
Multimedia and computer animation
API Unreal Engine 5

Basic information

Programming UE5 using C++:

- Language standard
- C++20

- Standard library
- Use UE equivalent types and functions (TMap, TArray, TPair, …)
- Some exceptions to this rule

- <cmath>
- <regex>
- <limits>
- <atomic>
- … see the source site below

- Garbage collector
- UPROPERTY
- Nulls pointers for destroyed objects

Sources:
- https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-codi

ng-standard-for-unreal-engine?application_version=5.6

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6

Basic information

UE5 conventions:

- Class name prefixes:
- A = class derived from AActor
- U = class derived from UObject - more generic than AActor
- T = template classes (i.e. TArray)
- E = enumerations
- F = most other classes with a couple of exceptions (i.e. ConstructorHelpers)
- … and some other prefixes, see sources for more

Sources:
- https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-codi

ng-standard-for-unreal-engine?application_version=5.6

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6

Variables and functions

UPROPERTY specifiers:

- EditAnywhere / VisibleAnywhere - allows to edit or show a variable in the editor
- BlueprintReadWrite / BlueprintReadOnly - controls access to variables from blueprints
- EditDefaultsOnly / EditInstanceOnly (or Visible*) - to allow editing the variable only for an instance of the

class, or only for the archetype (default object)

UFUNCTION specifiers:

- BlueprintCallable - allows for blueprints to call a function

Usable for both:

- Category - category tree in which the variable/function can be found (uses “|” pipe as separator)

Game loop

● Game thread
○ Gathers user inputs
○ Processes game objects
○ UI
○ Creates render command queue

● Render thread (+ RHI thread)
○ Uses proxy objects (scene data)
○ Processes and runs commands from

the main thread
● Worker threads

○ Animation
○ Audio
○ TaskGraph, FRunnable, ...

Process Input

Update Scene
(Δt) Render Scene

Proxy objects,
Render queue

w
rit

e

Worker Threads

re
ad

Sync

comm/control

Sources:
- https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-codi

ng-standard-for-unreal-engine?application_version=5.6

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6

Game Thread vs. Render Thread

● Game thread handles tick synchronization
○ Render thread stays about 1-2 frames behind
○ Separates rendering commands and their execution

Frame NGame Thread

Frame N

Frame N+1

Frame N+1Render Thread

Game thread submits command queue

Sources:
- https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-codi

ng-standard-for-unreal-engine?application_version=5.6

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6

TaskGraph

● Short tasks
● Handles task dependencies
● Simple execution - AsyncTask (header "Async/Async.h")

void AsyncTask
(
 ENamedThreads::Type Thread,
 TUniqueFunction < void ()> Function
)

https://docs.unrealengine.com/4.26/en-US/API/Runtime/LiveLinkInterface/void/index.html
https://docs.unrealengine.com/4.26/en-US/API/Runtime/Core/Async/ENamedThreads__Type/index.html
https://docs.unrealengine.com/4.26/en-US/API/Runtime/Core/Templates/TUniqueFunction/index.html
https://docs.unrealengine.com/4.26/en-US/API/Runtime/LiveLinkInterface/void/index.html

FRunnable

● Longer tasks and computation
● Ideally over several frames
● Three main methods:

○ Init() - executed at the start of the thread
○ Run() - executed after Init, place for the actual computation
○ Stop() - executed when Run finishes, to free up resources, etc.

● Tutorial:
○ https://unrealcommunity.wiki/multithreading-with-frunnable-2a4xuf68

https://unrealcommunity.wiki/multithreading-with-frunnable-2a4xuf68

ParallelFor

● Simple parallelization
● Be careful about dependencies on other indices

○ Ideally the task for each index is independent from others, dependent i.e. only on the previous
simulation state

ParallelFor(Particles.Num(), [this](int32 i) -> void const
{
 auto ForceToApply = ComputeParticleForce (i);
 Particles[i]->GetStaticMeshComponent ()->AddForce(ForceToApply);
});

for(int i = 0; i < Particles.Num(); ++i)
{
 auto ForceToApply = ComputeParticleForce (i);
 Particles[i]->GetStaticMeshComponent ()->AddForce(ForceToApply);
}

● Function in the
second argument is
either a lambda (like
in this example) or a
pointer to a function.

Thread-safety

● Typical Unreal Engine objects are not thread-safe
○ UObject
○ AActor
○ TimeManager
○ …and others

● Use the usual constructs when working with multiple threads, like mutexes or
atomic variables

