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H = {h(x, θ) = sign(x − θ) | θ ∈ {140, 145, . . . , 200}}
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Error decomposition

Errors:
1. Best (Bayes) attainable risk R(p, h∗), where h∗(x) = argmin

h∈YX
R(p, h)

2. Best risk in the class R(p, hH), where hH = argmin
h∈H

R(p, h)

3. Risk of the learned predictor R(p, hm), where hm = A(Tm)
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Error decomposition

Errors:

1. Best (Bayes) attainable risk R(p, h∗), where h∗(x) = argmin
h∈YX

R(p, h)

2. Best risk in the class R(p, hH), where hH = argmin
h∈H

R(p, h)

3. Risk of the learned predictor R(p, hm), where hm = A(Tm)

Error decomposition:

R(p, hm)︸ ︷︷ ︸
learned predictor risk

=

(
R(p, hm) − R(p, hH)

)
︸ ︷︷ ︸

estimation error

+

(
R(p, hH) − R(p, h∗)

)
︸ ︷︷ ︸

approximation error

+ R(p, h∗)︸ ︷︷ ︸
Bayes risk

■ The approximation error: depends on H chosen prior to learning.

■ The estimation error: depends on H, training data Tm and the algorithm A.

■ Best (Bayes) attainable risk: irreducible error.
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Given ε > 0, learned predictor hm is
approximately correct provided:

R(p, hm) − R(p, hH)︸ ︷︷ ︸
estimation error

≤ ε

︸ ︷︷ ︸
approximately correct
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Probably Approximately Correct
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■ ERM algorithm: hm = A(Tm) = argmin
h∈H

[
1
m

m∑
i=1

[[yi ̸= h(xi)]]

]
■ We derive a lower bound valid for any distribution p(x, y) and finite hypothesis class H = {h1, . . . , hH}:

PTm∼pm

[
R(p, hm) − R(p, hH) ≤ ε︸ ︷︷ ︸

approximately correct

]
≥ 1 − 2 |H| e

−1
2m ε2︸ ︷︷ ︸

lower bound increasing with m
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Probably Approximately Correct
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Setup:

■ hm = argmin
h∈H

[
1
m

m∑
i=1

[[yi ̸= h(xi)]]

]
■ Finite hypothesis class:

H =
{

hi : X → Y | i ∈ {1, . . . , H}
}

■ Distribution-free lower bound:

PTm∼pm

[
R(p, hm) − R(p, hH) ≤ ε︸ ︷︷ ︸

approximately correct

]
≥ 1 − 2 |H| e

−1
2 m ε2

= 1 − δ︸ ︷︷ ︸
probably

■ Given ε > 0, probability of failure δ > 0, we can compute the sample complexity:

m
H
pac(ε, δ) =

2

ε2
ln

(
2 |H|

δ

)
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Probably Approximately Correct
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Probably Approximately Correct learning

■ Successful PAC learning algorithm: An algorithm can learn a hypothesis that is likely ("probably") to
be approximately correct, given a sufficient number of training examples.

■ Definition: Algorithm is a successful PAC learner for hypothesis class H if there exists a function
mH

pac : (0, 1) × (0, 1) → N such that: For every ε ∈ (0, 1), δ ∈ (0, 1), and every distribution p(x, y),
when running the algorithm on m ≥ mH

pac(ε, δ) examples Tm i.i.d. drawn from p(x, y), then the
algorithm returns hm = A(T m) such that

PTm∼pm

(
R(p, hm) − R(p, hH) ≤ ε︸ ︷︷ ︸

approximately correct

)
≥ 1 − δ︸ ︷︷ ︸

probably

■ Key Concepts:

• Approximately correct: The learned predictor’s risk is at most ε greater than the risk of the best
possible predictor in the class H.

• Probably: The probability of the algorithm failing to produce the approximately correct predictor is
at most δ.

• Sample complexity mH
pac(ε, δ): The minimum number of examples required to guaranteed the

desired accuracy ε and the confidence 1 − δ.

• Distribution independence: The guarantees hold for any data distribution p(x, y).
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ERM on Finite Hypothesis Space is a Successful PAC learner

■ Theorem. Let H = {hi : X → Y | i ∈ {1, . . . , H}} be a finite hypothesis class. Then the Empirical
Risk Minimization (ERM) algorithm

hm = argmin
h∈H

[
1

m

m∑
i=1

[[yi ̸= h(xi)]]

]

is a successful PAC learner with sample complexity

m
H
PAC(ε, δ) =

2

ε2
ln

(
2 |H|

δ

)
.

■ The theorem is a consequence of the bound we introduced earlier (however, have not yet proved):

PTm∼pm

[
R(p, hm) − R(p, hH) ≤ ε︸ ︷︷ ︸

approximately correct

]
≥ 1 − 2 |H| e

−1
2 m ε2

= 1 − δ︸ ︷︷ ︸
probably
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Example: ε = 0.05, δ = 0.1, H =
{

h(x; θ) = sign(x − θ) | θ ∈ {140, 141, . . . , 200}}
The sample complexity: mH

pac(ε, δ) = 2
ε2

ln
(
2 |H|

δ

)
= 2

0.052
ln
(
2 · 60
0.1

)
≈ 5, 673
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Probably Approximately Correct learning
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Joke: Chat GPT-5
Image: Nano Banana
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Probably Approximately Correct Joke
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Example:

H = {h(x; θ) = sign(x − θ) | θ ∈
{140, 141, . . . , 200}}

ε = 0.1, δ = 0.05, |H| = 60

mH
ul (0.1, 0.05) = 389.2
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Uniform Law of Large Numbers

■ LLN: m ≥ 1
2ε2

log
(
2
δ

)
⇒ P

( ∣∣R(p, h) − R̂(Tm, h)
∣∣ > ε︸ ︷︷ ︸

generalization error of h is high

)
≤ δ

LLN applies for any h : X → Y fixed prior to observating the data Tm

■ ULLN: m ≥ mH
ul(ε, δ) ⇒ P

(
max
h∈H

∣∣R(p, h) − R̂(Tm, h)
∣∣ > ε︸ ︷︷ ︸

generalization error of some h∈H is high

)
≤ δ

ULLN applies only for some H, e.g., when H is finite mH
ul (ε, δ) = 1

2ε2
log

(
2|H|

δ

)
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Uniform Law of Large Numbers

■ Assume a finite hypothesis class H = {hi : X → Y | i ∈ {1, 2, . . . , H}}.

P
(

max
h∈H

∣∣R(p, h) − R̂(Tm, h)
∣∣ ≥ ε︸ ︷︷ ︸

generalization error of some h∈H is high

)
(1)
= P



∣∣R(p, h1) − R̂(Tm, h1)
∣∣ ≥ ε or∣∣R(p, h

2
) − R̂(Tm, h

2
)
∣∣ ≥ ε or

...∣∣R(p, h
H
) − R̂(Tm, h

H
)
∣∣ ≥ ε


(2)
≤

∑
h∈H

P
(

|R(p, h) − R̂(Tm, h)
∣∣ ≥ ε

)
(3)
≤ 2 |H| e−2mε2

1. a ≥ ε or b ≥ ε ⇐⇒ max{a, b} ≥ ε

2. Union bound: P
(

A1 or A2 or · · · or An

)
≤
∑n

i=1 P(Ai)

3. Hoeffding inequality: P
(

|R(h) − RT m(h)
∣∣ ≥ ε

)
≤ 2 e−2 m ε2

■ Setting 2 |H| e−2mε2 = δ and solving for m, we get

m
H
ul (ε, δ) =

1

2ε2
log

(
2|H|

δ

)
⇒ P

(
max
h∈H

∣∣R(h) − RT m(h)
∣∣ ≥ ε

)
≤ δ
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Bound on Estimation Error

■ Bound on estimation error of hm = argminh∈H R̂(Tm, h) :

R(p, hm) − R(p, hH)︸ ︷︷ ︸
estimation error

=

(
R(p, hm) − R̂(Tm, hm)

)
+

(
R̂(Tm, hm) − R(p, hH)

)

≤
(

R(p, hm) − R̂(Tm, hm)

)
+

(
R̂(Tm, hH) − R(hH)

)
≤ 2max

h∈H

∣∣R(p, h) − R̂(Tm, h)
∣∣︸ ︷︷ ︸

Maximal generalization error
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Example:

For finite H, we have:

m
H
ul (ε, δ) =

1

2ε2
log

(
2|H|

δ

)

Hence, the sample complexity is:

m
H
pac(ε

′
, δ) =

2

ε′2
log

(
2|H|

δ

)
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ULLN implies ERM is PAC learner

■ ULLN: m ≥ mH
ul(ε, δ) ⇒ P

(
max
h∈H

∣∣R(p, h) − R̂(Tm, h)
∣∣ > ε

)
≤ δ

■ Bound on estimation error of hm = argminh∈H R̂(Tm, h) :

R(p, hm) − R(p, hH) ≤ 2max
h∈H

∣∣R(p, h) − R̂(Tm, h)
∣∣

■ ULLN + Bound on estimation error = ERM is succesfull PAC learner:

m ≥ m
H
pac(ε

′
, δ) = m

H
ul

(
ε

′
/2, δ

)
⇒ P

(
R(p, hm) − R(p, hH) ≤ ε

′
)

≥ 1 − δ
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Summary of Key Concepts
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Summary of Key Concepts

■ Error Decomposition

• Error of the learned predictor = Estimation Error + Approximation Error + Bayes Risk

■ Probably Approximately Correct (PAC) Learning

• A successful PAC learner, with high probability, finds a close approximation of the best predictor in
the class, given enough examples.

• Sample complexity: number of examples needed for PAC guarantees.

■ Empirical Risk Minimization:

• ERM over a finite hypothesis space is a successful PAC learner.

■ Uniform Law of Large Numbers

• Guarantees uniform convergence of empirical risk to the expected risk over the hypothesis space.
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