
Lab 01

Fill in the missing constant 𝑛 in the given code. The procedure uvw() should
be called exactly 49 times.
for (i = 0; i < 7; i++) {
 j = i;
 while (j < n) {
 uvw();
 j++;
 }
}

Outer loop executes exactly 7-times. So the question is how to tweak the inner loop to satisfy the
constraint. Expanding the loop, we see that inner loop executes 𝑛 + 𝑛 − 1 + 𝑛 − 2 +…+ 𝑛 − 6 =
7𝑛 − 21 times. Thus, 49 = 7𝑛 − 21 ⇒ 𝑛 = 10

A sequence 𝑆 = 𝑠0, 𝑠1,…, 𝑠𝑛 contains positive integers, negative integers
and zeroes. Find a contiguous subsequence of 𝑆 whose sum of elements is
the maximum possible among all contiguous subsequences of 𝑆. Is it
possible to scan 𝑆 only once to complete the task? Do not create any
additional sequences or big data structures.
Yes, it is possible to do it in 𝑂(𝑛). The algorithm iterates over the field and computes the
“cumulative sum” 𝐶𝑖 = ∑𝑖

𝑗=0 𝑆𝑗, i.e., the sum of elements so far. With the cummulative sum, we can
query a sum of arbitrary sub-sequence 𝑆𝑎,𝑏 as 𝐶𝑏 −𝐶𝑎. As we are interested in the biggest partial
sum, we just keep track of the so-far biggest and lowest value of the cumulative sum 𝑠𝑎 = min(𝑆)
and 𝑠𝑏 = max(𝑆), such that 𝑏 > 𝑎.

When function 𝑓 grows asymptotically faster than function 𝑔 (ie. 𝑓(𝑥) ∉
𝑂(𝑔(𝑥))) some of the following is true:
• If both 𝑓 and 𝑔 are defined in 𝑥 then 𝑓(𝑥) > 𝑔(𝑥).

Not necessarily. E.g., 2𝑥 grows faster than 𝑥2 (2𝑥 ∉ 𝑂(𝑥2)), but 23 = 8 ≯ 32 = 9.

• The difference 𝑓(𝑥) − 𝑔(𝑥) is always positive.

Not necessarily. In the example above, for 𝑥 = 3, the difference is −1.

• The difference 𝑓(𝑥) − 𝑔(𝑥) is positive for each 𝑥 > 𝑥0, where 𝑥0 is some sufficiently big real
number.

Yes. 𝑓 ∉ 𝑂(𝑔) ⇒ 𝑓 ∈ 𝜃(𝑔). Recall definition. For the example above, the 𝑥0 we seek is 4.

• Both 𝑓 and 𝑔 are defined only for non-negative arguments.

No. Both exemplar functions are also defined on negative numbers.

• none of the previous

No. We found one true statement.

Algorithm 𝐴 processes all elements of a 1D array of size 𝑛 . Processing of an
element with index 𝑘 consists of a subroutine call which asymptotic
complexity is Θ(𝑘 + 𝑛). Asymptotic complexity of A is therefore:

Θ
(
((0 + 𝑛⏟

𝑘=0

+ 1 + 𝑛⏟
𝑘=1

+ 2 + 𝑛⏟
𝑘=2

+…+ 𝑛 + 𝑛⏟
𝑘=𝑛)

)) = Θ(𝑛∑𝑛
𝑖=1 𝑖) = Θ(𝑛3)

Determine the asymptotic complexity of the code with respect to the value
of 𝑁 .
int a [N];
for(i = 0; i < N; i++)
 a[i] = i;
}
for (i = 0; i < N; i++){
 while (a[i] > 0) {
 print(a[i]);
 a[i] = a[i]/2; // integer division
 }
}

Let’s first understand the inner loop: It halves a given number 𝑎[𝑖] until it is zero. We need log2(𝑎[𝑖])
divisions to reach zero. (Printing can be regarded as a single operation together with the division
and thus safely ignored.)

Now remember how the array is initialized. The outer loop thus expands into log2(1) + log2(2) +
log2(3) + …+ log2(𝑛) = log2(𝑛!) ∈ Θ(𝑛 log 𝑛). (See e.g., Stolz-Cezaro proof. Or at least find an
upper bound by comparing against “worst case” ∑𝑛

𝑖 log(𝑛) = 𝑛 log 𝑛.)

If you are tempted to include the initialization such as Θ(𝑛 + 𝑛 log 𝑛), do not be. The “weaker”
additive function is not significant, recall the definition of asymptotic complexity.

	Lab 01
	Fill in the missing constant n in the given code. The procedure uvw() should be called exactly 49 times.
	A sequence S = s0, s1, …, sn contains positive integers, negative integers and zeroes. Find a contiguous subsequence of S whose sum of elements is the maximum possible among all contiguous subsequences of S. Is it possible to scan S only once to complete the task? Do not create any additional sequences or big data structures.
	When function f grows asymptotically faster than function g (ie. f(x) ∉ O(g(x))) some of the following is true:
	Algorithm A processes all elements of a 1D array of size n . Processing of an element with index k consists of a subroutine call which asymptotic complexity is Θ(k + n). Asymptotic complexity of A is therefore:
	Determine the asymptotic complexity of the code with respect to the value of N.

