STATISTICAL MACHINE LEARNING (WS2025/26)
SEMINAR: VC DIMENSION

Assignment 1. Let H = {hy,..., hy} be a finite hypothesis class. Prove that the Uniform
Law of Large Numbers (ULLN) holds for H. Specifically, show that there exists a function

e (O 1) x (0,1) — N such that for any i.id. sample 5, = ((z;,4:) € X x Y | i =
1, . ) of size m > m* (e, §) drawn from the distribution p(z, ), the following holds:

P(max\RTm,h) R(p h)y>a>§5,

heH

where
R(p,h) = Epyp[l(y, h(x))] and R(Tp,h) = ZE Yi, h(x;))

denote the true and empirical risks, respectively. Assume the 0—1 loss functlon Uy, y) =y #
v

Solution 1.
|R(p,h') — R(Tn,hY)| > ¢ or
P(maxheH |R(p,h) — R(T,n, )| > e) O p [ R, %) = R'(Tm’hw =e o
|[R(p, ™) = R(T, h™)| > ¢
25 P(IR(ph) = R(T,h)| > ¢)
heH
(? 2 |H| e 2me?
(HDa>cor b>e < max{a b} > ¢
(2) Union bound: P(Al or Ayor---or A ) <3 E P
(3) Hoeftding inequality: IP><|R( 7m(h | > ) < 2e72me?

By setting 2 |H|e~2"" = § and solving for m, we get

1 2|H|
H _
mul(g,é)—2—€2log (T) = P(If?gHR — Ryn(h)] 25) <46

Assignment 2. Let us consider the class of linear classifiers mapping € R? to {—1,+1},
that is

H = {h(z; w,b) = sign((w, z) +b) | (w,b) € (R xR)} .
Show that the VC dimension of H is d + 1.

Solution 2. The proof has two steps:
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(1) Show that dyc(H) > d + 1. We construct a set of d + 1 input points and show that
they can be shattered.
(2) Show that dyc(H) < d+ 2. We show that no set of d+ 2 input points can be shattered.

1) Lower bound: dyc(H) > d + 1. We construct d + 1 points in R? that can be shattered by
linear classifiers. Let the first d points be the standard basis vectors:
x; =[0,..., 1 ,..,0], Viel, ... d
~—
4-th coordinate
Let the last point be the origin,
wd_;’_l = O

Fix an arbitrary sequence of labels (y1, %, ..., yar1) € {—1,+1}¢TL. We construct the pa-
rameters of the linear classifier as

w:[y17y27"'ayd]7 b:%yd—i-l'

Now verify that the classifier
h(x) = sign ((w, x) + b)
correctly predicts all d + 1 labels. For¢ € 1,...,d,
h(x;) = sign({w, ;) + b) = sign (yl- + %ydﬂ) = ;.
For the last point,
h($d+1) = sign((w, $d+1> + b) = sign (%yd-i-l) = Yd+1-
Thus, the constructed classifier realizes any labeling of these d + 1 points, proving that the set
is shattered. Therefore,
dyc(H) > d+ 1.

2) Upper bound: dyc(H) < d + 2. We now show that no set of d + 2 points in R? can be
shattered by H. Let {xy,...,xq2} C R? be arbitrary. We lift these points into R4 by
appending a constant coordinate:

z; =[x, 1], Viel,...,d+2.
We also represent affine classifiers as homogeneous ones:
h(z) = sign((w, z)), where w = [w, b].
Clearly, h(x;) = h(z;) for all i. Since we have d + 2 points in R*", they must be linearly

dependent. Hence, there exist coefficients (ay, . .., aq:2), not all zero, such that
d+2

Z Q;z2; = 0.

i=1
Without loss of generality, assume a; # 0 and express
d+2 ‘
z = Za;zi, where a;, = ——.
=2
Now define labels for the last d + 1 points as

y; =sign(al), Vie{2,...,d+2}.
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Assume that there exists a classifier 1 correctly predicting these labels, i.e.

hMz) =y <= sign((w,z;)) =sign(d)), Vie2, . .. d+2.
Then, for all i > 2, we have a,(W,z;) > 0, and for at least one i, this product is strictly
positive. Now, consider the prediction for z;:

Because each term a/(w, z;) > 0, the sum is non-negative and strictly positive unless all are
zero. Hence,

h(z1) = sign((w, z1)) = +1.
But if we assign the label y; = —1, no classifier can realize this labeling, because z; is forced
into the positive class. Thus, the set of d 4 2 points cannot be shattered by linear classifiers,
implying

dvc(H) <d+2.
Assignment 3. Consider a hypothesis space of classifiers
H = {h(z;a) = sign(sin(az)) | a € R} .

That is, each h € H is determined by a single parameter a € R and it maps real valued input
x € R to a set of hidden labels {+1, —1} based on the sign of the score sin(xa). Show that
the VC dimension of H is infinite.

Hint: Show that for arbitrary set of labels {y* € {+1,—1} | i = 1,...,m} the inputs
{2' =10""| i =1,...,m} can be predicted correctly by h(z; a) with

a= 7r(1 + % i(l — yi)mf)

i=1

Solution 3. The plan of the proof is to construct points (z1, z, . . ., ,,) such that for arbitrary
labels (1, Y2, ..., ym) € {—1,+1}™, there will be a, which we also construct, such that all
the points will be correctly classified by h(z) = sin(az), i.e. the set of points is shattered.
Thus, we conclude that the VC dimension of H is oco.

(1) Set the m points to be
v, =10"", i€ {l,...,m}.

and fix an arbitrary sequence of the labels (y1, vz, ..., ym) € {—1,+1}™.
(2) Let the classifier parameter be:

a=7m+T Z ; 107
j=1
where

1y,
ji = 2ye{0,1}.

are auxiliary labels.
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(3) We will use the indetity
sin (ﬂ'(/{? + t)) = (—1)" sin(7 t),

which is valid for every integer k € N .
(4) Let us rewrite the value of the discriminant function at x;:

m

T+m Y 100

J=1

10¢

i1 m
= s (W {1O_i Y GG Y g 10]‘—1‘])

j=1 j=i+1

m i—1
= sin |7 Y g 107 +7r<10i + g 107 +y>

j=i+1 j=1
N————

even integer

i—1
— sin w(lo—i+2gj 10j—i+yz-)
j=1

0€(0,1)

B sin(md) if y; = +1
sin(md +m) if g, =—1

= sign(y;) -




