Architecture and Design

Petr Kfemen

petr.kremen@cvut.cz

Winter Term 2025

e

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design

Contents

© Why?
© Software Architecture

© Architectural Styles
@ Layered Architecture

@ Design Patterns
@ GoF Design Patterns
@ Enterprise Design Patterns
@ Other Useful Patterns
@ Microservices patterns

© Conclusions

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 2/50

Architecture Design

@ Changes slowly @ Rapid change through refactoring
@ Speaks about Components @ Speaks about Classes
@ Says how components connect @ Solves recurrent

and interact with others implementation problems

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 3/50

Acronyms ...

YAGNI likes a DRY KISS)

3
&

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design

Some buzzwords and acronyms for today

YAGNI You aren't gonna need
it

KISS Keep it simple, stupid

@ Software architecture patterns
Design patterns

DRY Don't repeat yourself Separation of concerns

loC Inversion of Control _
DI Dependency injection Encapsulation
DAQO Data Access Object

MVC Model View Controller

BDUF Big Design Upfront

°
°

@ Hollywood principle

°

@ High cohesion, loose coupling
°

Don't talk to strangers
(Demeter's law)

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 5/50

|
SOLID

Single-responsibility A class/component should take care of and
encapsulate a single state and functionality.

Open—closed principle A class/component should be open for extension,
but closed for modification.

Liskov substitution principle Instances of a class should be replaceable with
instances of its subclasses without altering the correctness of
that program.

Interface segregation principle Many client-specific interfaces are better
than one general-purpose interface.

Dependency inversion principle One should depend upon abstractions
(interfaces), not implementations.

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 6 /50

Why?

r Kfemen (petr.kremen@cvut.

Why should we think about architecture/design?
@ Adding new features into a mess is more difficult (and is

more likely to end-up as more mess)
@ Debugging is easier for a well-designed application

@ Accommodating new requirements is easier for a

well-designed application
@ More resources are spent on maintenance than

Development

Maintenance
development

Resources spent on initial development vs. maintenance

Figure: http://clarityincode.com/software-maintenance

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025

8/50

http://clarityincode.com/software-maintenance

Which maintenance tasks are performed?

corrective = fix defects
adaptive = adapt to environment change (new OS, HW)

perfective = function changes

preventive = improve maintainability itself

Proportion of total maintenance time
spent on each type of maintenance

Figure: http://clarityincode.com/software-maintenance, from g
Lientz, Swanson (1980)

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 9/50

http://clarityincode.com/software-maintenance

Why should we think about architecture/design?

Documentation Developers tend to change jobs often. Newcomers need to
get up to speed quickly.
Efficiency Clean code is usually more efficient than messy code.

Error prevention Clean code is less prone to bugs.

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 10 /50

Modern Application Development

small decompose to testable small pieces that can speed-up delivery
developer-oriented architecture and design easier to undestand, devops

networked applications communicate over network rather than in
memory, SOA, distributed teams, easier deployment

Small

Networked Developer-
oriented

Figure: https://www.nginx.com/blog/
principles-of-modern-application-development

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 11 /50

https://www.nginx.com/blog/principles-of-modern-application-development
https://www.nginx.com/blog/principles-of-modern-application-development

Software Architecture

Software Architecture

e

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design

Software Architecture

What is a software architecture?

The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and
the relationships among them. Architecture is concerned with the
public side of interfaces; private details of elements—details having
to do solely with internal implementation— are not architectural.

e Bass, Clements, and Kazman Software Architecture in Practice (2nd
edition)

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 13 /50

Software Architecture

Software architecture

Architecture describes the overall structure of a software system. Good
architecture enables smooth evolution of the system, taking into account

@ Deployment environment
@ Platform and technology specifics

@ Expected system scope

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 14 /50

Software Architecture

Architecture design principles

Standard design principles also apply to system-wide architecture

@ Separation of concerns

o Single responsibility principle
@ Law of Demeter
o

Don't repeat yourself

Before you design the system architecture, you need to

@ Determine application type
Determine deployment strategy and environment
Determine technologies to use

Determine quality attributes

Determine cross-cutting concerns

S

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 15 /50

Software Architecture

Architecture example

EXTERNAL SYSTEMS
USERS = ~
(_service Consumers)

Zz (
o P
2 - ~
== | Ul Components | YT
Bu v
zz
B3 fresentation Logic)
w | components” /
a
=
2 2 £
[
SE - - N 3 ills
=5 _~.Servlcélmeffaces/- 9 Message Types) El = % £
@ - - - - ol s|l=|l=
unl Bz || 2
al & (| 2
2] s |5
\ & =1l 8
o Application Facade = 5
de y &
Z> - S
B [Business | Business | Business |
@~ | Workflow | Components)| Entities
ZE Data Access | Data Helpers/ | Serviee |
EE \ Components /| Utilities _J Agents AL
~

l i
(o @) [o)

Figure: System architecture example. Source:
https://msdn.microsoft.com/en-us/library/ee658124.aspx

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 16 / 50

https://msdn.microsoft.com/en-us/library/ee658124.aspx

Software Architecture

System architecture

Usually consists of multiple architectural styles
Should be well understood by the team

Should be documented (diagrams, pictures, notes)

Should clearly expose system structure, while hiding implementation
details

o l.e. show where stuff happens, but not how

Should address all user scenarios (eventually)

Should handle both functional and non-functional requirements

Evolves as the software grows

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 17 /50

Architectural Styles

Architectural Styles

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design

Architectural Styles

Architectural styles

Architecture Style (AS)

@ is a proven best practice solutions

@ is a means of communication (Documentation, Communication
between developers)

@ improves code structure

@ There exist plenty of architectural styles
@ They are usually combined in an application
o Different styles are suitable for different scenarios

@ Various ways of architectural style classification

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 19 /50

Architectural Styles

AS — Communication
Service-Oriented Architecture
@ Distributed applications provide services for each other
@ Using standard protocols and data formats (REST — HTTP and
JSON/XML)
@ Loose coupling, easy implementation switch
@ Microservices vs. Monolith vs. Modular Monolith

Form Generator

y -

Pentaho (Analytics) Text Analysis SQMJ

Reporting Tool

Figure: SOA system example.

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025

20 /50

Architectural Styles

AS — Communication Il

Message Bus

@ Central message queue handles message distribution
@ Asynchronous messages between clients
@ Loose coupling, scalability

o Enterprise Service Bus — provided by Oracle, IBM etc.

Custom Routing & Senvice
applications Transhimation orchestration

| Messaging

Distributed A Wigh G JMS M ‘
query engine EUETE e L2 gatewsy

.
+ |3 H
MET Javaapps Mainframe
apps & legacy
apps
— e T

- —
Data sources Erterprise hulti-platfarm
applications support

Figure: ESB architecture. Source: https://docs.oracle.com/cd/
E23943_01/doc.1111/e15020/img/esb_architecture.gif

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 21/50

https://docs.oracle.com/cd/E23943_01/doc.1111/e15020/img/esb_architecture.gif
https://docs.oracle.com/cd/E23943_01/doc.1111/e15020/img/esb_architecture.gif

AS — Deployment

Client/Server

@ Client sends requests, server responds
@ Web applications use this pattern

@ Server — possible single point of failures and scalability issues

N(3)-tier

@ Independent tiers providing functionality

o Easier scaling

o E.g. load balancing, company firewall

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 22 /50

AS — Domain

Domain-driven Design

@ Business components represent domain entities
@ Suitable for modelling complex domains

@ Common language and model for developers and domain experts

Domain Services

"‘nu«mh

Domain

nites,
Value Objects,
Factories

e
o

&

Application

&
Figure:

User Interface

Co

Petr Kfemen (petr.kremen@cvut.cz)

https://dev.to/microtica/the-concept-of-domain-driven-design-explained-1lccn

Architecture and Design

Winter Term 2025

23 /50

AS - Structure

Object-oriented

@ Objects consist of both behaviour and data
@ Natural representation of the real world

@ Encapsulation of implementation details

Layered

More on layers later...

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 24 /50

AS - Structure Il

Component-based

@ System decomposed into logical or functional components
@ Components provide public interfaces
@ Supports separation of concerns and encapsulation
@ Components can be managed by architecture provider
e Dependency injection and Service locator used to managed dependencies
@ Components can be distributed
o Higher level than OOP

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 25 /50

Architectural Styles Layered Architecture

Layered architecture

@ Layers of related functionality
@ Typical for web applications

@ Behaviour encapsulation, clear
separation of concerns, high
cohesion, loose coupling

o Testability

Service

!

Business)

!

Persistence

!

L L L
aaf

o
ot
28
v
=
9
I
©

Figure: Layered system
architecture.

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025

26 /50

Architectural Styles Layered Architecture

Layered architecture |l

@ In contrast to N-tier architecture, the layers are usually in one process
(e.g. application server)
@ Each component communicates only with other components within the
same layer or in the layer(s) below it
Strict interaction Layer communicates only with the layer directly
below
Loose interaction Layer can communicate also with layers deeper
below

e Cross-cutting concerns stem across all layers (e.g. security, logging)

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 27 /50

Design Patterns

Design Patterns

@Tg

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Desi

Design Patterns

Design patterns

Design patterns represent generally applicable solutions to commonly
occurring problems.

Patterns mostly consist of (this was cemented by the GoF):
Pattern name Simple identification useful in communication
Problem Description of the problem and its context

Solution Solution of the problem (good practice)

Consequences Possible trade-offs of applying the pattern

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 29 /50

el
Gang of Four Patterns

Based on the book Design Patterns: Elements of Reusable Object-Oriented
Software.

@ Bible of design patterns

@ Patterns applicable to all kinds of object-oriented software

o creational
e structural
e behavioural

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 30/50

Creational Patterns

Abstract Factory Interface for creating families of related objects
Builder Instance construction process in a separate object
Factory Method Subclasses decide which class to instantiate
Prototype Build instances based on a prototype

Singleton Only one instance of the class

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 31/50

Structural Patterns

Adapter Convert the interface of one class to a different interface (e.g.
for legacy classes)

Bridge Decouple abstraction from implementation
Composite Build a tree-like structure of objects

Decorator Add or alter behaviour of another object by wrapping it in a
class with the same interface (e.g., Java I/O streams)

Facade Provide a unified interface to a set of interfaces
Flyweight Use sharing to support a large number of fine-grained objects

Proxy Provide a placeholder for another object to control access to
it (e.g. Spring bean proxies)

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 32/50

Design Patterns

Decorator

Decorator in Java I/O

BufferedReader in = new BufferedReader (new FileReader (new “

File("input.txt")));

input.txt

First line...
>

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design

Behavioral Patterns

Chain of Responsibility Multiple objects in a chain can handle a request
(e.g., request filters)

Command Encapsulate a request in an object (e.g., undo functionality)
Interpreter Interpreter for a language and its grammar

Iterator Provide a way to access elements of an aggregate object (e.g.,
Java collections)

Iterator<String> it = set.iterator();
Mediator An object that encapsulates how a set of objects interact

Memento Capture an object's state so that it can be restored to this
state later

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 34 /50

Behavioral Patterns |l

Observer Decoupled notification of changes of object’s state
State Allows object’s behaviour to change based on its internal state

Strategy A family of algorithms which can be interchanged
independently of the client
Template method Define a skeleton of an algorithm and let subclasses fill
in the details

Visitor Represent an operation to be performed on the elements of an
object structure

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 35/50

Design Patterns Enterprise Design Patterns

Enterprise Design Patterns

Mostly based on the book Patterns of Enterprise Application Architecture.
@ Design patterns used especially in enterprise software

@ Similarly to GoF design patterns, they originate from best practice
solutions to common problems, but this time in enterprise application

development
@ Many are implemented by frameworks and tools we will use (e.g., JPA,

Spring)

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 36 /50

Data Transfer Object (DTO)

@ Object that carries data between processes in order to reduce the
number of calls

o Useful, e.g., when JPA entities are not the best way of carrying data
between REST interfaces

Lazy Load

@ Object does not contain all of its data initially, but knows how to load
it

@ Useful for objects holding large amounts of data (e.g., binary data)

o Often overused as a way of premature optimization

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 37/50

Lazy Load Antipattern

public final class Singleton {
private static singleton = null;
private Singleton () {}

public static Singleton getInstance() {
if(singleton == null) {
singleton = new Singleton();
}

return singleton;

AV

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design

PEAA I
Model View Controller (MVC)

@ Splits user interface interaction into three distinct roles
@ Decouples Ul rendering from data and Ul logic

@ Ul implementation interchangeable

@ Maintains objects affected by a business transaction and coordinates
the writing out of changes and the resolution of concurrency problems

@ Common in JPA implementations (e.g., Eclipselink)

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 39/50

Other Useful Patterns
Data Access Object (DAO)

@ Data access object encapsulates all access to the data source

o Abstract interface hides all the details of data source access (data
source can be a RDBMS, an external service, a linked data repository)

AbstractDAO<T>

+ persist(instance : T) : void
+ find(id : Object) : T

+ update(instance : T) : void
+ remove(instance : T) : void

ConcreteDAO

+ findByUsername(username : String) : Person

Figure: Common Data access object hierarchy.

¥

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 40 /50

DLETANERRGEM Other Useful Patterns

Inversion of Control (loC)

@ Most common when working with frameworks

@ The framework takes control of what and when gets instantiated and
called
@ The framework embodies some abstract design and we provide
behaviour in various places
@ Especially important in applications which react to client actions
o Where the client can be a different application
e Or a person using your application’s Ul

@ aka The Hollywood Principle — “Don’t call us. We'll call you.”

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 41/50

el

sdioC)

RequestDispatcher | | Spring IoC container

T <<create>>
1: new PersonCortroller()

T
|
|
|
|
| <<create>> |
|
|
|
|
|

3: processRequest()

3.1: login) >

|
|
|
4.1 findAl) | >
|
P - gl
———————=—=—- |
|
|
|
|
|

| <<destroy>>
| 5: finalize() >

<<destroy>>
6: finalize() >

Figure: Inversion of Control in a Spring application. R

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 42 /50

DLECEGNERV TGS Other Useful Patterns

Dependency Injection

@ An assembler takes care of populating a field in a class with an
appropriate implementation for the target interface

@ Enables the application to use loosely coupled components with
interchangeable implementations

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 43 /50

DLECEGNERV TGS Other Useful Patterns

Dependency Injection |l

2. injects dependencies TeacherService

Y

) references
DI Provider
TeacherDao
1. instantiates
r Zﬁ 1
JpaTeacherDao RemoteTeacherDao

Y

Figure: Dependency injection principle.

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 44 /50

Design Patterns Microservices patterns

Microservices patterns

@ Aggregator

o API Gateway

@ Chained or Chain of Responsibility
Asynchronous Messaging

Database or Shared Data

Event Sourcing

Branch

Command Query Responsibility Segregator
Circuit Breaker

Decomposition

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 45 /50

Design Patterns Microservices patterns

Circuit Breaker
for accessing unreliable services.

call / raise circuit open

SLCCess
¥ ¥
Y fail [threshold reached]
Closed Open
[X

reset timeout

fail [under threshold]

fail

success Half Open

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 46 /50

https://martinfowler.com/bliki/CircuitBreaker.html

Conclusions

Conclusions

S

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Desi

Conclusions

Conclusions

@ Application design does matter
@ Architecture consists of multiple architectural styles
@ Design patterns are more fine grained than architectural styles

@ Web applications usually follow the layered style

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 48 /50

The End

Thank You

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design

Conclusions

Resources

o E. Gamma, R. Johnson, R. Helm, J. Vlissides: Design Patterns:
Elements of Reusable Object-Oriented Software

o M. Fowler: Patterns of Enterprise Application Architecture

o E. Evans: Domain Driven Design: Tackling Complexity in the Heart of
Software

o Lectures of Toma¥ Cerny — A7B36ASS

@ https://msdn.microsoft.com/en-us/library/ee658098.aspx

@ https:
//www.petrikainulainen.net/software-development/design/
understanding-spring-web-application—-architecture-the-classic

@ https://sv.wikipedia.org/wiki/Model-View-Controller#/media/
Fil:ModelViewControllerDiagram?2.svg

e B. P. Lientz, E.B. Swanson. (1980). Software maintenance
management : a study of the maintenance of computer application _ .
software in 487 data processing organizations. Addison-Wesley.

Petr Kfemen (petr.kremen@cvut.cz) Architecture and Design Winter Term 2025 50 /50

https://msdn.microsoft.com/en-us/library/ee658098.aspx
https://www.petrikainulainen.net/software-development/design/understanding-spring-web-application-architecture-the-classic-way
https://www.petrikainulainen.net/software-development/design/understanding-spring-web-application-architecture-the-classic-way
https://www.petrikainulainen.net/software-development/design/understanding-spring-web-application-architecture-the-classic-way
https://sv.wikipedia.org/wiki/Model-View-Controller#/media/Fil:ModelViewControllerDiagram2.svg
https://sv.wikipedia.org/wiki/Model-View-Controller#/media/Fil:ModelViewControllerDiagram2.svg

	Why?
	Software Architecture
	Architectural Styles
	Layered Architecture

	Design Patterns
	GoF Design Patterns
	Enterprise Design Patterns
	Other Useful Patterns
	Microservices patterns

	Conclusions

