o8

CCCCCCCCCCCCCC
IIIIIIIIII

PRG - PROGRAMMING ESSENTIALS

Lecture 2 — Program flow, Conditionals, Loops

Milan Nemy

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics

https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

PROBLEM SOLVING!

 Problem formulation

* Formalism

e Algorithm

* Implementation

* Testing

03/10/25 Milan Nemy, Czech Technical University in Prague

CTU

wew VARIABLES

UNIVERSITY
IN PRAGUE

Python Console

/opt/local/bin/python3.6 /Applications/PyCharm.a) Special Variables

my_name
my_age
my_height

8 my_age = 17
8] my_height = 183.5
Bl my_name = '‘Bob’

We use variables to things!

The assignment statement gives a value to a variable

Do not confuse = and == |
=is token such that name_of variable = value
== |s operator to

Key property of a variable that
Naming convention:

03/10/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html

CTU

VARIABLES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

cannot begin with a number,
—

>> ‘Jetrombones = "big parade"
SyntaxError: invalid syntax

>>> more$S = 1000000

SyntaxError: invalid syntax

>>> class = "Computer Science 101"

class is reserved keywor SyntaxError: invalid syntax

this $ is illegal character

The longer life the longer name:
The more important the longer name
Meaningful name does not add the , the code must

do this!
lllegal name causes a
Capitals: VS

03/10/25 Milan Nemy, Czech Technical University in Prague

KEYWORDS

and as assert | break class | continue
def del | elif else except | exec
finally | for | from global if import
n 1S lambda | nonlocal | not or

pass raise | return | try while | with
yield | True | False None

Python keywords have purpose
to human readers

to improve readability

Always choose names

Use and

03/10/25 Milan Nemy, Czech Technical University in Prague

CTU

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

03/10/25

BUILT-IN FUNCTIONS

abs()

all()

any()
ascii()
bin()
bool()
bytearray()
bytes()
callable()
chr()
classmethod()
compile()
complex()
delattr()

dict()
dir()
divmod()
enumerate()
eval()
exec()
filter()
float()
format()
frozenset()
getattr()
globals()
hasattr()
hash()

Built-in functions have

e Study

Built-in Functions

help()

hex()

id()

input()
int()
isinstancel()
issubclass()
iter()

len()

list()
locals()
map ()

max ()

memoryview()

purpose

min()
next()
object()
oct()
open()
ord()
pow()
print()
property()
range()
repri{)
reversed()
round()
set()

setattr()
slice()
sorted()
staticmethod()
str()
sum()
super()
tuple()
type()
vars()
zip()

__import__1()

Milan Nemy, Czech Technical University in Prague

https://docs.python.org/3.4/library/functions.html
https://docs.python.org/3.4/library/functions.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

03/10/25

DATA TYPES

2 Python 3.6.3 (default, Oct 5 2017, 23:34:28)
[GCC 4.2.1 Compatible Apple LLVM 8.1.0 (clang-802.0.42)] on darwin
type(11)
Out[2]: int
type(
Out[3]: float
type(
Out[4]: str
type(
Out[5]: str
type(
Out[6]: str

Integers (int) 1,10, 124
Strings (str) "Hello, World!”
Float () 1.0, 9.999

Strings in Python can be enclosed in either single quotes (') or double

quotes ("), or three of each ("' or """)

Milan Nemy, Czech Technical University in Prague

CTU
e OPERATORS & OPERANDS

UNIVERSITY
IN PRAGUE

Python Console

/opt/local/bin/python3.6 /Applications/PyCharm.app/) Special Variables

minutes
hours minutes
hours_floor_division minutes

l 8] hours = 10.583333333333334
= 10
8| minutes = 635

OPERAND OPERAND

Operators are that represent computations like
addition, subtraction, multiplication, division etc

The values the operator uses are called

When a variable name appears in the place of an operand, it
is replaced with its value before the operation is performed
Division / vs floor division

03/10/25 Milan Nemy, Czech Technical University in Prague

CTU

ORDER OF OPERATIONS - PEMDAS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Python Console

Jopt/local/bin/python3.6 fApplications/PyCharm.app/Contents/helpers/pydev

Out[2]: 512

Out[3]: 64

* Evaluation depends on the rules of precedence:

arentheses (for order, readability)
Xponentiation
ultiplication and Division
ddition and Subtraction
 Order evaluation on the same level, with the
exception of exponentiation (**)

03/10/25 Milan Nemy, Czech Technical University in Prague

CTU

e MODULUS OPERATOR

UNIVERSITY

IN PRAGUE

03/10/25

Python Console

/opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/helpers) Special Variables

total_secs int(input())
hours total_secs
secs_still_remaining total_secs
minutes secs_still_remaining _
secs_finally_remaining = secs_still_remaining i hours = 58
B minutes = 59
print(hours minutes
secs_Tinally_remaining)
How many seconds, in total? b Secs_sti”_remaining - 3545

/| Hrs= 58 = mins= 59 secs= 5 %] total_secs = PAVELS

%] secs_finally_remaining = 5

The modulus operator works on (integer expressions)
Definition: modulus is the when the first number is
divided by the second

Modulus operator is a percent sign

Syntax is the same as for other operators

The same as the operator

Milan Nemy, Czech Technical University in Prague

10

CTU

TYPE CONVERSION

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>»> int(3.14)

i)) int(3.9999) # This doesn't round to the closest int!
2>> int(3.8)

2>> int(-3.999) # Note that the result is closer to zero
;i> int(minutes / 68@)

10

>»> int("2345") # Parse a string to produce an int
fiisint(17) # It even works if arg is already an int
iZ, int("23 bottles") \ Traceback (most recent call last):

File "<interactive input>", line 1, in <module>
ValueError: invalid literal for int() with base 18: '23 bottles’

Functions, , and convert their arguments into types
and str respectively.
The type converter can turn an integer, a float, or a syntactically

legal string into a float

The type converter turns its argument into a string

One symbol can have different meaning depending on the data type(s) -
& &

03/10/25 Milan Nemy, Czech Technical University in Prague

CTU

OPERATIONS ON STRINGS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>>> message - 1 # Error
»>> "Hello" / 123 # Error
»>>> message * "Hello" # Error
>>> "15" + 2 # Error

Python Console
/opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/helpers/pyc) Special Variables

name
age
description str(age)
print(description)
My name is Boband my age is 17 # age = 17
#] description = 'My name is Boband my age is 17'

R®] name = ‘Bob’

* You cannot perform mathematical operations on strings, even

if the strings look like numbers
 The + operator represents , hot addition
 The * operator also works on strings; it performs

(one of the operands has to be a string;

the other has to be an integer)

03/10/25 Milan Nemy, Czech Technical University in Prague

12

CTU

INPUT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Python Console
/opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/he) Special Variables

response = input/()

r float(response)

area r

print(:
What is your radius? il 380.13239
The area is 380.13239 8 11.0

= {str} '11'

* Built-in function to get input from a user:

("Message to the user!”)

e Userinput is stored as
 Combine with type conversion

03/10/25 Milan Nemy, Czech Technical University in Prague

13

CTU

CZECH TECHNICAL

COMPOSITION

UNIVERSITY

IN PRAGUE

03/10/25

Python Console
/opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/helpers/pydev/pydevca). Special Variables

response input()
r float(response)
area r T
print(_

What is your radius? ¥ area = 380.13239

The area is 380.13239 8 r= 11.0
r float(input())

2 print(rx2)
What is your radius?
74| The area is 380.13239

print(float(input(

%] response = 11"

What is your radius?
The area is 380.13239

Combination of the elements of a program: variables,
expressions, statements, and function calls

One of the most useful features of programming languages
Take small building blocks and compose them into larger
chunks

Milan Nemy, Czech Technical University in Prague

14

CTU
ey THE FORLOOP

UNIVERSITY
IN PRAGUE

/opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/helpers/pydev/pydevconsol:) Special Variables

friend [1
invite friend
print(invite)

Hi Joe. Please come to my party on Saturday! 8] friend = ‘Paris

Hi Zoe. Please come to my party on Saturday! Bl invite = 'Hi Paris. Please come to my party on Saturday!'
Hi Brad. Please come to my party on Saturday!

Hi Angelina. Please come to my party on Saturday!
Hi Zuki. Please come to my party on Saturday!

79| Hi Thandi. Please come to my party on Saturday!
Hi Paris. Please come to my party on Saturday!

The variable at line 1 is the

Lines 2 and 3 are the

The loop body is

The indentation determines exactly what statements are

7

At the end of each execution of the body of the loop, Python
returns to the statement, to see if there are more items to
be handled, and to assign the next one to the loop variable

03/10/25 Milan Nemy, Czech Technical University in Prague

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

03/10/25

THE FOR LOOP

/opt/local/bin/python3.6 /Applications/PyCharm.ap)

number range(5)
print(number)

On each iteration or pass of the loop:
Check to see if there are still more

If there are none left (the

finished

If there are items still to be processed, the
refer to the next item in the list

Program execution

To explore: early , Or loop

Special Variables

8| number = 4

of the loop) the loop has

to

after the loop body

Milan Nemy, Czech Technical University in Prague

16

CTU

THE FOR LOOP - CONTROL FLOW

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Have all items in
sequence had their
turn?

Control flow (control of the flow of
execution of the program)

' As program executes, the interpreter

Assign next tem 1o loop of which statement is about to

variable

be executed
Control flow until now has been strictly
, one statement at a time,

1

Execute all statements in the
loop body

03/10/25 Milan Nemy, Czech Technical University in Prague 17

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

CONDITIONAL EXECUTION

if BOOLEAN EXPRESSION:

STATEMENTS 1 # Executed 1if condition evaluates to True
else:

STATEMENTS_2 # Executed 1if condition evaluates to False

if True:
pass

else:
pass

 Condition

e Conditional statement — the

ability to check conditions and
change the behavior of the

03/10/25

program accordingly

Milan Nemy, Czech Technical University in Prague

18

CTU

s CONDITIONAL EXECUTION

UNIVERSITY
IN PRAGUE

03/10/25

True

condition e Condition
* No ELSE statement
* To control flow only for
statements specific condition
Ye
if x < 0:
print("The negative number ", x, " is not valid here.")
X = 42
¥ print("I've decided to use the number 42 instead.")

print("The square root of ", x, "is", math.sqrt(x))

source http://openbookproject.net/thinkes/python/english3e/conditionals.html

Milan Nemy, Czech Technical University in Prague

19

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

CONDITIONAL EXECUTION

if x < y:
elifSIAIEgFNTS_A if choice == "a":
. function_one()

else%TnTEMENTS_B elif choice —= "b"-

. function_two()

STATEMENTS_C elif choice - "c-

function_three()
else:
+ print(“Invalid choice.")

* Condition chaining

e Recommendation: handle

all distinctive options by

03/10/25

separate condition, use else
to handle all other

Milan Nemy, Czech Technical University in Prague

20

CTU

CONDITIONAL EXECUTION

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

if @ < x: # Assume x is an int here
if x < 10: . .
print("x is a positive single digit.") 24 XS'<I’A¥I.EMENTS A
else: B
if x > y:

STATEMENTS_B
else:
STATEMENTS C

Nesting conditions builds
hierarchy of decisions

statoments ¢ statements_b (decision trees)
Nesting may reduce
readability and clarity

Y
A

03/10/25 Milan Nemy, Czech Technical University in Prague 21

CTU

s CONDITIONAL EXECUTION

UNIVERSITY
IN PRAGUE

for n in range(2, 10):
for x in range(2, n):
if n % x ==
print(n, ‘'equals', x, '*', n/x)
break

for n in range(2, 10):
for x in range(2, n):
if n % x ==
print(n, 'equals', x, '*', n/x)
break
else:
Loop fell through without finding a factor
print(n, 'is a prime number')

e Early return / early break

e Can be used to speed-up code execution
e Special condition:

source http://book.pythontips.com/en/latest/for_-_else.htm|

03/10/25 Milan Nemy, Czech Technical University in Prague

http://book.pythontips.com/en/latest/for_-_else.html
http://book.pythontips.com/en/latest/for_-_else.html
http://book.pythontips.com/en/latest/for_-_else.html
http://book.pythontips.com/en/latest/for_-_else.html

CTU

oy BOOLEAN VALUES & EXPRESSIONS

UNIVERSITY
IN PRAGUE

>>> type(True)
<class 'bool'>
>>> type(true)
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
NameError: name 'true' is not defined

* Test conditions and depending
on the outcome of the tests

* Boolean value is either or

* Named after the British mathematician, , who
first formulated Boolean algebra

source http://openbookproject.net/thinkcs/python/english3e/conditionals.html|

03/10/25 Milan Nemy, Czech Technical University in Prague

23

http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

CTU

BOOLEAN VALUES & EXPRESSIONS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>>> 5 == (3 + 2) # Is five equal 5 to the result of 3 + 2?
True

>>> 5 == 6

False

>>> j = "hel"

>»> j + "lo" == "hello"

True

X ==Y # Produce True if ... x is equal to y
x =y o . X 1s not equal to y

X >y # ... X 1s greater than y

X <y # ... x 1is Less than y

X >=Yy # . X 1s greater than or equal to y
X <=y # . X 1s less than or equal to y

* Boolean expression is an expression that evaluates to produce
a result which is a

e Six common which all produce
a bool result (different from the mathematical symbols)

03/10/25 Milan Nemy, Czech Technical University in Prague

24

CTU
e LOGICAL OPERATORS

UNIVERSITY
IN PRAGUE

/opt/local/bin/python3.6 /Applications/PyCharm.app/Contents/helpers/pydev/pydevconsole.py 52255 5

n
print(n

* three logical operators, , or,and , that allow to build
more complex expressions from simple Boolean expressions

* semantics () of these operators is similar to natural
language equivalent

03/10/25 Milan Nemy, Czech Technical University in Prague

TRUTH TABLES

a and a or
a b b a b b not
False False False F F F a a
False True False F T T F T
True False False T F T T F
True True True T TT

Short-circuit evaluation:
— if the expression on the left of the operator yields

Python does not evaluate the expression on the right

— if the expression on the left yields , Python does

not evaluate the expression on the right.
— list of all the possible inputs to give the results

for the logical operators

03/10/25 Milan Nemy, Czech Technical University in Prague

CTU

BOOLEAN ALGEBRA - LOGIC OPPOSITES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

operator logical opposite
—_—— I=

if not (age >= 17):
print("Hey, you're too young to get a driving licence!")

< >=

<= >

> <= if age < 17:

o= < print("Hey, you're too young to get a driving licence!")

* Each of the six relational operators has a

e Recommendation: operators may reduce readability, use
logical opposites instead

03/10/25 Milan Nemy, Czech Technical University in Prague 27

CTU

BOOLEAN ALGEBRA

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

n * @

1l
Il
®

X and False == False
False and x == False
y and X == X and y

X and True == X

True and x == X

X and x == X

X or False == x
False or x == X

y or X == X or y

X or True == True
True or x == True

X or X == X

not (not x) == x

03/10/25 Milan Nemy, Czech Technical University in Prague

CTU

DE MORGAN'S LAWS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

(not x) or (not y)
(not x) and (not y)

not (x and y)
not (x or y)

if not ((sword charge >= 0.90) and (shield energy >= 100)):
print("Your attack has no effect, the dragon fries you to a crisp!")

else:
print("The dragon crumples in a heap. You rescue the gorgeous princess!")

* De Morgan’s laws rules allow the expression
of and in terms of each other

via

 Example: suppose we can slay the dragon only if our magic
sword is charged to 90% or higher we have 100 or more
energy units in our protective shield

03/10/25 Milan Nemy, Czech Technical University in Prague

29

CTU

DE MORGAN'S LAWS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

if (sword charge < ©.90) or (shield energy < 100):

print("Your attack has no effect, the dragon fries you to a crisp!")
else:

print("The dragon crumples in a heap. You rescue the gorgeous princess!")

if (sword charge >= 0.90) and (shield energy >= 100):

print("The dragon crumples in a heap. You rescue the gorgeous princess!")
else:

print("Your attack has no effect, the dragon fries you to a crisp!")

Example: suppose we can slay the dragon only if our magic

sword is charged to 90% or higher we have 100 or more
energy units in our protective shield

03/10/25 Milan Nemy, Czech Technical University in Prague

30

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

03/10/25

EXAMPLE

P qr (not(pand g)) orr
F F F ?
F F T ?
F T F ?
F T T ?

 Example: complete the table ..

Milan Nemy, Czech Technical University in Prague

31

CTU
s REFERENCES

UNIVERSITY
IN PRAGUE

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under

Version date: October 2012
by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Meyers)
Source repository is at

For offline use, download a zip file of the html or a pdf version
from

03/10/25 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

	Slide 1
	Slide 2: PROBLEM SOLVING!
	Slide 3: VARIABLES
	Slide 4: VARIABLES
	Slide 5: KEYWORDS
	Slide 6: BUILT-IN FUNCTIONS
	Slide 7: DATA TYPES
	Slide 8: OPERATORS & OPERANDS
	Slide 9: ORDER OF OPERATIONS – PEMDAS
	Slide 10: MODULUS OPERATOR
	Slide 11: TYPE CONVERSION
	Slide 12: OPERATIONS ON STRINGS
	Slide 13: INPUT
	Slide 14: COMPOSITION
	Slide 15: THE FOR LOOP
	Slide 16: THE FOR LOOP
	Slide 17: THE FOR LOOP – CONTROL FLOW
	Slide 18: CONDITIONAL EXECUTION
	Slide 19: CONDITIONAL EXECUTION
	Slide 20: CONDITIONAL EXECUTION
	Slide 21: CONDITIONAL EXECUTION
	Slide 22: CONDITIONAL EXECUTION
	Slide 23: BOOLEAN VALUES & EXPRESSIONS
	Slide 24: BOOLEAN VALUES & EXPRESSIONS
	Slide 25: LOGICAL OPERATORS
	Slide 26: TRUTH TABLES
	Slide 27: BOOLEAN ALGEBRA – LOGIC OPPOSITES
	Slide 28: BOOLEAN ALGEBRA
	Slide 29: DE MORGAN‘S LAWS
	Slide 30: DE MORGAN‘S LAWS
	Slide 31: EXAMPLE
	Slide 32: REFERENCES

