
STATISTICAL MACHINE LEARNING (WS2025/26)
SEMINAR: VC DIMENSION

Assignment 1. Let H = {h1, . . . , hH} be a finite hypothesis class. Prove that the Uniform
Law of Large Numbers (ULLN) holds for H. Specifically, show that there exists a function
mH

ul : (0, 1) × (0, 1) → N such that for any i.i.d. sample Tm =
(
(xi, yi) ∈ X × Y | i =

1, . . . ,m
)

of size m ≥ mH
ul(ε, δ) drawn from the distribution p(x, y), the following holds:

P
(
max
h∈H

∣∣R̂(Tm, h)−R(p, h)
∣∣ > ε

)
≤ δ ,

where

R(p, h) = E(x,y)∼p

[
ℓ(y, h(x))

]
and R̂(Tm, h) =

1

m

m∑
i=1

ℓ
(
yi, h(xi)

)
denote the true and empirical risks, respectively. Assume the 0–1 loss function ℓ(y, y′) = [[y ̸=
y′]].

Solution 1.

P
(
maxh∈H

∣∣R(p, h)− R̂(Tm, h)
∣∣ ≥ ε

)
(1)
=

P



∣∣R(p, h1)− R̂(Tm, h
1)
∣∣ ≥ ε or∣∣R(p, h2)− R̂(Tm, h

2)
∣∣ ≥ ε or

...∣∣R(p, hH)− R̂(Tm, h
H)
∣∣ ≥ ε


(2)
≤

∑
h∈H

P
(
|R(p, h)− R̂(Tm, h)

∣∣ ≥ ε
)

(3)
≤ 2 |H| e−2mε2

(1) a ≥ ε or b ≥ ε ⇐⇒ max{a, b} ≥ ε

(2) Union bound: P
(
A1 or A2 or · · · or An

)
≤
∑n

i=1 P(Ai)

(3) Hoeffding inequality: P
(
|R(h)−RT m(h)

∣∣ ≥ ε
)
≤ 2 e−2mε2

By setting 2 |H| e−2mε2 = δ and solving for m, we get

mH
ul (ε, δ) =

1

2ε2
log

(
2|H|
δ

)
⇒ P

(
max
h∈H

∣∣R(h)−RT m(h)
∣∣ ≥ ε

)
≤ δ

Assignment 2. Let us consider the class of linear classifiers mapping x ∈ Rd to {−1,+1},
that is

H =
{
h(x;w, b) = sign(⟨w,x⟩+ b) | (w, b) ∈ (Rd × R)

}
.

Show that the VC dimension of H is d+ 1.

Solution 2. The proof has two steps:
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(1) Show that dVC(H) ≥ d + 1. We construct a set of d + 1 input points and show that
they can be shattered.

(2) Show that dVC(H) < d+2. We show that no set of d+2 input points can be shattered.
1) Lower bound: dVC(H) ≥ d + 1. We construct d + 1 points in Rd that can be shattered by
linear classifiers. Let the first d points be the standard basis vectors:

xi = [0, . . . , 1︸︷︷︸
i-th coordinate

, . . . , 0], ∀i ∈ 1, . . . , d.

Let the last point be the origin,
xd+1 = 0.

Fix an arbitrary sequence of labels (y1, y2, . . . , yd+1) ∈ {−1,+1}d+1. We construct the pa-
rameters of the linear classifier as

w = [y1, y2, . . . , yd], b = 1
2
yd+1.

Now verify that the classifier

h(x) = sign (⟨w,x⟩+ b)

correctly predicts all d+ 1 labels. For i ∈ 1, . . . , d,

h(xi) = sign(⟨w,xi⟩+ b) = sign
(
yi +

1
2
yd+1

)
= yi.

For the last point,

h(xd+1) = sign(⟨w,xd+1⟩+ b) = sign
(
1
2
yd+1

)
= yd+1.

Thus, the constructed classifier realizes any labeling of these d+1 points, proving that the set
is shattered. Therefore,

dVC(H) ≥ d+ 1.

2) Upper bound: dVC(H) < d + 2. We now show that no set of d + 2 points in Rd can be
shattered by H. Let {x1, . . . ,xd+2} ⊂ Rd be arbitrary. We lift these points into Rd+1 by
appending a constant coordinate:

zi = [xi, 1], ∀i ∈ 1, . . . , d+ 2.

We also represent affine classifiers as homogeneous ones:

ĥ(z) = sign(⟨ŵ, z⟩), where ŵ = [w, b].

Clearly, h(xi) = ĥ(zi) for all i. Since we have d + 2 points in Rd+1, they must be linearly
dependent. Hence, there exist coefficients (a1, . . . , ad+2), not all zero, such that

d+2∑
i=1

aizi = 0.

Without loss of generality, assume a1 ̸= 0 and express

z1 =
d+2∑
i=2

a′izi, where a′i = − ai
a1

.

Now define labels for the last d+ 1 points as

yi = sign(a′i), ∀i ∈ {2, . . . , d+ 2}.
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Assume that there exists a classifier ĥ correctly predicting these labels, i.e.

ĥ(zi) = yi ⇐⇒ sign(⟨ŵ, zi⟩) = sign(a′i), ∀i ∈ 2, . . . , d+ 2.

Then, for all i ≥ 2, we have a′i⟨ŵ, zi⟩ ≥ 0, and for at least one i, this product is strictly
positive. Now, consider the prediction for z1:

⟨ŵ, z1⟩ =
d+2∑
i=2

a′i⟨ŵ, zi⟩.

Because each term a′i⟨ŵ, zi⟩ ≥ 0, the sum is non-negative and strictly positive unless all are
zero. Hence,

ĥ(z1) = sign(⟨ŵ, z1⟩) = +1.

But if we assign the label y1 = −1, no classifier can realize this labeling, because z1 is forced
into the positive class. Thus, the set of d + 2 points cannot be shattered by linear classifiers,
implying

dVC(H) < d+ 2.

Assignment 3. Consider a hypothesis space of classifiers

H =
{
h(x; a) = sign(sin(ax)) | a ∈ R

}
.

That is, each h ∈ H is determined by a single parameter a ∈ R and it maps real valued input
x ∈ R to a set of hidden labels {+1,−1} based on the sign of the score sin(xa). Show that
the VC dimension of H is infinite.

Hint: Show that for arbitrary set of labels {yi ∈ {+1,−1} | i = 1, . . . ,m} the inputs
{xi = 10−i | i = 1, . . . ,m} can be predicted correctly by h(x; a) with

a = π

(
1 +

1

2

m∑
i=1

(1− yi)10i
)

Solution 3. The plan of the proof is to construct points (x1, x2, . . . , xm) such that for arbitrary
labels (y1, y2, . . . , ym) ∈ {−1,+1}m, there will be a, which we also construct, such that all
the points will be correctly classified by h(x) = sin(a x), i.e. the set of points is shattered.
Thus, we conclude that the VC dimension of H is ∞.

(1) Set the m points to be

xi = 10−i , i ∈ {1, . . . ,m} .

and fix an arbitrary sequence of the labels (y1, y2, . . . , ym) ∈ {−1,+1}m.
(2) Let the classifier parameter be:

a = π + π
m∑
j=1

ŷi 10
j

where

ŷi =
1− yi
2

∈ {0, 1} .

are auxiliary labels.
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(3) We will use the indetity

sin
(
π(k + t)

)
= (−1)k sin(π t) ,

which is valid for every integer k ∈ N .
(4) Let us rewrite the value of the discriminant function at xi:

a xi = sin


π + π

m∑
j=1

ŷj10
j

10i


= sin

(
π

[
10−i +

i−1∑
j=1

ŷj 10
j−i + ŷi +

m∑
j=i+1

ŷj 10
j−i

])

= sin

π

m∑
j=i+1

ŷj 10
j−i

︸ ︷︷ ︸
even integer

+π

(
10−i +

i−1∑
j=1

ŷj 10
j−i + ŷi

)

= sin

π

(
10−i +

i−1∑
j=1

ŷj 10
j−i

︸ ︷︷ ︸
δ∈(0,1)

+ŷi

)
=

{
sin(πδ) if ŷi = +1

sin(πδ + π) if ŷi = −1

= sign(yi) .


