Architecture Design

e Changes slowly

Speaks about Components

Says how components connect and interact with others

Rapid change through refactoring

Speaks about Classes

Solves recurrent implementation problems

Acronyms ...

YAGNI likes a DRY KISS

Some buzzwords and acronyms for today

YAGNI You aren’t gonna need it
KISS Keep it simple, stupid
DRY Don’t repeat yourself

loC Inversion of Control

DI Dependency injection

DAO Data Access Object
MVC Model View Controller

BDUF Big Design Upfront

e Software architecture patterns
e Design patterns

e Separation of concerns

e Hollywood principle

e Encapsulation

e High cohesion, loose coupling

e Don’t talk to strangers (Demeter’s law)

SOLID

Single-responsibility A class/component should take care of and encapsulate a single
state and functionality.

Open—closed principle A class/component should be open for extension, but closed for
modification.

Liskov substitution principle Instances of a class should be replaceable with instances
of its subclasses without altering the correctness of that program.

Resources spent on initial development vs. maintenance

Figure 1: http://clarityincode.com/software-maintenance

Interface segregation principle Many client-specific interfaces are better than one general-
purpose interface.

Dependency inversion principle One should depend upon abstractions (interfaces), not
implementations.

1 Why?

Why should we think about architecture/design?

Development e Adding new features into a mess is more difficult (and is more likely
to end-up as more mess)

e Debugging is easier for a well-designed application

e Accommodating new requirements is easier for a well-designed application

Maintenance e More resources are spent on maintenance than development

Which maintenance tasks are performed?

Why should we think about architecture/design?

Documentation Developers tend to change jobs often. Newcomers need to get up to
speed quickly.

Efficiency Clean code is usually more efficient than messy code.

Error prevention Clean code is less prone to bugs.

Modern Application Development
small decompose to testable small pieces that can speed-up delivery
developer-oriented architecture and design easier to undestand, devops

networked applications communicate over network rather than in memory, SOA, dis-
tributed teams, easier deployment

corrective = fix defects
adaptive = adapt to environment change (new OS, HW)
perfective = function changes

preventive = improve maintainability itself

Proportion of total maintenance time
spent on each type of maintenance

Figure 2: http://clarityincode.com/software-maintenance, from Lientz,
Swanson (1980)

Small

Networked Developer-
oriented

Figure 3: https://www.nginx.com/blog/principles—of-modern-application—developmen

2 Software Architecture
What is a software architecture?

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them. Ar-
chitecture is concerned with the public side of interfaces; private details of
elements—details having to do solely with internal implementation— are not
architectural.

e Bass, Clements, and Kazman Software Architecture in Practice (2nd edition)

Software architecture
Architecture describes the overall structure of a software system. Good architecture
enables smooth evolution of the system, taking into account

e Deployment environment
e Platform and technology specifics

e Expected system scope

Architecture design principles

Standard design principles also apply to system-wide architecture
e Separation of concerns
e Single responsibility principle
e Law of Demeter

e Don’t repeat yourself

Before you design the system architecture, you need to
e Determine application type

e Determine deployment strategy and environment

Determine technologies to use

Determine quality attributes

Determine cross-cutting concerns

Architecture example

[j [EXTERNAL SI’STEMSJ
USERS
Service Consumers

z

=]

g Ul Compenents NN

=

z

B Presentation Logic

& Companents

a

[2 :

SE £ 5| <

2 E - |}

2Z [Service Interfaces Message Types El =l 2] 3

3 2l 5| 2

& Sl =] s
al 2[[2 €
=] s || E

” : g 5|8

3 Application Fagade g

w e g

zy =

S5 | Business Business Business

= Workflow Components Entities

Py .

S | DetaAccess | Data Helpers/ Service

gg Companents Utilities Agents \AA.

) !
(Su[)lfrlfes O] [Services)

Figure 4: System architecture example. Source: https://msdn.microsoft.com/
en-us/library/ee658124.aspx

System architecture

e Usually consists of multiple architectural styles

Should be well understood by the team

Should be documented (diagrams, pictures, notes)

Should clearly expose system structure, while hiding implementation details

— I.e. show where stuff happens, but not how

Should address all user scenarios (eventually)

Should handle both functional and non-functional requirements

Evolves as the software grows

3 Architectural Styles

Architectural styles

Architecture Style (AS)
e is a proven best practice solutions
e is a means of communication (Documentation, Communication between developers)

e improves code structure

Pentaho (Analytics) Text Analysis Service

Figure 5: SOA system example.

e There exist plenty of architectural styles
e They are usually combined in an application
e Different styles are suitable for different scenarios

e Various ways of architectural style classification

AS — Communication

Service-Oriented Architecture
e Distributed applications provide services for each other
e Using standard protocols and data formats (REST — HTTP and JSON/XML)
e Loose coupling, easy implementation switch

o Microservices vs. Monolith vs. Modular Monolith

AS — Communication |1l

Message Bus
e Central message queue handles message distribution
e Asynchronous messages between clients
e Loose coupling, scalability

e FEnterprise Service Bus — provided by Oracle, IBM etc.

Custom Routing & Senice
applications Transhimation archestration

Messaging

Distrituted i T s Mo I
GUBrY Bngine I K Ll gateway

Fy
+ [H
NET Java apps Mainframe
ApS & legacy
-

apps
e ——
Data sources Erterprise MUtk platfarm
applications support

Figure 6: ESB architecture. Source: https://docs.oracle.com/cd/E23943_01/
doc.1111/e15020/img/esb_architecture.gif

AS — Deployment
Client /Server

e Client sends requests, server responds

e Web applications use this pattern

e Server — possible single point of failures and scalability issues
N(3)-tier

e Independent tiers providing functionality

e Easier scaling

e E.g. load balancing, company firewall

AS — Domain
Domain-driven Design

e Business components represent domain entities
e Suitable for modelling complex domains

e Common language and model for developers and domain experts

AS - Structure
Object-oriented

e Objects consist of both behaviour and data
e Natural representation of the real world
e Encapsulation of implementation details

Layered
More on layers later...

Application

)

User Interface

Co

Figure 7: https://dev.to/microtica/the-concept-of-domain-driven-design-explained-1lccn

AS - Structure Il

Component-based
e System decomposed into logical or functional components
e Components provide public interfaces
e Supports separation of concerns and encapsulation

e Components can be managed by architecture provider

— Dependency injection and Service locator used to managed dependencies
e Components can be distributed

e Higher level than OOP

3.1 Layered Architecture
Layered architecture
e Layers of related functionality
e Typical for web applications
e Behaviour encapsulation, clear separation of concerns, high cohesion, loose coupling

e Testability

Layered architecture ||

e In contrast to N-tier architecture, the layers are usually in one process (e.g. appli-
cation server)

e Each component communicates only with other components within the same layer
or in the layer(s) below it

Service

}

Business

|

Persistence

!

N
L
L

o Eaay
o©

Databa

Figure 8: Layered system architecture.

Strict interaction Layer communicates only with the layer directly below

Loose interaction Layer can communicate also with layers deeper below

e Cross-cutting concerns stem across all layers (e.g. security, logging)

4 Design Patterns
Design patterns
Design patterns represent generally applicable solutions to commonly occurring problems.

Patterns mostly consist of (this was cemented by the GoF):
Pattern name Simple identification useful in communication
Problem Description of the problem and its context
Solution Solution of the problem (good practice)

Consequences Possible trade-offs of applying the pattern

4.1 GoF Design Patterns

Gang of Four Patterns
Based on the book Design Patterns: Elements of Reusable Object-Oriented Software.

e Bible of design patterns

e Patterns applicable to all kinds of object-oriented software

— creational

10

— structural

— behavioural

Creational Patterns

Abstract Factory Interface for creating families of related objects
Builder Instance construction process in a separate object
Factory Method Subclasses decide which class to instantiate
Prototype Build instances based on a prototype

Singleton Only one instance of the class

Structural Patterns

Adapter Convert the interface of one class to a different interface (e.g. for legacy classes)
Bridge Decouple abstraction from implementation
Composite Build a tree-like structure of objects

Decorator Add or alter behaviour of another object by wrapping it in a class with the
same interface (e.g., Java I/O streams)

Facade Provide a unified interface to a set of interfaces
Flyweight Use sharing to support a large number of fine-grained objects

Proxy Provide a placeholder for another object to control access to it (e.g. Spring bean
proxies)

Decorator

Decorator in Java I/0

BufferedReader in = new BufferedReader (new FileReader (new File("input.txt")));

Behavioral Patterns

Chain of Responsibility Multiple objects in a chain can handle a request (e.g., request
filters)

Command Encapsulate a request in an object (e.g., undo functionality)

Interpreter Interpreter for a language and its grammar

11

input.txt

FileReader
First line...

Iterator Provide a way to access elements of an aggregate object (e.g., Java collections)

Iterator<String> it = set.iterator();
Mediator An object that encapsulates how a set of objects interact

Memento Capture an object’s state so that it can be restored to this state later

Behavioral Patterns Il

Observer Decoupled notification of changes of object’s state

State Allows object’s behaviour to change based on its internal state

Strategy A family of algorithms which can be interchanged independently of the client
Template method Define a skeleton of an algorithm and let subclasses fill in the details

Visitor Represent an operation to be performed on the elements of an object structure

4.2 Enterprise Design Patterns

Enterprise Design Patterns
Mostly based on the book Patterns of Enterprise Application Architecture.

e Design patterns used especially in enterprise software

e Similarly to GoF design patterns, they originate from best practice solutions to
common problems, but this time in enterprise application development

e Many are implemented by frameworks and tools we will use (e.g., JPA, Spring)

PEAA
Data Transfer Object (DTO)

e Object that carries data between processes in order to reduce the number of calls

e Useful, e.g., when JPA entities are not the best way of carrying data between REST
interfaces

12

Lazy Load

e Object does not contain all of its data initially, but knows how to load it
e Useful for objects holding large amounts of data (e.g., binary data)

e Often overused as a way of premature optimization

Lazy Load Antipattern

public final class Singleton {

private static singleton = null;

private Singleton () {}

public static Singleton getInstance() {
if(singleton == null) {

singleton = new Singleton();

}

return singleton;

PEAA Il
Model View Controller (MVC)

e Splits user interface interaction into three distinct roles
e Decouples Ul rendering from data and Ul logic

e Ul implementation interchangeable

Unit Of Work

e Maintains objects affected by a business transaction and coordinates the writing

out of changes and the resolution of concurrency problems

e Common in JPA implementations (e.g., Eclipselink)

13

AbstractDAO<T>

+ persist(instance : T) : void
+ find(id : Object) : T

+ update(instance : T) : void
+ remove(instance : T) : void

ConcreteDAO

+ findByUsername(username : String) : Person

Figure 9: Common Data access object hierarchy.

4.3 Other Useful Patterns
Data Access Object (DAO)

e Data access object encapsulates all access to the data source

e Abstract interface hides all the details of data source access (data source can be a
RDBMS, an external service, a linked data repository)

Inversion of Control (loC)

e Most common when working with frameworks

e The framework takes control of what and when gets instantiated and called

The framework embodies some abstract design and we provide behaviour in various
places

Especially important in applications which react to client actions
— Where the client can be a different application

— Or a person using your application’s Ul

aka The Hollywood Principle — “Don’t call us. We’ll call you.”
loC Il

Dependency Injection

e An assembler takes care of populating a field in a class with an appropriate
implementation for the target interface

e Enables the application to use loosely coupled components with interchangeable
implementations

14

sdioC)

RequestDispatcher | |Spr\ng\occon[amer |

T <<create>>

T
} | _ L:newPersonControler0_ _ [Personcantroler
| I
|
| <<create>> |
1 N 2: new ReportController) | _ _ ReportControler
| |
| ! []
| |
| |
|

|

3: processRequest() o | |

3.1: login() > |

,,,,,,,,,,,,,,,,, ol ‘

777777777777 |

S ! I

T | ! |

I 4: processRequest() ol | |

4.1:findAl) | >

[l
P—— — g

-—————————— I |

T I |

| ! |

| | <<destroy>> | |

| 1 5: finalize() n! |

! I

| <<destroy>> |

| 6: finalize() »l
|
|
|

Figure 10: Inversion of Control in a Spring application.

2. injects dependencies TeacherService
| 7
references

DI Provider
TeacherDao
1. instantiates
I % 1
JpaTeacherDao RemoteTeacherDao

Figure 11: Dependency injection principle.

15

call / raise circuit open

success

fail [threshold reached] |

= =

Closed Open

reset timeout

fail [under threshold]

fail

success Half Open

Figure 12: Circuit Breaker states.

Dependency Injection Il

4.4 Microservices patterns
Microservices patterns
e Aggregator
e API Gateway
e Chained or Chain of Responsibility
e Asynchronous Messaging
e Database or Shared Data
e Event Sourcing
e Branch
e Command Query Responsibility Segregator
e Circuit Breaker

e Decomposition

Circuit Breaker
for accessing unreliable services. Taken from https://martinfowler.com/bliki/
CircuitBreaker.html

16

5 Conclusions

Conclusions

e Application design does matter
e Architecture consists of multiple architectural styles
e Design patterns are more fine grained than architectural styles

e Web applications usually follow the layered style

The End

Thank You

Resources

e E. Gamma, R. Johnson, R. Helm, J. Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software

e M. Fowler: Patterns of Enterprise Application Architecture

e E. Evans: Domain Driven Design: Tackling Complexity in the Heart of Software

e Lectures of Tom4s Cerny — A7TB36ASS

® https://msdn.microsoft.com/en-us/library/ee658098.aspx

® https://www.petrikainulainen.net/software-development/design/understanding-spring—web-apg

® https://sv.wikipedia.org/wiki/Model-View—Controller\#/media/Fil:ModelViewControllerDiagra

svg

e B. P. Lientz, E.B. Swanson. (1980). Software maintenance management : a
study of the maintenance of computer application software in 487 data processing
organizations. Addison-Wesley.

17

