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Law of Large Numbers

■ The sample mean µ̂n = 1
n

∑n
i=1 zi of i.i.d. sample Zn = (z1, z2, . . . , zn) generated from

q(z) gets closer to the expected value µ = Ez∼q[z] as the sample size n increases.

■ Example: The expected value of a single roll of a fair die is

µ = Ez∼q[z] =

6∑
z=1

z q(z) =
1 + 2 + 3 + 4 + 5 + 6

6
= 3.5
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σ2 = Vz∼q[z] =
(1−3.5)2+···+(6−3.5)2

6 ≈ 2.917

The sample mean µ̂n = 1
n

∑n
i=1 zi is an

unbiased estimator of the expected value µ:

E(z1,...,zn)∼qn[µ̂n] = µ

The variance of µ̂n decays
with 1

n:

V(z1,...,zn)∼qn[µ̂n] =
σ2

n

n = 25 → σ2

n = 0.116
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Law of large numbers
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Hoeffding Bound

Hoeffding inequality:

P(|µ − µ̂n| ≥ ε) ≤ 2 e
− 2 n ε2

(b−a)2

a = 1, b = 6, ε = 0.5
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Hoeffding inequality
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Hoeffding inequality

■ Theorem: Let Zn = (z1, . . . , zn) be i.i.d. sample generated from r.v. with distribution
q(z). Let the random variables attain values from an interval [a, b]. Let the expected
value of the r.v. be µ = Ez∼q[z]. Let µ̂n = 1

n

∑n
i=1 zi. Then, for any ε > 0:

PZn∼qn

(
|µ̂n − µ| ≥ ε

)
≤ 2e

− 2 n ε2

(b−a)2

■ Key Properties:

• (+) General: the bound holds for any bounded i.i.d. random variables.

• (-) Conservative: the bound is typically not tight.

• (+) Vanishing: the bound → 0 as n → ∞.

• (+) Cheap: the bound is simple and easy to compute.
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Application of the Hoeffding inequality:

PZn∼qn

(∣∣µ̂n−µ
∣∣ ≥ ε

)
≤ 2e

− 2 n ε2

(b−a)2 ⇒ PSn∼pn

(∣∣R̂(Sn, h)−R(p, h)
∣∣ ≥ ε

)
≤ 2e

− 2 n ε2

(ℓmax−ℓmin)
2
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Predictor evaluation
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Confidence interval

■ Goal: Characterize the deviation between the true risk R(p, h) = E(x,y)∼p[ℓ(y, h(x))]

and the test error R̂(Sn, h) = 1
n

∑n
i=1 ℓ(yi, h(xi)) computed on i.i.d. data Sn ∼ pn.

■ Hoeffding inequality: provides a probabistic bound on the deviation between the true
risk R(p, h) and the test errork R̂(Sn, h):

PSn∼pn

(
|R(p, h) − R̂(Sn, h)| ≥ ε

)
≤ 2e

− 2 nε2

(ℓmax−ℓmin)
2 ∀ε > 0

■ (1-δ)-Confidence interval: (derived from the Hoeffding inequality)

R(p, h) ∈
(
R̂(Sn, h) − ε, R̂(Sn, h) + ε

)
holds with probability 1 − δ at least,

where 1 − δ is called the confidence level.

• For fixed n and δ ∈ [0, 1], compute ε = (ℓmax − ℓmin)
√

log(2)−log(δ)
2 n

• For fixed ε and δ ∈ [0, 1], compute n = log(2)−log(δ)
2ε2

(ℓmax − ℓmin)
2
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Instances: Linear regression, Logistic Regression, Neural Networks learn by back-
propagation, Gradient Boosted Trees, . . .

ERM: a principle to construct algorithms learning predictors from data. 8/12
Empirical Risk Minimization
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Empirical Risk Minimization

■ Goal: Given a training set Tm = ((x1, y1), . . . , (xm, ym)) ∼ pm, learn a predictor
h : X → Y minimizing the expected risk R(p, h) = E(x,y)∼p[ℓ(y, h(x))].

■ Hypothesis class (space): is fixed before learning based on prior knowledge

H ⊆ YX = {h : X → Y}

■ Learning algorithm: is a function

A : ∪∞
m=1 (X × Y)m → H

■ Emprirical risk evaluated on Tm (a.k.a training error):

R̂(Tm, h) =
1

m

m∑
i=1

ℓ(yi, h(xi))

■ ERM based learning algorithm:

hm = A(Tm) = Argmin
h∈H

R̂(Tm, h)
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When does ERM work?
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ERM can fail when the hypothesis class is too complex

■ Setup: X = [a, b] ⊂ R, Y = {+1, −1}, ℓ(y, y′) = [[y ̸= y′]], p(x | y = +1) and
p(x | y = −1) uniform on X , with p(y = +1) = 0.8.

■ Optimal predictor: h∗(x) = +1 with true risk R(p, h∗) = 0.2.

■ “Memorizer” learning rule: for training set Tm = ((x1, y1), . . . , (xm, ym)), define

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . , m},

−1 otherwise.

• Implements ERM: P
(
R̂(Tm, hm) = 0

)
= 1.

• Performs poorly: P
(
R(p, hm) = 0.8

)
= 1 for any finite m.

■ Overfitting: occurs when hm = A(Tm) achieves low empirical risk R̂(Tm, hm) while
the true risk R(p, hm) is high.
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Summary of Key Concepts

■ Law of Large Numbers

• The sample mean converges to the expected value as the number of samples
increases.

• Hoeffding’s inequality: bounds the probability of deviation between the sample
mean and the expected value.

■ Predictor Evaluation

• For a fixed h : X → Y, the losses ℓ(yi, h(xi)) on an i.i.d. sample Sn are themselves
i.i.d. random variables.

• Confidence intervals provide bounds on the estimation error.

■ Empirical Risk Minimization (ERM)

• ERM selects a predictor that minimizes empirical error on the training set.

• ERM may fail if the hypothesis class H is too complex.
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