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Threshold classifiers: H1 = {h(x) = sign(x − θ) | θ ∈ R}

Oriented threshold classifiers: H2 =
{

{h(x) = sign(x − θ) | θ ∈ R} ∪ {h(x) = sign(θ − x) | θ ∈ R}
}
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Vapnik-Chervonenkis Dimension
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Vapnik-Chervonenkis Dimension

■ The VC dimension quantifies the complexity (capacity) of a hypothesis class H ⊆ {−1, +1}X .

Definition (Shattering): Let H ⊆ {−1, +1}X and let {x1, . . . , xm} ⊂ X m be a set of m input points.
The set {x1, . . . , xm} is shattered by H if, for every labeling y ∈ {−1, +1}m, there exists a hypothesis
h ∈ H such that

h(xi) = yi, ∀ i ∈ {1, . . . , m}.

Definition (VC dimension): Let H ⊆ {−1, +1}X . The Vapnik–Chervonenkis dimension of H, denoted
dVC(H), is the cardinality of the largest set of points from X that can be shattered by H.
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Vapnik-Chervonenkis Dimension

Theorem: The VC-dimension of the hypothesis class of all two-class linear classifiers in d-dimensional feature
space H =

{
h(x; w, b) = sign(⟨w, ϕ(x)⟩ + b) | (w, b) ∈ Rd+1)

}
is dVC(H) = d + 1.

Example for n = 2-dimensional feature space

Quiz 1: Let H =
{

h(x) = ŷ , (x̂, ŷ) = argmin(x′,y′)∈Tm ∥x′ − x∥
}

be a space of Nearest-Neighbor
classifiers. What is the VC dimension of H?

Quiz 2: Let H = {h1, . . . , hK} be a finite hypothesis class. What is the VC dimension of H?
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Example: H = {h(x; θ) = sign(x − θ) | θ ∈ R}, dVC(H) = 1, ε = 0.1
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VC Dimension Generalization Bound

Theorem: Let H ⊂ {+1, −1}X be a hypothesis class with VC dimension dVC(H) < ∞ and
Tm = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set i.i.d. drawn from a distribution p(x, y). Then
for any ε > 0 it holds

P
(
max
h∈H

∣∣∣R(p, h) − R̂(Tm, h)
∣∣∣ ≥ ε

)
≤ 4

(
2 e m

dVC(H)

)dVC(H)

e
−m ε2

8

where R(p, h) = E(x,y)∼p

[
[[y ̸= h(x)]]

]
is the true error and R̂(Tm, h) = 1

m

∑m
i=1[[yi ̸= h(xi)]] is the

empirical error.
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Fundamental Theorem of PAC Learning

Theorem: Let H ⊂ {−1, +1}X be a hypothesis class of functions from X to {−1, +1} and let
ℓ(y, y′) = [[y ̸= y′]] be the 0/1-loss function. Then, the following statements are equivalent:

■ Uniform Law of Large numbers holds for H.

■ ERM algorithm is a successful PAC learner for H.

■ H has finite VC dimension, dVC(H) < ∞.

Assume the VC dimension of H is finite,
dVC(H) < ∞. Then, there is a constant
C such that the sample complexity is

m
H
pac(ε, θ) ≤ C

dVC(H) + log(1δ)

ε2
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VC Dimension Generalization Bound

Theorem. Let H ⊆ {−1, +1}X be a hypothesis class of binary classifiers, and let ℓ(y, y′) = [[y ̸= y′]]

denote the 0–1 loss. Assume that H has a finite VC dimension, dVC(H) < ∞. Then, for any δ ∈ (0, 1),
with probability at least 1 − δ over an i.i.d. training sample Tm = ((xi, yi) ∈ X × Y | i = 1, . . . , m), the
following inequality holds for all h ∈ H simultaneously:

R(h, p) ≤ R̂(Tm, h)︸ ︷︷ ︸
empirical risk

+ 4

√√√√dVC(H) log
(

2 e m
dVC(H)

)
+ log

(
4
δ

)
m︸ ︷︷ ︸

complexity term

Practical implications of the VC bound:

■ Minimize the empirical risk R̂(Tm, h) (fit the data well).

■ Control the complexity term:

• Use as many training examples m as possible.

• Incorporate prior knowledge to restrict the complexity of H (simpler models ⇒ smaller VC
dimension).
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Structural Risk Minimization

Algorithm:

1. Construct a nested sequence of hypothesis
classes:

H1 ⊂ H2 ⊂ · · · ⊂ HK

2. For each i ∈ {1, . . . , K}, apply ERM:

hi = argmin
h∈Hi

R̂(Tm, h)

3. Select the best model using the VC
generalization bound:

i
∗
= argmin

i=1,...,K

(
R̂(Tm, hi) + ε(m, Hi, δ)

)
where

ε(m, Hi, δ) = 4

√√√√dVC(H) log
(

2 e m
dVC(H)

)
+ log

(
4
δ

)
m

4. Output hi∗.
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Summary of Key Concepts
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Summary of Key Concepts

■ Vapnik–Chervonenkis (VC) dimension: measures the complexity of a hypothesis class containing
two-class classifiers H ⊂ {−1, +1}X .

• Defined as the largest number of points that can be shattered by H.

■ Fundamental Theorem of PAC Learning: A finite VC dimension implies that the Uniform Law of Large
Numbers (ULLN) holds, and that Empirical Risk Minimization (ERM) is a PAC learner.

■ Structural Risk Minimization (SRM): Minimize the empirical risk while simultaneously controlling the
complexity of the hypothesis class.
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