STATISTICAL MACHINE LEARNING (WS2025/26)
SEMINAR: PREDICTOR EVALUATION

Assignment 1. Consider a binary classification problem with scalar observation X = R, two
possible classes ) = {—1, +1} and the 0/1-loss ¢(y,y") = [y # v']. The observations for both
classes are generated according to Gaussian distributions. Specifically, the joint probability
distribution of the observation x € R and tha class label y € ) is given by:

1 1 2)
x,y) = exp| — —=(z — ) ey,
p(z,y) = py) Vi, P < 205( fiy) y
where p(y) is the prior distribution of the class y, p, and p_ are the means of the distributions
fory = +1 and y = —1, respectively, 0, > 0 and o_ > 0 are the corresponding standard

deviations.

a) Assume p_ < py and oy = o_. Show that, under these conditions, the Bayes optimal
prediction strategy is a thresholding rule of the form:

-1 if z<86,
Mﬂ:{4&ifmzm

where 6 € R is a scalar theresold. Derive explicit formula for computing 6.

b) Now assume p, = p_ and oy # o_. Determine the optimal prediction strategy under
these conditions.

c*) Finally, consider the case where 11, = p_, 0 # o_, and both classes have nonzero prior
probabilities, i.e. p(+1) > 0 and p(—1) > 0. Is it possible for the Bayes classifier to assign
all inputs z € R to a single class? Prove your answer.

Solution 1. The Bayes classifier in case of the 0/1-loss and two classes assigns the input x
into the class with the higher class posterior p(y | =), or equivalently with the higher p(x,y),
that is,

h*(llf): +1 if p(w,y=+1) >p(x,y:—1)
=1 if p(z,y=+1) <p(z,y =-1)

Note that the boundary inputs, p(z,y = +1) = p(z,y = —1), can be assigned to an arbitrary
class. Let us define a discriminant function f(z) as a logarithm of the likelihood ratio:

p(r,y = +1)
f@%ﬂ%(——————

plz,y=-1)
The Bayes classifier can be expressed equaivalently as the sign of the discriminant function:

h*(z) = sign(f(z)) .

(D

After substituting

p(z,y) =p(y) \/%Oy exp < — 2%‘5(1- _ ,uy)2>
1
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to (1) we get
f(z) = logp(z,y=+1) —logp(z,y = —1)
B LG DY S e 20 SV o RO B

o 203 o_ 207
1 1 T S N = = p(+1)o-
2 + +
= — = — = - = — — —= 41
v (202 203) i (ai 02) * 202 202 log p(—1)oy
o b ke
= a2z’ +br+ec.
a) In case of 0, = o_ = o, the multiplier in fron of 2% is ¢ = 0 and the discriminant function

becomes a linear function. Hence,

h*(z) = sign(f(z)) = sign(bz + ¢) = { i ﬁ . ; Z

where 6 is a solution of the linear equation f(x) = bz + ¢ =0, i.e.

g _C_tetp o8 p(H])
b 2 fo —py - p(=1)
b) In case of ;1. = u_ = p we can rewrite the discriminant function as
1/1 1 9 p(+1)o_
1) =5 (55— 57 ) 0= log B0
2\o%2 o2 p(—1)oy

If o_ < o, the discriminant function is convex. If p(+1)o_ < p(—1)o, then the minimum
of f(x) is a negative number and the quadratic equation f(x) = 0 has two solutions, which
we denote ¢, and 6. In this case, the Bayes classifier assigns the inputs x that fall to the
interval [0, 0] into the negative class and the inputs outside the interval to the positive class.
If p(+1)o_ < p(—1)o, the minimum of f(x) is a positive number and the Bayes classifier
assigns all inputs to the negative class. If o_ > o, the discriminant function is concave and
the analysis is analogous.

c*) Yes, it can happen. For example, when piy = p_,0_ < oy and p(+1)o_ > p(—1)o, the
discriminant function attains a positive values for all = and hence all inputs are assigned to the
positive class.

Assignment 2. We are given a prediction strategy h: X — ) = {1,...,Y} assigning ob-
servations * € X into one of Y classes. Our task is to estimate the true error R(p, h) =
E 2 y)~pl(y, h(x)) where £: }) x J — R is a chosen loss function. To this end, we collect a
test set S, = ((x;,y;) € (X x)Y) |i=1,...,n)iid. drawn from the distribution p(z,y),
compute the test error 2(S,,h) = LS (y;, h(z;)) and use it to construct the confidence
interval such that

R(p,h) € (J%(Sn, h) — e, R(S,, h) + g) holds with probability 1—d € (0, 1) at least. (2)

The number of test examples n € N, the error margin € > 0 and the confidence level 1 — 9 €
(0, 1) are three interdependent variables, i.e., fixing two of the variables allows to compute the
third one.
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a) Use the Hoeffding’s inequality to derive a formula to compute ¢ as a function of n and ¢
such that (2) holds.

b) Use the Hoeffding’s inequality to derive a formula to compute n as a function of ¢ and ¢
such that (2) holds.

¢) Instantiate the formulas derived in a) and b) for the following loss functions:

() Uy, y) =y # ¥
@) Uy, y) =y =y
3) Uy, y)=[ly—v'| > K] where K < Y.

d) Assume that we use the loss £(y,y’) = [y # v']. Plot the error margin ¢ as a function of
the number of examples n € {10, 100, ..., 100000} for 6 € {0.1,0.05,0.01}.

e) Assume that we use the 0/1-loss ¢(y, y') = [y # v']. What is the minimal number of exam-
ples n we need to use to have a guarantee that the test error will approximate the generalization
error +1% with probability 95% at least?

Solution 2. a) Formula for £(n, 0). Assume the loss values are bounded in an interval [{y;,, {imax]-
Let Z; = ((y;, h(x;)) € [lmin—Cmax), R = % YovZiand R = Eg, pn[((y, h(x)]. Hoeffding’s
inequality says

2ne?

(Crmax — fmin)z)'

We want P(|R — R| < &) > 1 — & which is the same as P(|R — R| > ) < 4. So, equivalently,
we want the right-hand side of the Hoeffding inequality to be < d. Solve for ¢:
2ne? )

L) <§f &&= ———<In-
(gmax - gmin)Q B (gmax - gmin)z = 2

IP(|}?—R| > 6) < Qexp<—

2
Qexp<—

which gives

1
e(n,0) = (lmax — lmin) %ln(ﬁ) .

With this € we have P(|f2 —R| <e)>1-04.

b) Formula for n(e, ¢). Rearrange the same bound to solve for n:

2n€2 (gmax - gmin)2
2€Xp<—m>§(5 — nZ—ln(%)

So one can choose

(gmax - gmin>2
e (3)

(or the ceiling of the right-hand side to get an integer).

n(e,d) =

¢) Instantiate for the three losses:
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(1) L(y,y') = [y # y'].- This loss takes values in {0, 1}, s0 lpin = 0,pax = 1 and
lmax — Lmin = 1. Thus

1 1
€= %ln(g), n:2_521n<%)'
2) Uy,y") = |y —y|withy,y € {1,...,Y}. Therange is [0,Y — 1], s0 liyax — lmin =
Y — 1. Hence
2
e=(Y —1) %ln(%), nz%ln(%).
(3) U(y,y') = [ly —v¥'| > K]. This is again a {0, 1}-valued loss, so the formulas are the
same as in 1):
1 1

€= %ln@), n:2—521n(§).

d) Plot & vs n for 0/1-loss and § € {0.1,0.05,0.01}.
Hoeffding bound: €(n) for 0/1-loss

0.5F

Error margin €

0.0F

10! 107 103 104 10°
Number of test examples n (log scale)

The curve shows the O(1/4/n) decay and the dependence on 6 via O(+/In(2/0)).

e) Minimal n for 0/1-loss, ¢ = 1%, 1 — § = 95%. We need ¢ = 0.01 and 6 = 0.05. Use
1
nZg5 In(2). Numerically:
1
2\ _
2 o or am) = 5 g

In(40) = 5000 - In(40) ~ 18444.3973.

Rounding up to an integer,

’ Nmin = 18445 examples (approximately). ‘

Assignment 3. Let S, = ((z;,y:;) € (X x)Y) | i = 1,...,n) be a test set i.i.d drawn
from some p(z,y) and let £: Y x ) — R be a loss function. The test error R(S,,h) =
L3  Lys, h(z;)) is an unbiased estimator of the true error R(p, h) = E ;. 4)pl(y, h(z)).

a) What does it mean that the test error is an unbiased estimator of the true error?
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b) Prove that it holds true.

¢) Prove that the variance of the test error decreases as 1/n, i.e. more test examples reduces
the estimator error.

Solution 3. a) a) Saying the test error R(Sn, h) is an unbiased estimator of the true error
R(p, h) means

Esg,~pn [R(Sn, h)} = R(p, h),
where the expectation is over the random draw of the test sample S,,. In words: on average
(over repeated draws of test sets of size n) the test error equals the true risk — there is no

systematic over- or under-estimation.
b) Let

Zi = g(yl,h(l’l)), 1= 1,...,”,
. 1
so R(S,,h) = - >, #. The (z;,;) are i.i.d., hence the z; are i.i.d. with

Using linearity of expectation,

n

1
2

=1

Es,~pn [R(Sn,h)] =E

_ %ZEW — % -n R(p,h) = R(p, h).

Thus R is unbiased.
(c) Again write z; = ((y;, h(z;)), and set yu = Eg, ,n[R(S,, h)]. Because the z; are indepen-
dent, the variance reads

Vgmnpn [R(Snv h)] =V % ZZ]
L' =1
- | 9
r 1 n n
= E EZZ(%_’M)('Z] _M>]
L' =1 j=1
1 - 9 1
= B |G s Bl m —p)
i=1 1] —0 because z; an?jrzj are independet
1 n
= — Z V(z)
i=1
1
= ﬁ n V(x’y)pr [g(ya h(x))}
So
. 2
V[R} = where 02 = V(@y)~p [5(% h(x))]
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As a consequence, the variance decreases as 1/n — more test examples reduce estimator
variance.



