Statistical Machine Learning (BE4M33SSU) VC dimension

Czech Technical University in Prague V. Franc

Threshold classifiers: $\mathcal{H}_1 = \{h(x) = \operatorname{sign}(x - \theta) \mid \theta \in \mathbb{R}\}$

Oriented threshold classifiers: $\mathcal{H}_2 = \{ \{ h(x) = \operatorname{sign}(x - \theta) \mid \theta \in \mathbb{R} \} \cup \{ h(x) = \operatorname{sign}(\theta - x) \mid \theta \in \mathbb{R} \} \}$

#inputs	possible label 2^m configurations	$\mathcal{H}_1 = \left\{ \begin{array}{c} \ominus \bullet \\ \end{array} \right\}$	$\mathcal{H}_2 = \left\{ egin{array}{ccc} egin{array}{ccc} eta & lackbox{$
1	─	$ \begin{array}{ccc} & & & & & & & & & & & & & & & & & & &$	
2			$ \begin{array}{ccc} & & & & & & & & & & & & \\ & & & & & &$
3			

• The VC dimension quantifies the complexity (capacity) of a hypothesis class $\mathcal{H}\subseteq \{-1,+1\}^{\mathcal{X}}$.

Definition (Shattering): Let $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$ and let $\{x_1, \ldots, x_m\} \subset \mathcal{X}^m$ be a set of m input points. The set $\{x_1, \ldots, x_m\}$ is shattered by \mathcal{H} if, for every labeling $y \in \{-1, +1\}^m$, there exists a hypothesis $h \in \mathcal{H}$ such that

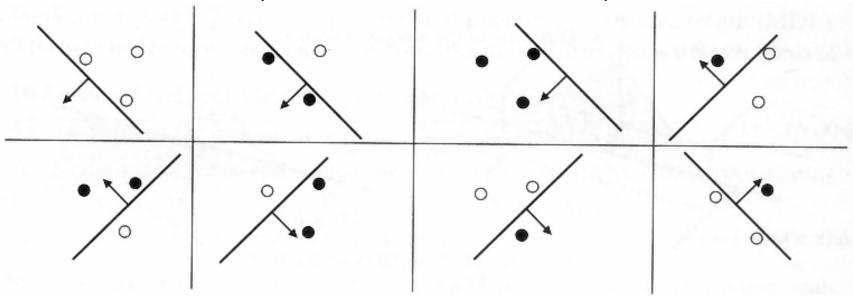
$$h(x_i) = y_i, \quad \forall i \in \{1, \ldots, m\}.$$

Definition (VC dimension): Let $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$. The <u>Vapnik-Chervonenkis dimension</u> of \mathcal{H} , denoted $d_{\mathrm{VC}}(\mathcal{H})$, is the cardinality of the largest set of points from $\overline{\mathcal{X}}$ that can be shattered by $\overline{\mathcal{H}}$.

Vapnik-Chervonenkis Dimension

Theorem: The VC-dimension of the hypothesis class of all two-class linear classifiers in d-dimensional feature space $\mathcal{H} = \left\{h(x; \boldsymbol{w}, b) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b) \mid (\boldsymbol{w}, b) \in \mathbb{R}^{d+1})\right\}$ is $d_{VC}(\mathcal{H}) = d+1$.

Example for n=2-dimensional feature space



Quiz 1: Let $\mathcal{H} = \left\{ h(x) = \hat{y}, (\hat{x}, \hat{y}) = \arg\min_{(x', y') \in T_m} \|x' - x\| \right\}$ be a space of Nearest-Neighbor classifiers. What is the VC dimension of \mathcal{H} ?

Quiz 2: Let $\mathcal{H} = \{h_1, \dots, h_K\}$ be a finite hypothesis class. What is the VC dimension of \mathcal{H} ?

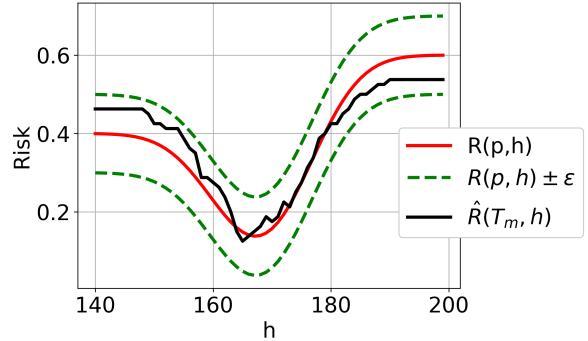
VC Dimension Generalization Bound

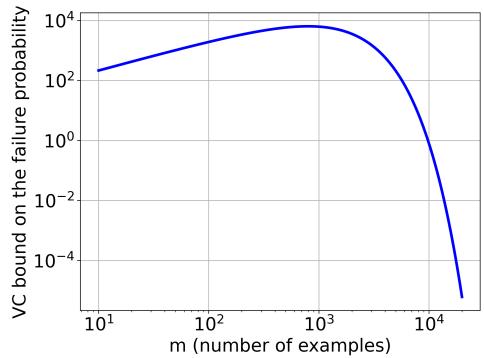
Theorem: Let $\mathcal{H} \subset \{+1, -1\}^{\mathcal{X}}$ be a hypothesis class with VC dimension $d_{\mathrm{VC}}(\mathcal{H}) < \infty$ and $T_m = \{(x_1, y_1), \dots, (x_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ a training set i.i.d. drawn from a distribution p(x, y). Then for any $\varepsilon > 0$ it holds

$$\mathbb{P}\left(\left.\max_{h\in\mathcal{H}}\left|R(p,h)-\hat{R}(T_m,h)\right|\geq\varepsilon\right)\leq 4\left(\frac{2\,e\,m}{d_{\mathrm{VC}}(\mathcal{H})}\right)^{d_{\mathrm{VC}}(\mathcal{H})}e^{-\frac{m\,\varepsilon^2}{8}}$$

where $R(p,h) = \mathbb{E}_{(x,y)\sim p}[[y \neq h(x)]]$ is the true error and $\hat{R}(T_m,h) = \frac{1}{m}\sum_{i=1}^m [y_i \neq h(x_i)]$ is the empirical error.

Example: $\mathcal{H} = \{h(x; \theta) = \text{sign}(x - \theta) \mid \theta \in \mathbb{R}\}, d_{VC}(\mathcal{H}) = 1, \varepsilon = 0.1$





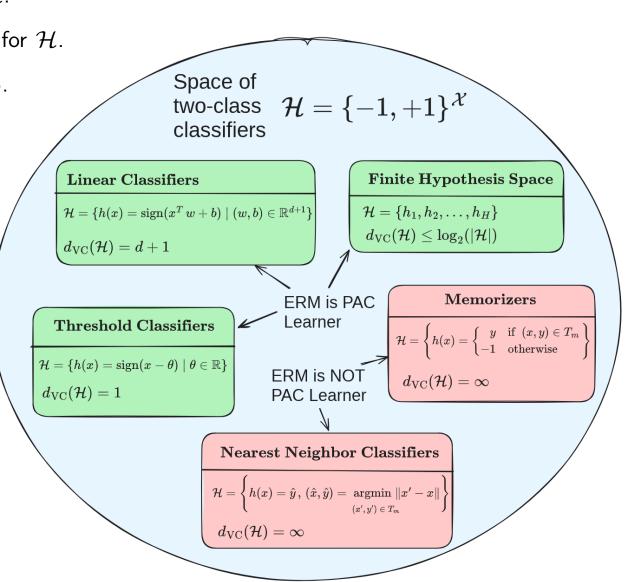
Fundamental Theorem of PAC Learning

Theorem: Let $\mathcal{H} \subset \{-1,+1\}^{\mathcal{X}}$ be a hypothesis class of functions from \mathcal{X} to $\{-1,+1\}$ and let $\ell(y,y')=\llbracket y\neq y' \rrbracket$ be the 0/1-loss function. Then, the following statements are equivalent:

- lacktriangle Uniform Law of Large numbers holds for \mathcal{H} .
- lacktriangle ERM algorithm is a successful PAC learner for ${\cal H}$.
- \mathcal{H} has finite VC dimension, $d_{\mathrm{VC}}(\mathcal{H}) < \infty$.

Assume the VC dimension of \mathcal{H} is finite, $d_{\mathrm{VC}}(\mathcal{H}) < \infty$. Then, there is a constant C such that the sample complexity is

$$m_{\text{pac}}^{\mathcal{H}}(\varepsilon, \theta) \le C \frac{d_{\text{VC}}(\mathcal{H}) + \log(\frac{1}{\delta})}{\varepsilon^2}$$



Theorem. Let $\mathcal{H} \subseteq \{-1,+1\}^{\mathcal{X}}$ be a hypothesis class of binary classifiers, and let $\ell(y,y') = \llbracket y \neq y' \rrbracket$ denote the 0-1 loss. Assume that \mathcal{H} has a finite VC dimension, $d_{\mathrm{VC}}(\mathcal{H}) < \infty$. Then, for any $\delta \in (0,1)$, with probability at least $1-\delta$ over an i.i.d. training sample $T_m = ((x_i,y_i) \in \mathcal{X} \times \mathcal{Y} \mid i=1,\ldots,m)$, the following inequality holds for all $h \in \mathcal{H}$ simultaneously:

$$R(h,p) \leq \underbrace{\widehat{R}(T_m,h)}_{\text{empirical risk}} + \underbrace{4\sqrt{\frac{d_{\text{VC}}(\mathcal{H})\,\log\!\left(rac{2\,e\,m}{d_{\text{VC}}(\mathcal{H})}
ight)\,+\,\log\!\left(rac{4}{\delta}
ight)}_{\text{complexity term}}}_{\text{complexity term}}$$

Practical implications of the VC bound:

- Minimize the empirical risk $\widehat{R}(T_m,h)$ (fit the data well).
- Control the complexity term:
 - ullet Use as many training examples m as possible.
 - Incorporate prior knowledge to restrict the complexity of \mathcal{H} (simpler models \Rightarrow smaller VC dimension).

Algorithm:

1. Construct a nested sequence of hypothesis classes:

$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots \subset \mathcal{H}_K$$

2. For each $i \in \{1, \ldots, K\}$, apply ERM:

$$h_i = \operatorname*{arg\,min}_{h \in \mathcal{H}_i} \hat{R}(T_m, h)$$

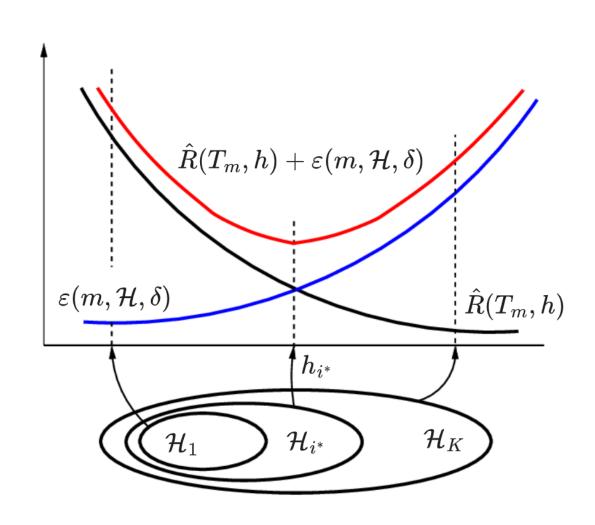
3. Select the best model using the VC generalization bound:

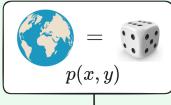
$$i^* = \operatorname*{arg\,min}_{i=1,...,K} \left(\hat{R}(T_m,h_i) + arepsilon(m,\mathcal{H}_i,\delta)
ight)$$

where

$$\varepsilon(m, \mathcal{H}_i, \delta) = 4\sqrt{\frac{d_{\text{VC}}(\mathcal{H}) \log\left(\frac{2em}{d_{\text{VC}}(\mathcal{H})}\right) + \log\left(\frac{4}{\delta}\right)}{m}}$$

4. Output h_{i^*} .





Training set

i.i.d. data $T_m=((x_1,y_1),\ldots,(x_m,y_m))\sim p^m$

Hypothesis class

$$\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}} = \{h : \mathcal{X}
ightarrow \mathcal{Y}\}$$

Loss function

$$\ell \colon \mathcal{Y} imes \mathcal{Y} o \mathbb{R}$$

ERM Learning Algorithm

Learning algorithm $A: (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$ finding a predictor in ${\cal H}$ which minimizes the empirical error:

$$\hat{R}(T_m,h) = rac{1}{m} \sum_{i=1}^m \ell(y_i,h(x_i; heta))$$

Predictor

$$\hat{y} = h_m(x)$$

Error decomposition

Predictor Error = Estimation Error + Approximation Error + Bayes Error

PAC learning

Successful PAC learner: finds approximately correct predictor with high probability.

$$m \geq m^{\mathcal{H}}_{\mathrm{pac}}(arepsilon, \delta):$$

 $\mathbb{P}[ext{estimation error} \leq arepsilon] \geq 1 - \delta$

"Too complex" hypothesis space

E.g. Memorizer

space

ERM is not PAC learner

Finite hypothesis

 $\mathcal{H} = \{h_1, h_2, \ldots, h_{\mathcal{H}}\}$

ERM is PAC learner

 $m_{ ext{pac}}^{\mathcal{H}}(arepsilon,\delta) = rac{2}{arepsilon^2} ext{log}\left(rac{2|\mathcal{H}|}{\delta}
ight)$

Uniform Law of Large Numbers

ULLN holds for $\mathcal{H}_{\cdot} \iff$

ERM is PAC learner.

VC dimension

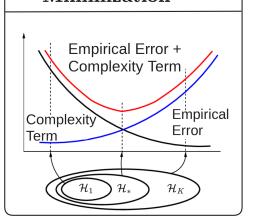
 $VCdim: \{-1, +1\}^{\mathcal{X}} \to \mathbb{N}$

Fundamental Theorem:

 $VCdim(\mathcal{H}) < \infty$

 \iff ULLN holds for ${\cal H}$

Structured Risk **Minimization**



Summary of Key Concepts

- **Vapnik–Chervonenkis (VC) dimension:** measures the complexity of a hypothesis class containing two-class classifiers $\mathcal{H} \subset \{-1,+1\}^{\mathcal{X}}$.
 - ullet Defined as the largest number of points that can be *shattered* by ${\cal H}$.
- Fundamental Theorem of PAC Learning: A finite VC dimension implies that the Uniform Law of Large Numbers (ULLN) holds, and that Empirical Risk Minimization (ERM) is a PAC learner.
- ◆ Structural Risk Minimization (SRM): Minimize the empirical risk while simultaneously controlling the complexity of the hypothesis class.