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Architecture Design

@ Changes slowly @ Rapid change through refactoring
@ Speaks about Components @ Speaks about Classes
@ Says how components connect @ Solves recurrent

and interact with others implementation problems
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Some buzzwords and acronyms for today

YAGNI You aren't gonna need
it

KISS Keep it simple, stupid

@ Software architecture patterns
Design patterns

DRY Don't repeat yourself Separation of concerns

loC Inversion of Control _
DI Dependency injection Encapsulation
DAQO Data Access Object

MVC Model View Controller

BDUF Big Design Upfront

°
°

@ Hollywood principle

°

@ High cohesion, loose coupling
°

Don't talk to strangers
(Demeter's law)
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|
SOLID

Single-responsibility A class/component should take care of and
encapsulate a single state and functionality.

Open—closed principle A class/component should be open for extension,
but closed for modification.

Liskov substitution principle Instances of a class should be replaceable with
instances of its subclasses without altering the correctness of
that program.

Interface segregation principle Many client-specific interfaces are better
than one general-purpose interface.

Dependency inversion principle One should depend upon abstractions
(interfaces), not implementations.
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Why?
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Why should we think about architecture/design?
@ Adding new features into a mess is more difficult (and is

more likely to end-up as more mess)
@ Debugging is easier for a well-designed application

@ Accommodating new requirements is easier for a

well-designed application
@ More resources are spent on maintenance than

Development

Maintenance
development

Resources spent on initial development vs. maintenance

Figure: http://clarityincode.com/software-maintenance
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Which maintenance tasks are performed?

corrective = fix defects
adaptive = adapt to environment change (new OS, HW)

perfective = function changes

preventive = improve maintainability itself

Proportion of total maintenance time
spent on each type of maintenance

Figure: http://clarityincode.com/software-maintenance, from g
Lientz, Swanson (1980)
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Why should we think about architecture/design?

Documentation Developers tend to change jobs often. Newcomers need to
get up to speed quickly.
Efficiency Clean code is usually more efficient than messy code.

Error prevention Clean code is less prone to bugs.
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Modern Application Development

small decompose to testable small pieces that can speed-up delivery
developer-oriented architecture and design easier to undestand, devops

networked applications communicate over network rather than in
memory, SOA, distributed teams, easier deployment

Small

Networked Developer-
oriented

Figure: https://www.nginx.com/blog/
principles-of-modern-application-development
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Software Architecture

Software Architecture

e
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Software Architecture

What is a software architecture?

The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and
the relationships among them. Architecture is concerned with the
public side of interfaces; private details of elements—details having
to do solely with internal implementation— are not architectural.

e Bass, Clements, and Kazman Software Architecture in Practice (2nd
edition)
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Software Architecture

Software architecture

Architecture describes the overall structure of a software system. Good
architecture enables smooth evolution of the system, taking into account

@ Deployment environment
@ Platform and technology specifics

@ Expected system scope
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Software Architecture

Architecture design principles

Standard design principles also apply to system-wide architecture

@ Separation of concerns

o Single responsibility principle
@ Law of Demeter
o

Don't repeat yourself

Before you design the system architecture, you need to

@ Determine application type
Determine deployment strategy and environment
Determine technologies to use

Determine quality attributes

Determine cross-cutting concerns

S
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Software Architecture

Architecture example
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Figure: System architecture example. Source:
https://msdn.microsoft.com/en-us/library/ee658124.aspx
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Software Architecture

System architecture

Usually consists of multiple architectural styles
Should be well understood by the team

Should be documented (diagrams, pictures, notes)

Should clearly expose system structure, while hiding implementation
details

o l.e. show where stuff happens, but not how

Should address all user scenarios (eventually)

Should handle both functional and non-functional requirements

Evolves as the software grows
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Architectural Styles

Architectural Styles
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Architectural Styles

Architectural styles

Architecture Style (AS)

@ is a proven best practice solutions

@ is a means of communication (Documentation, Communication
between developers)

@ improves code structure

@ There exist plenty of architectural styles
@ They are usually combined in an application
o Different styles are suitable for different scenarios

@ Various ways of architectural style classification
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Architectural Styles

AS — Communication
Service-Oriented Architecture
@ Distributed applications provide services for each other
@ Using standard protocols and data formats (REST — HTTP and
JSON/XML)
@ Loose coupling, easy implementation switch
@ Microservices vs. Monolith vs. Modular Monolith

Form Generator

y -

Pentaho (Analytics) Text Analysis SQMJ

Reporting Tool

Figure: SOA system example.
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Architectural Styles

AS — Communication Il

Message Bus

@ Central message queue handles message distribution
@ Asynchronous messages between clients
@ Loose coupling, scalability

o Enterprise Service Bus — provided by Oracle, IBM etc.

Custom Routing & Senvice
applications Transhimation orchestration

| Messaging

Distributed A Wigh G JMS M ‘
query engine EUETE e L2 gatewsy

.
+ |3 H
MET Javaapps  Mainframe
apps & legacy
apps
— e T

- —
Data sources Erterprise hulti-platfarm
applications support

Figure: ESB architecture. Source: https://docs.oracle.com/cd/
E23943_01/doc.1111/e15020/img/esb_architecture.gif
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AS — Deployment

Client/Server

@ Client sends requests, server responds
@ Web applications use this pattern

@ Server — possible single point of failures and scalability issues

N(3)-tier

@ Independent tiers providing functionality

o Easier scaling

o E.g. load balancing, company firewall
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AS — Domain

Domain-driven Design

@ Business components represent domain entities
@ Suitable for modelling complex domains

@ Common language and model for developers and domain experts

Domain Services

"‘nu«mh

Domain

nites,
Value Objects,
Factories

e
o

&

Application

&
Figure:

User Interface

Co
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AS - Structure

Object-oriented

@ Objects consist of both behaviour and data
@ Natural representation of the real world

@ Encapsulation of implementation details

Layered

More on layers later...
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AS - Structure Il

Component-based

@ System decomposed into logical or functional components
@ Components provide public interfaces
@ Supports separation of concerns and encapsulation
@ Components can be managed by architecture provider
e Dependency injection and Service locator used to managed dependencies
@ Components can be distributed
o Higher level than OOP
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Architectural Styles Layered Architecture

Layered architecture

@ Layers of related functionality
@ Typical for web applications

@ Behaviour encapsulation, clear
separation of concerns, high
cohesion, loose coupling

o Testability
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Figure: Layered system
architecture.
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Architectural Styles Layered Architecture

Layered architecture |l

@ In contrast to N-tier architecture, the layers are usually in one process
(e.g. application server)
@ Each component communicates only with other components within the
same layer or in the layer(s) below it
Strict interaction Layer communicates only with the layer directly
below
Loose interaction Layer can communicate also with layers deeper
below

e Cross-cutting concerns stem across all layers (e.g. security, logging)
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Design Patterns

Design Patterns

@Tg
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Design Patterns

Design patterns

Design patterns represent generally applicable solutions to commonly
occurring problems.

Patterns mostly consist of (this was cemented by the GoF):
Pattern name Simple identification useful in communication
Problem Description of the problem and its context

Solution Solution of the problem (good practice)

Consequences Possible trade-offs of applying the pattern
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el
Gang of Four Patterns

Based on the book Design Patterns: Elements of Reusable Object-Oriented
Software.

@ Bible of design patterns

@ Patterns applicable to all kinds of object-oriented software

o creational
e structural
e behavioural
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Creational Patterns

Abstract Factory Interface for creating families of related objects
Builder Instance construction process in a separate object
Factory Method Subclasses decide which class to instantiate
Prototype Build instances based on a prototype

Singleton Only one instance of the class
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Structural Patterns

Adapter Convert the interface of one class to a different interface (e.g.
for legacy classes)

Bridge Decouple abstraction from implementation
Composite Build a tree-like structure of objects

Decorator Add or alter behaviour of another object by wrapping it in a
class with the same interface (e.g., Java I/O streams)

Facade Provide a unified interface to a set of interfaces
Flyweight Use sharing to support a large number of fine-grained objects

Proxy Provide a placeholder for another object to control access to
it (e.g. Spring bean proxies)
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Design Patterns

Decorator

Decorator in Java I/O

BufferedReader in = new BufferedReader (new FileReader (new “

File("input.txt")));

input.txt

First line...
>
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Behavioral Patterns

Chain of Responsibility Multiple objects in a chain can handle a request
(e.g., request filters)

Command Encapsulate a request in an object (e.g., undo functionality)
Interpreter Interpreter for a language and its grammar

Iterator Provide a way to access elements of an aggregate object (e.g.,
Java collections)

Iterator<String> it = set.iterator();
Mediator An object that encapsulates how a set of objects interact

Memento Capture an object's state so that it can be restored to this
state later
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Behavioral Patterns |l

Observer Decoupled notification of changes of object’s state
State Allows object’s behaviour to change based on its internal state

Strategy A family of algorithms which can be interchanged
independently of the client
Template method Define a skeleton of an algorithm and let subclasses fill
in the details

Visitor Represent an operation to be performed on the elements of an
object structure
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Design Patterns Enterprise Design Patterns

Enterprise Design Patterns

Mostly based on the book Patterns of Enterprise Application Architecture.
@ Design patterns used especially in enterprise software

@ Similarly to GoF design patterns, they originate from best practice
solutions to common problems, but this time in enterprise application

development
@ Many are implemented by frameworks and tools we will use (e.g., JPA,

Spring)
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Data Transfer Object (DTO)

@ Object that carries data between processes in order to reduce the
number of calls

o Useful, e.g., when JPA entities are not the best way of carrying data
between REST interfaces

Lazy Load

@ Object does not contain all of its data initially, but knows how to load
it

@ Useful for objects holding large amounts of data (e.g., binary data)

o Often overused as a way of premature optimization
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Lazy Load Antipattern

public final class Singleton {
private static singleton = null;
private Singleton () {}

public static Singleton getInstance() {
if(singleton == null) {
singleton = new Singleton();
}

return singleton;

AV
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PEAA I
Model View Controller (MVC)

@ Splits user interface interaction into three distinct roles
@ Decouples Ul rendering from data and Ul logic

@ Ul implementation interchangeable

@ Maintains objects affected by a business transaction and coordinates
the writing out of changes and the resolution of concurrency problems

@ Common in JPA implementations (e.g., Eclipselink)
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Other Useful Patterns
Data Access Object (DAO)

@ Data access object encapsulates all access to the data source

o Abstract interface hides all the details of data source access (data
source can be a RDBMS, an external service, a linked data repository)

AbstractDAO<T>

+ persist(instance : T) : void
+ find(id : Object) : T

+ update(instance : T) : void
+ remove(instance : T) : void

ConcreteDAO

+ findByUsername(username : String) : Person

Figure: Common Data access object hierarchy.

¥
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DLETANERRGEM  Other Useful Patterns

Inversion of Control (loC)

@ Most common when working with frameworks

@ The framework takes control of what and when gets instantiated and
called
@ The framework embodies some abstract design and we provide
behaviour in various places
@ Especially important in applications which react to client actions
o Where the client can be a different application
e Or a person using your application’s Ul

@ aka The Hollywood Principle — “Don’t call us. We'll call you.”
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sdioC )

RequestDispatcher | | Spring IoC container

T <<create>>
1: new PersonCortroller()

T
|
|
|
|
| <<create>> |
|
|
|
|
|

3: processRequest()

3.1: login) >

|
|
|
4.1 findAl) | >
|
P - gl
———————=—=—- |
|
|
|
|
|

| <<destroy>>
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Figure: Inversion of Control in a Spring application. R
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DLECEGNERV TGS Other Useful Patterns

Dependency Injection

@ An assembler takes care of populating a field in a class with an
appropriate implementation for the target interface

@ Enables the application to use loosely coupled components with
interchangeable implementations
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DLECEGNERV TGS Other Useful Patterns

Dependency Injection |l

2. injects dependencies TeacherService

Y

) references
DI Provider
TeacherDao
1. instantiates
r Zﬁ 1
JpaTeacherDao RemoteTeacherDao

Y

Figure: Dependency injection principle.
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Design Patterns Microservices patterns

Microservices patterns

@ Aggregator

o API Gateway

@ Chained or Chain of Responsibility
Asynchronous Messaging

Database or Shared Data

Event Sourcing

Branch

Command Query Responsibility Segregator
Circuit Breaker

Decomposition
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Design Patterns Microservices patterns

Circuit Breaker
for accessing unreliable services.

call / raise circuit open

SLCCess
¥ ¥
Y fail [threshold reached]
Closed Open
[ X

reset timeout

fail [under threshold]

fail

success Half Open
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Conclusions
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Conclusions

Conclusions

@ Application design does matter
@ Architecture consists of multiple architectural styles
@ Design patterns are more fine grained than architectural styles

@ Web applications usually follow the layered style
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The End

Thank You
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Conclusions

Resources

o E. Gamma, R. Johnson, R. Helm, J. Vlissides: Design Patterns:
Elements of Reusable Object-Oriented Software

o M. Fowler: Patterns of Enterprise Application Architecture

o E. Evans: Domain Driven Design: Tackling Complexity in the Heart of
Software

o Lectures of Toma¥ Cerny — A7B36ASS

@ https://msdn.microsoft.com/en-us/library/ee658098.aspx

@ https:
//www.petrikainulainen.net/software-development/design/
understanding-spring-web-application—-architecture-the-classic

@ https://sv.wikipedia.org/wiki/Model-View-Controller#/media/
Fil:ModelViewControllerDiagram?2.svg

e B. P. Lientz, E.B. Swanson. (1980). Software maintenance
management : a study of the maintenance of computer application _ .
software in 487 data processing organizations. Addison-Wesley.
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