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Vapnik-Chervonenkis Dimension

Threshold classifiers: H; = {h(x) = sign(x — 0) | 8 € R}
Oriented threshold classifiers: H, = {{h(z) = sign(z — 0) | 0 € R} U {h(z) = sign(d — z) | 6 € R}}
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# The VC dimension quantifies the complexity (capacity) of a hypothesis class H C {—1, +1}.

Definition (Shattering): Let H C {—1,+1}" and let {z1, ..., z,»} C X™ be a set of m input points.
The set {x1, ...,z } is shattered by H if, for every labeling y € {—1, +1}"™, there exists a hypothesis
h € H such that

h(:cz)zyz, VzE{l,,m}

Definition (VC dimension): Let H C {—1,4+1}". The Vapnik—Chervonenkis dimension of H, denoted
dvc(#H), is the cardinality of the largest set of points from X that can be shattered by H.
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Theorem: The VC-dimension of the hypothesis class of all two-class linear classifiers in d-dimensional feature
space H = {h(z;w,b) = sign({w, ¢(z)) +b) | (w,b) € RN} is dye(H) =d + 1.

Example for n = 2-dimensional feature space
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Quiz 1: Let H = {h(w) =9, (2,9) = argmings nep,, [ — 90||} be a space of Nearest-Neighbor
classifiers. What is the VC dimension of H?

Quiz 2: Let H = {h1, ..., hx} be a finite hypothesis class. What is the VC dimension of H?
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VC Dimension Generalization Bound

Theorem: Let H C {+1, —1}" be a hypothesis class with VC dimension dyc(H) < oo and
T = {(x1,91), - - -y (Tm, Ym)} € (X X V)™ a training set i.i.d. drawn from a distribution p(x, y). Then
for any € > 0 it holds

2em )dVC(H) m€2

P(max ‘R(p, h) — R(T, h)‘ > e) < 4(m e E

heH

where R(p, h) = E(, )~p|ly # h(z)]] is the true error and R(Ty,, h) = L3 [yi # h(x;)] is the
empirical error.

Example: H = {h(x;0) = sign(x — 0) | 8 € R}, dyvc(H) =1, =0.1
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Fundamental Theorem of PAC Learning

Theorem: Let H C {—1, +1}" be a hypothesis class of functions from X to {—1, 41} and let
L(y,y") = [y # y'] be the 0/1-loss function. Then, the following statements are equivalent:

¢ Uniform Law of Large numbers holds for .
¢ ERM algorithm is a successful PAC learner for H.

Space of
two-class H = {—1, +1}%
classifiers

¢ H has finite VC dimension, dyc(H) < oo.

(Linear Classifiers w ( Finite Hypothesis Space]

H = {h(z) = sign(zTw + b) | (w,b) € R4} L’H = {h1,hs,...,hu} J
dye(H) = d+ 1 dvc(H) < log,(|H])

~_/

Assume the VC dimension of H is finite,
dvc(H) < oo. Then, there is a constant
C such that the sample complexity is

PAC Learner \_

\

\
( Nearest Neighbor Classifiers

dvc(H) =1

1
mH (5 9) < CdVC(?'L) + log(S) ERM is PAC é Memorizers w
pac\~? — g2 ( Threshold Classifiers W/ Learner { { y if (z,y) €T,
H=qh(z)= -1 other’wise ””'}
H = {h(z) =sign(z — ) |H e R 7
L {h(a) = sign(c —0) |0 € }J ERM S NOT | auu(rt)

H = {h(ﬂ,‘) =9, (%,9) = argmin ||z’ — m||}
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VC Dimension Generalization Bound

Theorem. Let H C {—1, +1}" be a hypothesis class of binary classifiers, and let £(y, y") = [y # ¥/']
denote the 0—1 loss. Assume that H has a finite VC dimension, dyvc(H) < oo. Then, for any § € (0, 1),
with probability at least 1 — § over an i.i.d. training sample T}, = ((z;,v;)) €E X X Y |1 =1,...,m), the
following inequality holds for all h € H simultaneously:

~ dVC(H) ]Og 2em + IOg 4
R(h,p) < R(Tm,h) + 4 (dVC(H)) (5)
N—— m

empirical risk N ~~ %

complexity term

Practical implications of the VC bound:
¢ Minimize the empirical risk R(T},, k) (fit the data well).
¢ Control the complexity term:
e Use as many training examples m as possible.

e Incorporate prior knowledge to restrict the complexity of H (simpler models =- smaller VC
dimension).
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Structural Risk Minimization

Algorithm:

1. Construct a nested sequence of hypothesis
classes:

Hi CH2 C -+ C Hrk
2. Foreachi € {1,..., K}, apply ERM:

h; = argmin R(T,, h)
heH,;

3. Select the best model using the VC
generalization bound:

i° = arg min (R(Tm, hi) + e(m, H;, 5))
i=1,...,.K

where

8/10

A

R(T, h) + e(m,H,6)

R(T, h)

dvc(H) log( 722y ) + log(3
e(m, H;,8) = 4J (d’VC(H)> (5>

m™m

4. Output h;x.


http://cmp.felk.cvut.cz

Summary of Key Concepts

=

9/10
Empirical Risk Minimization
@ — @ ( Hypothesis class ] ( Loss function W
p(z,y) LHQyX:{h:X%y}J L £:YxY—>R J
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N ERM Learning Algorithm
[ J LJ r
( Tralnlng set Learning algorithm A: (X x V)™ — H finding a Predictor 1
{ iid. data __| predictor in H which minimizes the empirical error:
— ~ p™ R(Ty, h — L3y i»h(zi; 0 :o? :{]:hm(éﬂ) J
T = ((:Blayl),---?(xm,ym)) p) ( ) m 1:21 (y (:I: )) g{g‘}@ \
~ s . N
Error decomposition | ( #Too complex” Uniform Law of
. Large Numbers
hypothesis space
Predictor Error = Estimation Error + _ ULLN holds for H <— - 3
Approximation Error + Bayes Error | | E.g. Memorizer R i< PAC | Structured Risk
J | ERM is not PAC learner . 'S earner ) Minimization
(. J

N
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PAC learning

Successful PAC learner: finds
approximately correct predictor
with high probability.
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Finite hypothesis
space
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H ={hs,hs,...,hyu}
ERM is PAC learner
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VC dimension

.

VCdim: {-1,+1}* — N
Fundamental Theorem:

VCdim(#H) < oo
<—> ULLN holds for H

Empirical Error +
Complexity Term,

Er:npirical

Corﬁplexity E
rror

Term

<—— ERM is PAC learner
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¢ Vapnik—Chervonenkis (VC) dimension: measures the complexity of a hypothesis class containing
two-class classifiers H C {—1, +1}~.

e Defined as the largest number of points that can be shattered by H.

¢ Fundamental Theorem of PAC Learning: A finite VC dimension implies that the Uniform Law of Large
Numbers (ULLN) holds, and that Empirical Risk Minimization (ERM) is a PAC learner.

¢ Structural Risk Minimization (SRM): Minimize the empirical risk while simultaneously controlling the
complexity of the hypothesis class.
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