
Lecture 2 – Program flow, Conditionals, Loops

Milan Nemy
Czech Technical University in Prague, 

Faculty of Electrical Engineering, Dept. of Cybernetics

https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

PRG –  PROGRAMMING ESSENTIALS

https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz


PROBLEM SOLVING!

03/10/25 Milan Nemy, Czech Technical University in Prague

• Problem formulation (input / output)

• Formalism (math?)

• Algorithm (steps)

• Implementation (engineering)

• Testing (are we good?)
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VARIABLES
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http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.htmlsource http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html  

• We use variables to remember things!
• The assignment statement gives a value to a variable
• Do not confuse = and == !

= is assignment token such that name_of_variable = value
== is operator to test equality

• Key property of a variable that we can change its value
• Naming convention: with freedom comes responsibility!
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VARIABLES
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• The longer life the longer name: very_long_name_of_my_var
• The more important the longer name
• Meaningful name does not add the meaning just by itself, the code must 

do this!
• Illegal name causes a syntax error
• Capitals: Variable vs variable

cannot begin with a number

this $  is illegal character

class  is reserved keyword
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KEYWORDS

03/10/25 Milan Nemy, Czech Technical University in Prague

• Python keywords have special purpose
• Always choose names meaningful to human readers
• Use comments (#) and blank lines to improve readability
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BUILT -IN FUNCTIONS
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https://docs.python.org/3.4/library/functions.html

• Built-in functions have special purpose
• Study https://docs.python.org/3.4/library/functions.html
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DATA TYPES
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• Integers (int)  1, 10, 124
• Strings (str)  ”Hello, World!”
• Float (float)  1.0, 9.999

• Strings in Python can be enclosed in either single quotes (') or double 
quotes ("), or three of each (''' or """)
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OPERATORS & OPERANDS
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• OPERAND OPERATOR OPERAND
• Operators are special tokens that represent computations like 

addition, subtraction, multiplication, division etc
• The values the operator uses are called operands
• When a variable name appears in the place of an operand, it 

is replaced with its value before the operation is performed 
• Division / vs floor division //
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ORDER OF OPERATIONS – PEMDAS 
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• Evaluation depends on the rules of precedence:
1. Parentheses (for order, readability)
2. Exponentiation
3. Multiplication and Division
4. Addition and Subtraction
• Order left-to-right evaluation on the same level, with the 

exception of exponentiation (**)
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MODULUS OPERATOR
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• The modulus operator works on integers (integer expressions) 
• Definition: modulus is the remainder when the first number is 

divided by the second 
• Modulus operator is a percent sign %
• Syntax is the same as for other operators
• The same precedence as the multiplication operator
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TYPE CONVERSION
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• Functions, int(), float() and str() convert their arguments into types int, 
float and str respectively. 

• The type converter float() can turn an integer, a float, or a syntactically 
legal string into a float

• The type converter str() turns its argument into a string
• One symbol can have different meaning depending on the data type(s) - 

try & explore & understand
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OPERATIONS ON STRINGS
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• You cannot perform mathematical operations on strings, even 
if the strings look like numbers

• The + operator represents concatenation, not addition
• The * operator also works on strings; it performs repetition 

(one of the operands has to be a string; 
the other has to be an integer)
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INPUT
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• Built-in function to get input from a user:

   input(”Message to the user!”)

• User input is stored as string
• Combine with type conversion
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COMPOSITION
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• Combination of the elements of a program: variables, 
expressions, statements, and function calls

• One of the most useful features of programming languages
• Take small building blocks and compose them into larger 

chunks
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THE FOR LOOP
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• The variable friend at line 1 is the loop variable
• Lines 2 and 3 are the loop body
• The loop body is always indented 
• The indentation determines exactly what statements are “in 

the body of the loop”
• At the end of each execution of the body of the loop, Python 

returns to the for statement, to see if there are more items to 
be handled, and to assign the next one to the loop variable
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THE FOR LOOP
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On each iteration or pass of the loop:
• Check to see if there are still more items to be processed
• If there are none left (the terminating condition of the loop) the loop has 

finished
• If there are items still to be processed, the loop variable is updated to 

refer to the next item in the list
• Program execution continues at the next statement after the loop body
• To explore: early break, or for – else loop
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THE FOR LOOP – CONTROL FLOW
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• Control flow (control of the flow of 
execution of the program)

• As program executes, the interpreter always 
keeps track of which statement is about to 
be executed

• Control flow until now has been strictly top 
to bottom, one statement at a time, 
the for loop changes this!
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CONDITIONAL EXECUTION
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• Condition IF – ELSE
• Conditional statement – the 

ability to check conditions and 
change the behavior of the 
program accordingly
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CONDITIONAL EXECUTION
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http://openbookproject.net/thinkcs/python/english3e/conditionals.htmlsource http://openbookproject.net/thinkcs/python/english3e/conditionals.html 

• Condition IF only
• No ELSE statement
• To control flow only for 

specific condition
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CONDITIONAL EXECUTION
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• Condition chaining
 IF – ELIF – ELSE

• Recommendation: handle 
all distinctive options by 
separate condition, use else 
to handle all other 
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CONDITIONAL EXECUTION
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• Nesting conditions builds 
hierarchy of decisions 
(decision trees)

• Nesting may reduce 
readability and clarity
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CONDITIONAL EXECUTION
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http://book.pythontips.com/en/latest/for_-_else.htmlsource http://book.pythontips.com/en/latest/for_-_else.html 

• Early return / early break
• Can be used to speed-up code execution
• Special condition: FOR – ELSE 
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BOOLEAN VALUES & EXPRESSIONS
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http://openbookproject.net/thinkcs/python/english3e/conditionals.htmlsource http://openbookproject.net/thinkcs/python/english3e/conditionals.html 

• Test conditions and change the program behavior depending 
on the outcome of the tests

• Boolean value is either True or False
• Named after the British mathematician, George Boole, who 

first formulated Boolean algebra
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BOOLEAN VALUES & EXPRESSIONS
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• Boolean expression is an expression that evaluates to produce 
a result which is a Boolean value

• Six common comparison operators which all produce 
a bool result (different from the mathematical symbols)
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LOGICAL OPERATORS
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• three logical operators, and, or, and not, that allow to build 
more complex expressions from simple Boolean expressions

• semantics (meaning) of these operators is similar to natural 
language equivalent
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TRUTH TABLES
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Short-circuit evaluation: 
• OR – if the expression on the left of the operator yields True, 

Python does not evaluate the expression on the right
• AND – if the expression on the left yields False, Python does 

not evaluate the expression on the right.
• Truth table – list of all the possible inputs to give the results 

for the logical operators
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BOOLEAN ALGEBRA – LOGIC OPPOSITES
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• Each of the six relational operators has a logical opposite
• Recommendation: not operators may reduce readability, use 

logical opposites instead
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BOOLEAN ALGEBRA
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DE MORGAN‘S LAWS
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• De Morgan’s laws rules allow the expression 
of conjunctions and disjunctions in terms of each other 
via negation

• Example: suppose we can slay the dragon only if our magic 
sword is charged to 90% or higher and we have 100 or more 
energy units in our protective shield
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DE MORGAN‘S LAWS
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• Example: suppose we can slay the dragon only if our magic 
sword is charged to 90% or higher and we have 100 or more 
energy units in our protective shield
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EXAMPLE
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• Example: complete the table ..
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REFERENCES
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http://openbookproject.net/thinkcs/python/english3e/index.html

GNU Free Documentation License Version 1.3

https://code.launchpad.net/~thinkcspy-rle-

team/thinkcspy/thinkcspy3-rle

http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html 
available under GNU Free Documentation License  Version 1.3 )

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris 
Meyers) 

• Source repository is at https://code.launchpad.net/~thinkcspy-rle-
team/thinkcspy/thinkcspy3-rle 

• For offline use, download a zip file of the html or a pdf version 
from  http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/ 
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