Multimedia and computer animation
APl Unreal Engine 5

” DCGI

Basic information

Programming UES using C++:

- Language standard
- C++20
- Standard library
- Use UE equivalent types and functions (TMap, TArray, TPair, ...)
- Some exceptions to this rule
- <cmath>
- <regex>
- <limits>
- <atomic>
- ... see the source site below
- Garbage collector
- UPROPERTY
- Nulls pointers for destroyed objects

Sources:
- https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-codi

ng-standard-for-unreal-engine?application_version=5.6

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6

Basic information

UE5 conventions:

- Class name prefixes:

A = class derived from AActor

- U = class derived from UODbject - more generic than AActor

- T =template classes (i.e. TArray)

- E = enumerations

- F = most other classes with a couple of exceptions (i.e. ConstructorHelpers)
- ... and some other prefixes, see sources for more

Sources:
- https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-codi

ng-standard-for-unreal-engine?application_version=5.6

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6

Variables and functions

UPROPERTY specifiers:

- EditAnywhere / VisibleAnywhere - allows to edit or show a variable in the editor

- BlueprintReadWrite / BlueprintReadOnly - controls access to variables from blueprints

- EditDefaultsOnly / EditinstanceOnly (or Visible*) - to allow editing the variable only for an instance of the
class, or only for the archetype (default object)

UFUNCTION specifiers:
- BlueprintCallable - allows for blueprints to call a function
Usable for both:

- Category - category tree in which the variable/function can be found (uses “|” pipe as separator)

Game loop

Proxy objects,
Render queue

e Game thread
o Gathers user inputs
o Processes game objects
o Ul
o Creates render command queue

e Render thread (+ RHI thread)

o Uses proxy objects (scene data)
o Processes and runs commands from
the main thread

e \Worker threads
o Animation
o Audio
o TaskGraph, FRunnabile, ...

erte

ko)
©
o

Render Scene

Sources:
+
- https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-codi DCGI
ng-standard-for-unreal-engine?application_version=5.6

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6

Game Thread vs. Render Thread

e Game thread handles tick synchronization

o Render thread stays about 1-2 frames behind
o Separates rendering commands and their execution

Game Thread { Frame N] [Frame N+1 J

Render Thread [Frame N } [Frame N+1 }

Game thread submits command queue

Sources:
- https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-codi

ng-standard-for-unreal-engine?application_version=5.6

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.6

TaskGraph

e Short tasks
e Handles task dependencies
e Simple execution - AsyncTask (header "Async/Async.h")

void AsyncTask

—

ENamedThreads::Type Thread,
TUnigueFunction < void ()> Function

)

P e

https://docs.unrealengine.com/4.26/en-US/API/Runtime/LiveLinkInterface/void/index.html
https://docs.unrealengine.com/4.26/en-US/API/Runtime/Core/Async/ENamedThreads__Type/index.html
https://docs.unrealengine.com/4.26/en-US/API/Runtime/Core/Templates/TUniqueFunction/index.html
https://docs.unrealengine.com/4.26/en-US/API/Runtime/LiveLinkInterface/void/index.html

FRunnable

e Longer tasks and computation
e |deally over several frames

e Three main methods:
o Init() - executed at the start of the thread
o Run() - executed after Init, place for the actual computation
o Stop() - executed when Run finishes, to free up resources, etc.
e Tutorial:
o https://unrealcommunity.wiki/multithreading-with-frunnable-2a4xuf68

https://unrealcommunity.wiki/multithreading-with-frunnable-2a4xuf68

ParallelFor

e Simple parallelization

e Be careful about dependencies on other indices

o ldeally the task for each index is independent from others, dependent i.e. only on the previous
simulation state

for(int 1 = 0; i < Particles.Num(); ++1)
. . {
L FunCt|On IN the auto ForceToApply = ComputeParticleForce (1i);
Second argument iS Particles [1] ->GetStaticMeshComponent ()->AddForce (ForceToApply)
either a lambda (like l
in this example) or a

pointer to a function. PrarallelFor (Particles.Num(), [this] (int32 i) -> void const
{
auto ForceToApply = ComputeParticleForce (1i);
Particles [i]->GetStaticMeshComponent ()->AddForce (ForceToApply) ;
}); .

-~ e -
e ofe ofe ofe -

“ DCGl

Thread-safety

e Typical Unreal Engine objects are not thread-safe
o UObject
o AActor
o TimeManager
o ...and others

e Use the usual constructs when working with multiple threads, like mutexes or
atomic variables

B e i i

