Statistical Machine Learning (BE4M33SSU) Lecture 2: Predictor Evaluation and Empirical Risk Minimization.

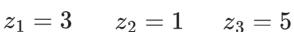
Czech Technical University in Prague V. Franc

Law of Large Numbers

- The sample mean $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n z_i$ of i.i.d. sample $Z_n = (z_1, z_2, \dots, z_n)$ generated from q(z) gets closer to the expected value $\mu = \mathbb{E}_{z \sim q}[z]$ as the sample size n increases.
- Example: The expected value of a single roll of a fair die is

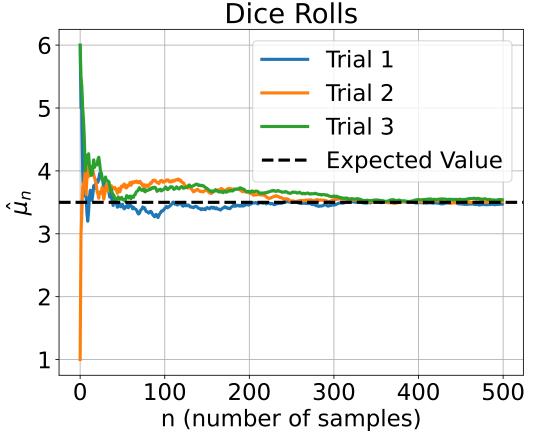
$$\mu = \mathbb{E}_{z \sim q}[z] = \sum_{z=1}^{6} z \, q(z) = \frac{1+2+3+4+5+6}{6} = 3.5$$

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n z_i$$

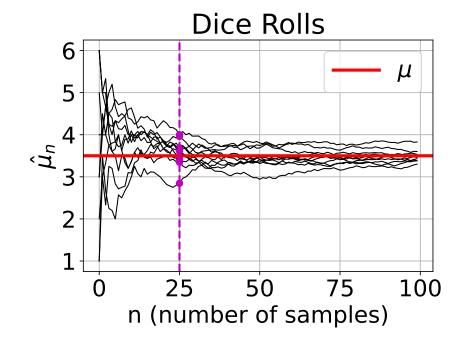


$$z_3 = 5$$

$$z_n=2$$



Law of large numbers

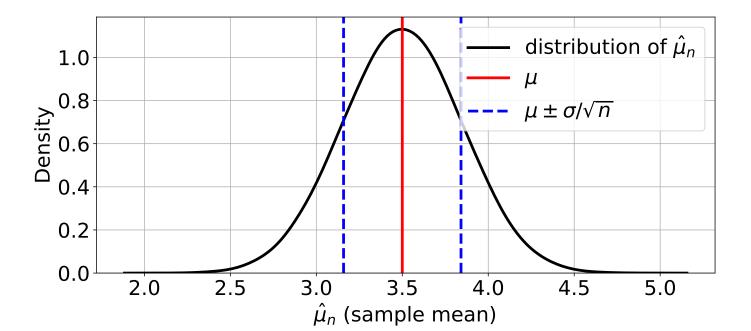


$$\mu = \mathbb{E}_{z \sim q}[z] = \frac{1 + 2 + 3 + 4 + 5 + 6}{6} = 3.5$$

$$\sigma^2 = \mathbb{V}_{z \sim q}[z] = \frac{(1 - 3.5)^2 + \dots + (6 - 3.5)^2}{6} \approx 2.917$$

The sample mean $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n z_i$ is an unbiased estimator of the expected value μ :

$$\mathbb{E}_{(z_1,\dots,z_n)\sim q^n}[\hat{\mu}_n] = \mu$$

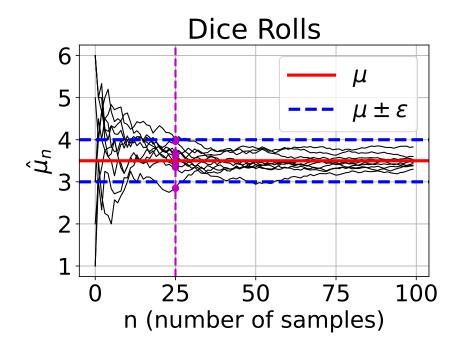


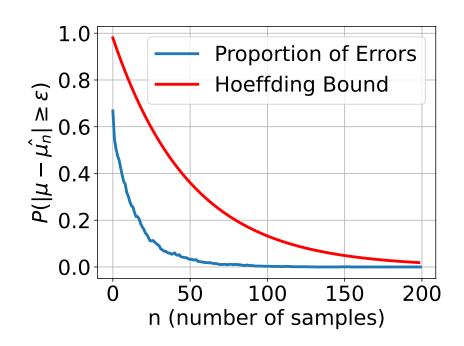
The variance of $\hat{\mu}_n$ decays with $\frac{1}{n}$:

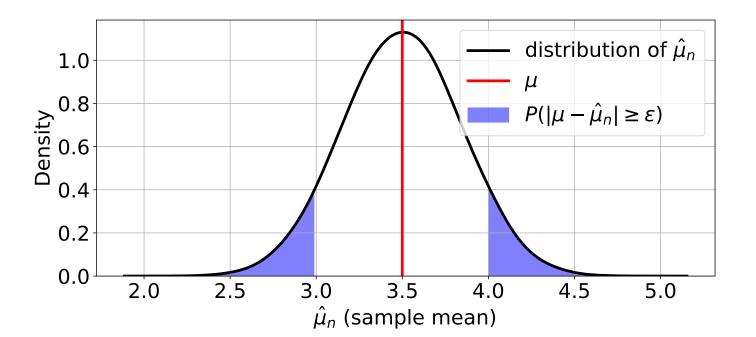
$$\mathbb{V}_{(z_1,\dots,z_n)\sim q^n}[\hat{\mu}_n] = \frac{\sigma^2}{n}$$

$$n = 25 \to \frac{\sigma^2}{n} = 0.116$$

Hoeffding inequality







Hoeffding inequality:

$$\mathbb{P}(|\mu - \hat{\mu}_n| \ge \varepsilon) \le 2e^{-\frac{2n\varepsilon^2}{(b-a)^2}}$$

$$a = 1, b = 6, \varepsilon = 0.5$$

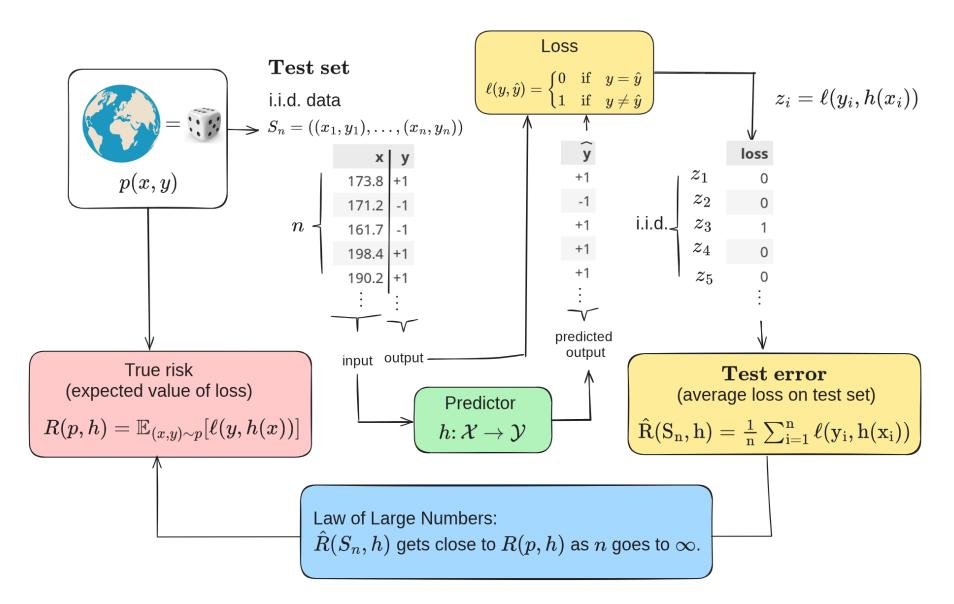
Theorem: Let $Z_n=(z_1,\ldots,z_n)$ be i.i.d. sample generated from r.v. with distribution q(z). Let the random variables attain values from an interval [a,b]. Let the expected value of the r.v. be $\mu=\mathbb{E}_{z\sim q}[z]$. Let $\hat{\mu}_n=\frac{1}{n}\sum_{i=1}^n z_i$. Then, for any $\varepsilon>0$:

$$\mathbb{P}_{Z_n \sim q^n} \left(|\hat{\mu}_n - \mu| \ge \varepsilon \right) \le 2e^{-\frac{2n\varepsilon^2}{(b-a)^2}}$$

Key Properties:

- (+) **General:** the bound holds for any bounded i.i.d. random variables.
- (-) Conservative: the bound is typically not tight.
- (+) Vanishing: the bound $\to 0$ as $n \to \infty$.
- (+) **Cheap:** the bound is simple and easy to compute.

Predictor evaluation



Application of the Hoeffding inequality:

$$\mathbb{P}_{Z_n \sim q^n} \Big(|\hat{\mu}_n - \mu| \ge \varepsilon \Big) \le 2e^{-\frac{2 n \varepsilon^2}{(b-a)^2}} \quad \Rightarrow \quad \mathbb{P}_{S_n \sim p^n} \Big(|\hat{R}(S_n, h) - R(p, h)| \ge \varepsilon \Big) \le 2e^{-\frac{2 n \varepsilon^2}{(\ell_{\max} - \ell_{\min})^2}}$$

- **Goal:** Characterize the deviation between the true risk $R(p,h) = \mathbb{E}_{(x,y) \sim p}[\ell(y,h(x))]$ and the test error $\hat{R}(S_n,h) = \frac{1}{n} \sum_{i=1}^n \ell(y^i,h(x^i))$ computed on i.i.d. data $S_n \sim p^n$.
- Hoeffding inequality: provides a probabistic bound on the deviation between the true risk R(p,h) and the test errork $\hat{R}(S_n,h)$:

$$\mathbb{P}_{\mathcal{S}^n \sim p^n} \Big(|R(p,h) - \hat{R}(S_n,h)| \ge \varepsilon \Big) \le 2e^{-\frac{2n\varepsilon^2}{(\ell_{\max} - \ell_{\min})^2}} \qquad \forall \varepsilon > 0$$

(1- δ)-Confidence interval: (derived from the Hoeffding inequality)

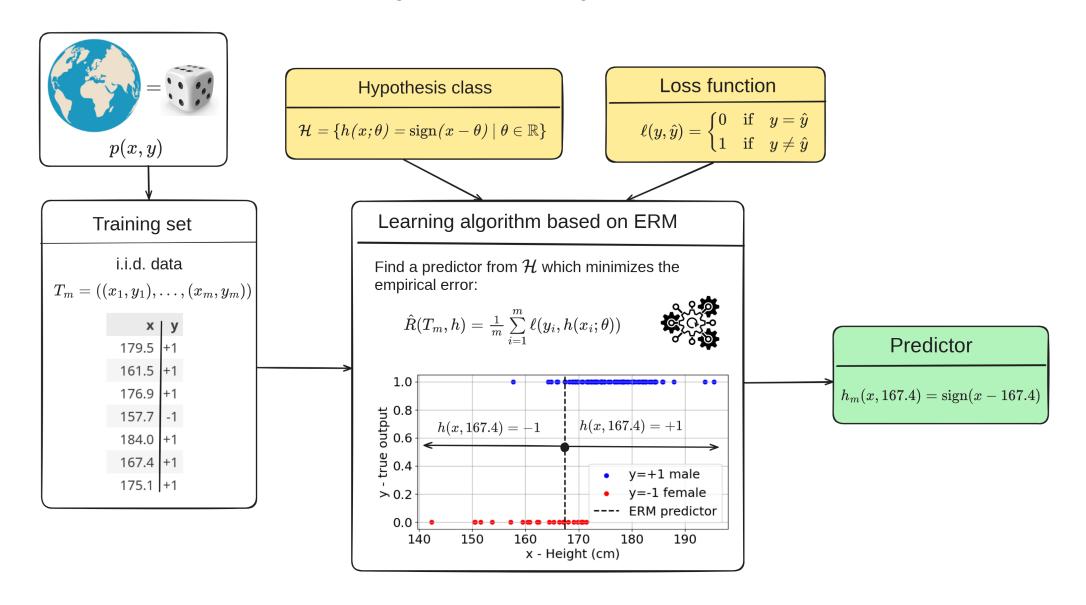
$$R(p,h) \in (\hat{R}(S_n,h) - \varepsilon, \hat{R}(S_n,h) + \varepsilon)$$
 holds with probability $1 - \delta$ at least,

where $1 - \delta$ is called the confidence level.

- For fixed n and $\delta \in [0,1]$, compute $\varepsilon = (\ell_{\max} \ell_{\min}) \sqrt{\frac{\log(2) \log(\delta)}{2n}}$
- For fixed ε and $\delta \in [0,1]$, compute $n = \frac{\log(2) \log(\delta)}{2\varepsilon^2} (\ell_{\max} \ell_{\min})^2$

Empirical Risk Minimization

ERM: a principle to construct algorithms learning predictors from data.



Instances: Linear regression, Logistic Regression, Neural Networks learn by back-propagation, Gradient Boosted Trees, . . .

Empirical Risk Minimization

- Goal: Given a training set $T_m = ((x_1, y_1), \dots, (x_m, y_m)) \sim p^m$, learn a predictor $h \colon \mathcal{X} \to \mathcal{Y}$ minimizing the expected risk $R(p, h) = \mathbb{E}_{(x,y) \sim p}[\ell(y, h(x))]$.
- Hypothesis class (space): is fixed before learning based on prior knowledge

$$\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}} = \{h \colon \mathcal{X} \to \mathcal{Y}\}$$

Learning algorithm: is a function

$$A: \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$$

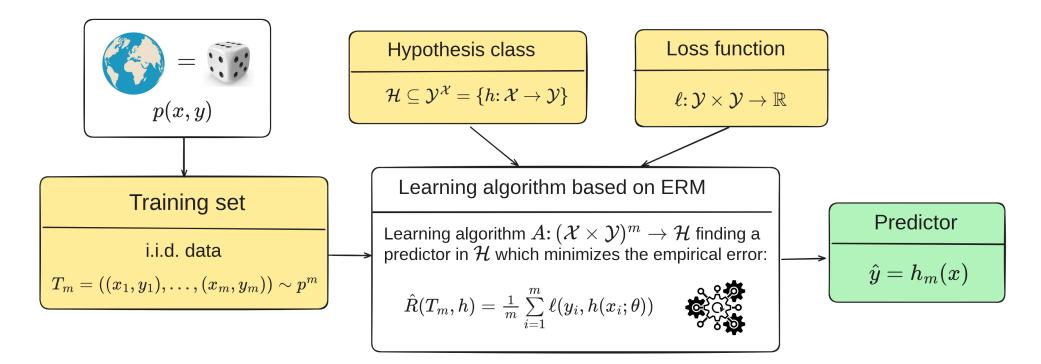
• **Emprirical risk** evaluated on T_m (a.k.a training error):

$$\hat{R}(T_m, h) = \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, h(x_i))$$

ERM based learning algorithm:

$$h_m = A(T_m) = \underset{h \in \mathcal{H}}{\operatorname{Argmin}} \hat{R}(T_m, h)$$

10/12



Plan for the next lectures:

PAC learning

Successful PAC learner = with a high probability it finds close approximation of the best predictor in \mathcal{H} .

"Too complex" hypothesis space

$$h{:}\,\mathcal{X} o \mathcal{Y}$$

ERM is not PAC learner

Finite hypothesis space

$$\mathcal{H} = \{h_1, h_2, \dots, h_{\mathcal{H}}\}$$

ERM is PAC learner

VC dimension

VCdim: $\{-1, +1\}^{\mathcal{X}} \to \mathbb{N}$ VCdim $(\mathcal{H}) < \infty$ \iff ERM is PAC learner

ERM can fail when the hypothesis class is too complex

- ♦ Setup: $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ uniform on \mathcal{X} , with p(y = +1) = 0.8.
- Optimal predictor: $h^*(x) = +1$ with true risk $R(p, h^*) = 0.2$.
- "Memorizer" learning rule: for training set $T_m = ((x_1, y_1), \dots, (x_m, y_m))$, define

$$h_m(x) = \begin{cases} y_j & \text{if } x = x_j \text{ for some } j \in \{1, \dots, m\}, \\ -1 & \text{otherwise.} \end{cases}$$

- Implements ERM: $\mathbb{P}(\hat{R}(T_m, h_m) = 0) = 1$.
- Performs poorly: $\mathbb{P}(R(p, h_m) = 0.8) = 1$ for any finite m.
- Overfitting: occurs when $h_m = A(T_m)$ achieves low empirical risk $\hat{R}(T_m, h_m)$ while the true risk $R(p, h_m)$ is high.

Summary of Key Concepts

- Law of Large Numbers
 - The sample mean converges to the expected value as the number of samples increases.
 - Hoeffding's inequality: bounds the probability of deviation between the sample mean and the expected value.
- Predictor Evaluation
 - For a fixed $h: \mathcal{X} \to \mathcal{Y}$, the losses $\ell(y_i, h(x_i))$ on an i.i.d. sample S_n are themselves i.i.d. random variables.
 - Confidence intervals provide bounds on the estimation error.
- Empirical Risk Minimization (ERM)
 - ERM selects a predictor that minimizes empirical error on the training set.
 - ullet ERM may fail if the hypothesis class ${\cal H}$ is too complex.