Lab 01

Fill in the missing constant n in the given code. The procedure uvw() should be called exactly 49 times.

```
for (i = 0; i < 7; i++) {
    j = i;
    while (j < n) {
        uvw();
        j++;
    }
}</pre>
```

Outer loop executes exactly 7-times. So the question is how to tweak the inner loop to satisfy the constraint. Expanding the loop, we see that inner loop executes n+n-1+n-2+...+n-6=7n-21 times. Thus, $49=7n-21\Rightarrow n=10$

A sequence $S=s_0,s_1,...,s_n$ contains positive integers, negative integers and zeroes. Find a contiguous subsequence of S whose sum of elements is the maximum possible among all contiguous subsequences of S. Is it possible to scan S only once to complete the task? Do not create any additional sequences or big data structures.

Yes, it is possible to do it in O(n). The algorithm iterates over the field and computes the "cumulative sum" $C_i = \sum_{j=0}^i S_j$, i.e., the sum of elements so far. With the cumulative sum, we can query a sum of arbitrary sub-sequence $S_{a,b}$ as $C_b - C_a$. As we are interested in the biggest partial sum, we just keep track of the so-far biggest and lowest value of the cumulative sum $s_a = \min(S)$ and $s_b = \max(S)$, such that b > a.

When function f grows asymptotically faster than function g (ie. $f(x) \notin O(g(x))$) some of the following is true:

• If both f and g are defined in x then f(x) > g(x).

Not necessarily. E.g., 2^x grows faster than x^2 ($2^x \notin O(x^2)$), but $2^3 = 8 \not > 3^2 = 9$.

• The difference f(x) - g(x) is always positive.

Not necessarily. In the example above, for x = 3, the difference is -1.

• The difference f(x)-g(x) is positive for each $x>x_0$, where x_0 is some sufficiently big real number.

Yes. $f \notin O(g) \Rightarrow f \in \theta(g)$. Recall definition. For the example above, the x_0 we seek is 4.

• Both f and g are defined only for non-negative arguments.

No. Both exemplar functions are also defined on negative numbers.

• none of the previous

No. We found one true statement.

Algorithm A processes all elements of a 1D array of size n. Processing of an element with index k consists of a subroutine call which asymptotic complexity is $\Theta(k+n)$. Asymptotic complexity of A is therefore:

$$\Theta\left(\underbrace{0+n}_{k=0} + \underbrace{1+n}_{k=1} + \underbrace{2+n}_{k=2} + \ldots + \underbrace{n+n}_{k=n}\right) = \Theta\left(n \sum_{i=1}^{n} i\right) = \Theta(n^3)$$

Determine the asymptotic complexity of the code with respect to the value of N.

```
int a [N];
for(i = 0; i < N; i++)
   a[i] = i;
}
for (i = 0; i < N; i++){
   while (a[i] > 0) {
      print(a[i]);
      a[i] = a[i]/2; // integer division
   }
}
```

Let's first understand the inner loop: It halves a given number a[i] until it is zero. We need $\log_2(a[i])$ divisions to reach zero. (Printing can be regarded as a single operation together with the division and thus safely ignored.)

Now remember how the array is initialized. The outer loop thus expands into $\log_2(1) + \log_2(2) + \log_2(3) + \ldots + \log_2(n) = \log_2(n!) \in \Theta(n \log n)$. (See e.g., Stolz-Cezaro proof. Or at least find an upper bound by comparing against "worst case" $\sum_i^n \log(n) = n \log n$.)

If you are tempted to include the initialization such as $\Theta(n + n \log n)$, do not be. The "weaker" additive function is not significant, recall the definition of asymptotic complexity.