide 18: CONDITIONAL EXECUTION
	Slide 19: CONDITIONAL EXECUTION
	Slide 20: CONDITIONAL EXECUTION
	Slide 21: CONDITIONAL EXECUTION
	Slide 22: CONDITIONAL EXECUTION
	Slide 23: BOOLEAN VALUES & EXPRESSIONS
	Slide 24: BOOLEAN VALUES & EXPRESSIONS
	Slide 25: LOGICAL OPERATORS
	Slide 26: TRUTH TABLES
	Slide 27: BOOLEAN ALGEBRA – LOGIC OPPOSITES
	Slide 28: BOOLEAN ALGEBRA
	Slide 29: DE MORGAN‘S LAWS
	Slide 30: DE MORGAN‘S LAWS
	Slide 31: EXAMPLE
	Slide 32: REFERENCES

