
STATISTICAL MACHINE LEARNING (WS2025/26)
SEMINAR: PREDICTOR EVALUATION

Assignment 1. Consider a binary classification problem with scalar observation X = R, two
possible classes Y = {−1,+1} and the 0/1-loss ℓ(y, y′) = [[y ̸= y′]]. The observations for both
classes are generated according to Gaussian distributions. Specifically, the joint probability
distribution of the observation x ∈ R and tha class label y ∈ Y is given by:

p(x, y) = p(y)
1√
2πσy

exp
(
− 1

2σ2
y

(x− µy)
2
)
, y ∈ Y ,

where p(y) is the prior distribution of the class y, µ+ and µ− are the means of the distributions
for y = +1 and y = −1, respectively, σ+ > 0 and σ− > 0 are the corresponding standard
deviations.
a) Assume µ− < µ+ and σ+ = σ−. Show that, under these conditions, the Bayes optimal
prediction strategy is a thresholding rule of the form:

h(x) =

{
−1 if x < θ ,
+1 if x ≥ θ ,

where θ ∈ R is a scalar theresold. Derive explicit formula for computing θ.
b) Now assume µ+ = µ− and σ+ ̸= σ−. Determine the optimal prediction strategy under
these conditions.
c*) Finally, consider the case where µ+ = µ−, σ+ ̸= σ−, and both classes have nonzero prior
probabilities, i.e. p(+1) > 0 and p(−1) > 0. Is it possible for the Bayes classifier to assign
all inputs x ∈ R to a single class? Prove your answer.

Solution 1. The Bayes classifier in case of the 0/1-loss and two classes assigns the input x
into the class with the higher class posterior p(y | x), or equivalently with the higher p(x, y),
that is,

h∗(x) =

{
+1 if p(x, y = +1) > p(x, y = −1)
−1 if p(x, y = +1) < p(x, y = −1)

Note that the boundary inputs, p(x, y = +1) = p(x, y = −1), can be assigned to an arbitrary
class. Let us define a discriminant function f(x) as a logarithm of the likelihood ratio:

f(x) = log

(
p(x, y = +1)

p(x, y = −1)

)
. (1)

The Bayes classifier can be expressed equaivalently as the sign of the discriminant function:

h∗(x) = sign(f(x)) .

After substituting

p(x, y) = p(y)
1√
2πσy

exp
(
− 1

2σ2
y

(x− µy)
2
)

1
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to (1) we get

f(x) = log p(x, y = +1)− log p(x, y = −1)

= log
p(+1)

σ+

− log
√
2π − (x− µ+)

2

2σ2
+

− log
p(−1)

σ−
+ log

√
2π +

(x− µ−)
2

2σ2
−

= x2

(
1

2σ2
−
− 1

2σ2
+

)
︸ ︷︷ ︸

a

+x

(
µ+

σ2
+

− µ−

σ2
−

)
︸ ︷︷ ︸

b

+
µ2
−

2σ2
−
−

µ2
+

2σ2
+

+ log
p(+1)σ−

p(−1)σ+︸ ︷︷ ︸
c

= a x2 + b x+ c .

a) In case of σ+ = σ− = σ, the multiplier in fron of x2 is a = 0 and the discriminant function
becomes a linear function. Hence,

h∗(x) = sign(f(x)) = sign(b x+ c) =

{
−1 if x < θ
+1 if x ≥ θ

where θ is a solution of the linear equation f(x) = b x+ c = 0, i.e.

θ = −c

b
=

µ+ + µ−

2
+

σ2

µ− − µ+

log
p(+1)

p(−1)
.

b) In case of µ+ = µ− = µ we can rewrite the discriminant function as

f(x) =
1

2

(
1

σ2
−
− 1

σ2
+

)
(x− µ)2 + log

p(+1)σ−

p(−1)σ+

.

If σ− < σ+, the discriminant function is convex. If p(+1)σ− < p(−1)σ+, then the minimum
of f(x) is a negative number and the quadratic equation f(x) = 0 has two solutions, which
we denote θ1 and θ2. In this case, the Bayes classifier assigns the inputs x that fall to the
interval [θ1, θ2] into the negative class and the inputs outside the interval to the positive class.
If p(+1)σ− < p(−1)σ+, the minimum of f(x) is a positive number and the Bayes classifier
assigns all inputs to the negative class. If σ− > σ+, the discriminant function is concave and
the analysis is analogous.
c*) Yes, it can happen. For example, when µ+ = µ−, σ− < σ+ and p(+1)σ− > p(−1)σ+, the
discriminant function attains a positive values for all x and hence all inputs are assigned to the
positive class.

Assignment 2. We are given a prediction strategy h : X → Y = {1, . . . , Y } assigning ob-
servations x ∈ X into one of Y classes. Our task is to estimate the true error R(p, h) =
E(x,y)∼pℓ(y, h(x)) where ℓ : Y × Y → R is a chosen loss function. To this end, we collect a
test set Sn = ((xi, yi) ∈ (X × Y) | i = 1, . . . , n) i.i.d. drawn from the distribution p(x, y),
compute the test error R̂(Sn, h) =

1
n

∑n
i=1 ℓ(yi, h(xi)) and use it to construct the confidence

interval such that

R(p, h) ∈
(
R̂(Sn, h)− ε, R̂(Sn, h) + ε

)
holds with probability 1−δ ∈ (0, 1) at least. (2)

The number of test examples n ∈ N, the error margin ε > 0 and the confidence level 1− δ ∈
(0, 1) are three interdependent variables, i.e., fixing two of the variables allows to compute the
third one.
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a) Use the Hoeffding’s inequality to derive a formula to compute ε as a function of n and δ
such that (2) holds.

b) Use the Hoeffding’s inequality to derive a formula to compute n as a function of ε and δ
such that (2) holds.

c) Instantiate the formulas derived in a) and b) for the following loss functions:
(1) ℓ(y, y′) = [[y ̸= y′]]
(2) ℓ(y, y′) = |y − y′|
(3) ℓ(y, y′) = [[|y − y′| ≥ K]] where K < Y .

d) Assume that we use the loss ℓ(y, y′) = [[y ̸= y′]]. Plot the error margin ε as a function of
the number of examples n ∈ {10, 100, . . . , 100000} for δ ∈ {0.1, 0.05, 0.01}.

e) Assume that we use the 0/1-loss ℓ(y, y′) = [[y ̸= y′]]. What is the minimal number of exam-
ples n we need to use to have a guarantee that the test error will approximate the generalization
error ±1% with probability 95% at least?

Solution 2. a) Formula for ε(n, δ). Assume the loss values are bounded in an interval [ℓmin, ℓmax].
Let Zi = ℓ(yi, h(xi)) ∈ [ℓmin−ℓmax], R̂ = 1

n

∑n
i=1 Zi and R = ESn∼pn [ℓ(y, h(x)]. Hoeffding’s

inequality says

P
(
|R̂−R| ≥ ε

)
≤ 2 exp

(
− 2nε2

(ℓmax − ℓmin)2

)
.

We want P(|R̂−R| < ε) ≥ 1− δ which is the same as P(|R̂−R| ≥ ε) ≤ δ. So, equivalently,
we want the right-hand side of the Hoeffding inequality to be ≤ δ. Solve for ε:

2 exp
(
− 2nε2

(ℓmax − ℓmin)2

)
≤ δ ⇐⇒ − 2nε2

(ℓmax − ℓmin)2
≤ ln

δ

2

which gives

ε(n, δ) = (ℓmax − ℓmin)

√
1

2n
ln
(
2
δ

)
.

With this ε we have P
(
|R̂−R| ≤ ε

)
≥ 1− δ.

b) Formula for n(ε, δ). Rearrange the same bound to solve for n:

2 exp
(
− 2nε2

(ℓmax − ℓmin)2

)
≤ δ =⇒ n ≥ (ℓmax − ℓmin)

2

2ε2
ln
(
2
δ

)
.

So one can choose

n(ε, δ) =
(ℓmax − ℓmin)

2

2ε2
ln
(
2
δ

)
(or the ceiling of the right-hand side to get an integer).

c) Instantiate for the three losses:
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(1) ℓ(y, y′) = [[y ̸= y′]]. This loss takes values in {0, 1}, so ℓmin = 0, ℓmax = 1 and
ℓmax − ℓmin = 1. Thus

ε =

√
1

2n
ln
(
2
δ

)
, n =

1

2ε2
ln
(
2
δ

)
.

(2) ℓ(y, y′) = |y − y′| with y, y′ ∈ {1, . . . , Y }. The range is [0, Y − 1], so ℓmax − ℓmin =
Y − 1. Hence

ε = (Y − 1)

√
1

2n
ln
(
2
δ

)
, n =

(Y − 1)2

2ε2
ln
(
2
δ

)
.

(3) ℓ(y, y′) = [[|y − y′| ≥ K]]. This is again a {0, 1}-valued loss, so the formulas are the
same as in 1):

ε =

√
1

2n
ln
(
2
δ

)
, n =

1

2ε2
ln
(
2
δ

)
.

d) Plot ε vs n for 0/1-loss and δ ∈ {0.1, 0.05, 0.01}.

The curve shows the O(1/
√
n) decay and the dependence on δ via O(

√
ln(2/δ)).

e) Minimal n for 0/1-loss, ε = 1%, 1 − δ = 95%. We need ε = 0.01 and δ = 0.05. Use

n ≥ 1

2ε2
ln
(
2
δ

)
. Numerically:

n ≥ 1

2 · 0.012
ln
(

2
0.05

)
=

1

2 · 10−4
ln(40) = 5000 · ln(40) ≈ 18444.3973.

Rounding up to an integer,

nmin = 18 445 examples (approximately).

Assignment 3. Let Sn = ((xi, yi) ∈ (X × Y) | i = 1, . . . , n) be a test set i.i.d drawn
from some p(x, y) and let ℓ : Y × Y → R be a loss function. The test error R̂(Sn, h) =
1
n

∑n
i=1 ℓ(yi, h(xi)) is an unbiased estimator of the true error R(p, h) = E(x,y)∼pℓ(y, h(x)).

a) What does it mean that the test error is an unbiased estimator of the true error?
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b) Prove that it holds true.
c) Prove that the variance of the test error decreases as 1/n, i.e. more test examples reduces
the estimator error.

Solution 3. a) a) Saying the test error R̂(Sn, h) is an unbiased estimator of the true error
R(p, h) means

ESn∼pn
[
R̂(Sn, h)

]
= R(p, h),

where the expectation is over the random draw of the test sample Sn. In words: on average
(over repeated draws of test sets of size n) the test error equals the true risk — there is no
systematic over- or under-estimation.
b) Let

zi := ℓ
(
yi, h(xi)

)
, i = 1, . . . , n,

so R̂(Sn, h) =
1

n

∑n
i=1 zi. The (xi, yi) are i.i.d., hence the zi are i.i.d. with

E[zi] = E(x,y)∼p

[
ℓ(y, h(x))

]
= R(p, h).

Using linearity of expectation,

ESn∼pn
[
R̂(Sn, h)

]
= E

[
1

n

n∑
i=1

Zi

]
=

1

n

n∑
i=1

E[Zi] =
1

n
· nR(p, h) = R(p, h).

Thus R̂ is unbiased.
(c) Again write zi = ℓ(yi, h(xi)), and set µ = ESn∼pn [R̂(Sn, h)]. Because the zi are indepen-
dent, the variance reads

VSn∼pn
[
R̂(Sn, h)

]
= V

[
1

n

n∑
i=1

zi

]

= E

( 1

n

n∑
i=1

zi − µ

)2


= E

[
1

n2

n∑
i=1

n∑
j=1

(zi − µ)(zj − µ)

]

=
1

n2
E

[
n∑

i=1

(zi − µ)2

]
+

1

n2

∑
i ̸=j

E [(zi − µ)(zj − µ)]︸ ︷︷ ︸
=0 because zi and zj are independet

=
1

n2

n∑
i=1

V(zi)

=
1

n2
· n V(x,y)∼p

[
ℓ(y, h(x))

]
.

So

V
[
R̂
]
=

σ2

n
where σ2 = V(x,y)∼p

[
ℓ(y, h(x))

]
.
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As a consequence, the variance decreases as 1/n — more test examples reduce estimator
variance.


