Statistical Machine Learning (BE4AM33SSU)
Lecture 2: Predictor Evaluation and Empirical Risk
Minimization.

Czech Technical University in Prague
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Law of Large Numbers @
2/12

® The sample mean ji,, = %2?21 z; of i.i.d. sample Z,, = (21, 22, ..., z,) generated from
q(z) gets closer to the expected value ;1 = [ ,|2] as the sample size n increases.

¢ Example: The expected value of a single roll of a fair die is
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Law of large numbers
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The sample mean [, =
unbiased estimator of the expected value pu:
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Hoeffding inequality
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Theorem: Let Z,, = (z1,...,2,) be i.i.d. sample generated from r.v. with distribution
q(z). Let the random variables attain values from an interval [a,b]. Let the expected
value of the r.v. be u =E, 4[z]. Let fi, == >"" | z;. Then, for any £ > 0:

2n€2

IP)anvqf”b(‘,an —pl > 5) < 2e (b-a)?

Key Properties:
e (+) General: the bound holds for any bounded i.i.d. random variables.
e (-) Conservative: the bound is typically not tight.
e (+) Vanishing: the bound — 0 as n — oo.

e (+) Cheap: the bound is simple and easy to compute.
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Predictor evaluation
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Loss
- ~ Test set oo f0 i y=0
% A ii.d. data b= {1 if y#9 zi = £(yi, h(zi))
‘ 1= U0 = 5. = (@0y)s- - (@0 n) !
' 4 x|y ; loss
p(z,y) 173.8 |+1 +1 1 0
- J 171.2] 1 -1 2 0
n J 161.7 | -1 +1 Ii.d. Z3 1
198.4 | +1 +1 Z4 0
190.2 [+1 + 25 0
: : ‘V’ :
R predicted \1/
. input output ————— output
True risk Test error
(expected value of loss) \ Predictor (average loss on test set)
R(p, h) = E(zy)~p €y, h(2))] Tl kXY R(Sn, h) = 5 >, £(yi, h(xi))
Law of Large Numbers:
LR(Sn, h) gets close to R(p, h) as n goes to oco.
Application of the Hoeffding inequality:
2 2n 62

2ne

P g ([fin—pt] > ) <26 007 = P ([R(S, )= R(p, h)| > 2) < 26 Cmoxtm”
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Goal: Characterize the deviation between the true risk R(p, h) = E(; ,yp[f(y, h(x))]
and the test error R(S,,,h) =1 5°"  (y', h(z')) computed on i.i.d. data S, ~ p".

Hoeffding inequality: provides a probabistic bound on the deviation between the true
risk R(p, h) and the test errork R(S,, h):

2 n52

Psrpn (IR, 1) = B(S,, )| > €) < 2¢ Crox—hui® vz > 0

(1-9)-Confidence interval: (derived from the Hoeffding inequality)

R(p,h) € (R(Sn,h) — &, R(Sn,h) +¢) holds with probability 1 —4 at least,

where 1 — 0 is called the confidence level.

e For fixed n and ¢ € [0, 1], compute € = ({ax — Emin)\/log(2)2_7;0g(5)

e For fixed £ and § € [0, 1], compute n = log(Q)nglog(é) (Cmax — lmin)”
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. : : : 8/12
ERM: a principle to construct algorithms learning predictors from data. | 8/12
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Instances: Linear regression, Logistic Regression, Neural Networks learn by back-
propagation, Gradient Boosted Trees, ...
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¢ Goal: Given a training set T, = ((z1,91),- -+, (T, Ym)) ~ P, learn a predictor —

h: X — Y minimizing the expected risk R(p, h) = E ,)~pll(y, h(x))].

¢ Hypothesis class (space): is fixed before learning based on prior knowledge

HgyX:{h:X%y}

¢ Learning algorithm: is a function

A: UZ_ (A x Y™ —H

¢ Emprirical risk evaluated on T}, (a.k.a training error):

m

R(Tyn, h) = %Z C(ys, h(x;))

1=1

¢ ERM based learning algorithm:

hm = A(T),) = Argmin R(T),, h)
heH
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When does ERM work?
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( Hypothesis class ( Loss function W

HCY Y ={hX =V} J Y xY—-R
p(z,y) L vy
_ _J \\
) ( . . j
( N Learning algorithm based on ERM
Training set .
B Learning algorithm A: (X x Y)™ — H finding a Fliselieiar 1
i..d. data predictor in H which minimizes the empirical error: |
y = h.,,(x
kTm - ((mhyl)a---a(mmaym)) ~ R(T h) 1 iz( h( 9)) é{é\}@ y m( )
- my ) = — iy h(x;; N (50
" i=1 Y d oﬁ
_ J
Plan for the next lectures:
( N\ N N\ )
PAC learning ”Too complex” Finite hypothesis VC dimension
hypothesis space space
Successful PAC learner = VCdim: {-1,+1}* =+ N
with a high probability it h: X — H ={hs,hs,...,hy} )
finds close approximation of _ Y VCdim(H) < oo
the best predictor in H. ERM is not PAC learner ERM is PAC learner < ERM is PAC learner
J J _ J

_J

k
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ERM can fail when the hypothesis class is too complex @
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¢ Setup: X =[a,b] CR, Y ={+1,-1}, L(y,v) = |[y7éy]] p(z |y =+1) and
p(x | y = —1) uniform on X, with p(y = +1)

¢ Optimal predictor: h*(z) = +1 with true risk R(p, h*) = 0.2.

¢ “Memorizer” learning rule: for training set T,,, = ((z1,41),- - ., (Tm, Ym)), define

hm(x):{yj if:c::.cj for some 5 € {1,...,m},
—1 otherwise.
e Implements ERM: P(R(Tm,h )=0) =1.

(P,

e Performs poorly: IP’( = 0. 8) = 1 for any finite m.

¢ Overfitting: occurs when h,, = A(T},) achieves low empirical risk R(T},, hy,) while
the true risk R(p, h,,) is high.
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Law of Large Numbers

e The sample mean converges to the expected value as the number of samples
Increases.

e Hoeffding's inequality: bounds the probability of deviation between the sample
mean and the expected value.

Predictor Evaluation

e For a fixed h: X — ), the losses ¢(y;, h(x;)) on an i.i.d. sample S,, are themselves
i.i.d. random variables.

e Confidence intervals provide bounds on the estimation error.

Empirical Risk Minimization (ERM)
e ERM selects a predictor that minimizes empirical error on the training set.

e ERM may fail if the hypothesis class H is too complex.
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