KATEDRA POCITACOVE GRAFIKY A INTERAKCE

Shadows

Jifi Bittner, Michael Wimmer

+ + + +

+ o+

+ + + + + o+

+

+ +

+ + 4+ + + 4+ + o+ o+

+ + 4+ + + + + + + 4+ + o+ o+

+ + +

+ 4+ + + + 4+ 4+ + + + 4+ 4+ + + + o+ o+

+ + + + + + + + + + + + +

+ + + + +

+ +

+ 4+ 4+ + + + + F F F F+F F F F F F F + F OF O+ o+

+ o+

Computer Graphics Research — Info Sources

= http://kesen.realtimerendering.com/

= SIGGRAPH, SIGGRAPH Asia, Eurographics, EGSR, 13D, ...
= scholar.google.com

http://kesen.realtimerendering.com/

Outline

= Motivation & Terminology MPG 12

= Approximate & projection shadows MPG 12.1
= Shadow maps MPG 12.3
= Shadow volumes MPG 12.2

= Summary

What for?

Shadows tell us about the relative locations and motion of objects
And about light positions

wl € v

What for?

Objects look like they are “floating”—> shadows fix that!

Motivation

Shadows contribute significantly to realism of rendered images
Anchor objects in scene

Global effect - expensive!

Light source behaves very similar to camera
|s a point visible from the light source?
- shadows are “hidden” regions
Shadow is a projection of caster on receiver
—> projection methods

Shadow Algorithms

Static shadow algorithms (lights + objects)
Radiosity, ray tracing - lightmaps
Approximate shadows
Projected shadows [Blinn 88]
Shadow maps [Williams 78]
Projective image-space algorithm
Shadow volumes [Crow 77]
Object-space algorithm

Soft shadow extensions for all above algorithms
Still hot research topic (500+ shadow publications)

Hard vs. Soft Shadows

point source area source

< .
-~ »

+ast N@rd shadow

-only good for localized lights (sun, penumtl_)ra penumbra
projectors) + very realistic

+fake soft shadow through filtering - VE'Y expensive

11

Static Shadows

Glue to surface whatever we want

ldea: incorporate shadows into light maps
For each texel, cast ray to each light source

“Bake” soft shadows in light maps
Not by texture filtering alone, but:
Sample area light sources

Static Soft Shadow Example

no filtering

1 sample

n samples k.4

filtering

13

Approximate Shadows

= Handdrawn approximate geometry

- Perceptual studies suggest:
shape not so important

- Minimal cost

14

Projection Shadows (Blinn 88)

= Shadows for selected large planar receivers

- Ground plane
- Walls

= Projective geometry: flatten 3D model onto plane

- and “darken” using
framebuffer blend

17

Projection for Ground Plane

= Use similar-triangles

A |

y

v

18

Projection Matrix

= Projective 4x4 matrix:

, -1, 0 O
B 0O 0 0 O
M=o -1, 1, 0
0 -1 0 I
= Arbitrary plane:
- Intersectlinep =1l—-a (v-1)
- with plane nx+d=0

- Express result as a 4x4 matrix
= Append this matrix to view transform

19

Projection Shadow Algorithm

= Render scene (full lighting)

= For each receiver polygon
- Compute projection matrix M
- Append to view matrix
- Render selected shadow caster
- With framebuffer blending enabled

20

Projection Shadow Artifacts

Bad

Z fighting

Good

extends off
ground region

double blending

21

Stencil Buffer Projection Shadows

= Stencil can solve all of these problems
- Separate 8-bit frame buffer for numeric ops

= Stencil buffer algorithm (requires 1 bit):
- Clear stencil to O
- Draw ground polygon last and with
- glStencilOp (GL_KEEP, GL KEEP, GL ONE) ;

- Draw shadow caster with no depth test but

- glStencilFunc (GL _EQUAL, 1, OxFF); glStencilOp (GL_KEEP,
GL KEEP, GL ZERO) ;

= Every plane pixel is touched at most once

22

Projection Shadow Summary

= Easy to implement
- GLQuake first game to implement it

= Only practical for very few, large receivers
= No self shadowing

24

Outline

= Motivation & Terminology MPG 12

= Approximate & projection shadows MPG 12.1
= Shadow maps MPG 12.3
= Shadow volumes MPG 12.2

Summary

25

Shadow Maps

= Casting curved shadows on curved surfaces
- Image-space algorithm, 2 passes

Shadow map

Final scene

26

Shadow Map Algorithm

T
s
.
.
Py
.
.
.
.
Py
.
.
.
““
.
.
.
Py
.
ey
.
.
Py
.
Py
.

Eye e
Eveview S\

)
.
.
.
.
.
“‘-
.
.
.
.
.
Py

.............. / Shadow map

o

==

N\
-

=y

E
m Render from light; save depth values
m Render from eye
m Transform all fragments to light space
m Compare z, and 7, (both in light space!!!)
eve > Zjigny ™==p fragment in shadow 27

4

m Z

Shadow Maps in Hardware

= Render lightspace depth into texture

= In vertex shader:
- Calculate texture coordinates as in projective texturing

= In fragment shader:
- Depth compare

28

Problem: Perspective Aliasing

= Sufficient resolution far from eye
= |nsufficient resolution near eye

vA¢
I

bl

okay

aliased

29

Solution for Perspective Aliasing

= |nsufficient resolution near eye
= Redistribute values in shadow map

30

Solution for Perspective Aliasing

= Sufficient resolution near eye
= Redistribute values in shadow map

vAg
¥

okay okay

31

Solution for Perspective Aliasing

= Use warping for light pass (and lookups)

32

Solution for Perspective Aliasing

parallel light parallel light
shadow map
0 .
g
'3-4-
1l I I S
<
E]
camera -
distance
i } } > ; —
0 n f -1 1
world space post-perspective space

= Stamminger, Drettakis - Perspective Shadow Maps
= Wimmer et al. — Light space perspective shadow maps

33

Problem: Projection Aliasing

Shadow receiver ~ orthogonal to Shadow Map - viewplane

34

Solution for Projection Aliasing

= Shadow receiver ~ orthogonal to Shadow Map plane
= Redistribution does not work ;é@
= But S

Solution for Projection Aliasing

= Diffuse lighting: | =1, max(dot(L, N), 0)
= Almost orthogonal receivers have small | QCA)@
= Dark === grtifacts not very visible!

Solution for Projection Aliasing

= Recommendations
- Small ambient term
- Diffuse term hides artifacts
- Specular term not problematic
- Light and view direction almost identical
- Shadow Map resolution sufficient

37

Problem: Incorrect Self-Shadowing

VvA¢
¢

o © o

38

Problem: Incorrect Self-ghadowing

DVQ

Zeye = Zign: ™= INcorrect Self-shadowing s

Solution for Incorrect Self- Shadowmg

@1
/ Aylg R/gon

Zeye = Zign: wmp INCOrrect Self-shadowing
Zeye < Zjigr,y wmp NO Self-shadowing

Solution for Incorrect Self-Shadowing

== NO Bias

» Constant Bias
«++ Slope-Scale Bias

42

Percentage closer filtering

= Filter lookup result, not depth map values!
= Normal color filtering cannot be used
= 2x2 PCF in hardware for NVIDIA

NEAREST LINEAR PCF

45

Shadow Map Summary

= Advantages
- Fast — only one additional pass
- Independent of scene complexity (no additional shadow polygons!)
- Self shadowing
- Can sometimes reuse depth map

= Disadvantages
- Problematic for omnidirectional lights
- Biasing tweaks (light leaks, surface acne)
- Jagged edges (aliasing)

46

Outline

= Motivation & Terminology MPG 12

= Approximate & projection shadows MPG 12.1
= Shadow maps MPG 12.3
= Shadow volumes MPG 12.2

Summary

a7

Shadow Volumes (Crow 1977)

= QOccluders and light source cast out a 3D shadow volume
- Shadow through new geometry
- Results in pixel correct shadows

Light
source

Shadowed scene Visualization of shadow volume

48

Shadow Volumes (Crow 1977)

= Heavily used in Doom3

49

2D Cutaway of Shadow Volume

= QOccluder polygons extruded to semi-infinite volumes

surface outside

shadowing shadow volume
AN A opject (iluminated)

source | = 530 OW
volume
@ H (infinite extent)
t |
position partially surface inside
shadowed shadow volume

object (shadowed)

50

Shadow Volume Algorithm

= 3D point-in-polyhedron inside-outside test

= Principle similar to 2D point-in-polygon test
- Choose a point known to be outside the volume

- Count ray intersections from test point to known point with polyhedron
faces

- Front face +1
- Back face -1

51

Enter/Leave Approach

= |ncrement on enter, decrement on leave

= Simultaneously test all visible pixels
—> Stop when hitting object nearest to viewer

4.'

light == shadowing object
source F\/ o
zero ,’ +1 \\
© ﬁ\ zero
\
I
f SN RN
II 2l v o+2 * \

eye.t. y }+a »
position ‘ v \

52

Shadow Volume Algorithm

= Shadow volumes in object precision
- Calculated by CPU/Vertex Shaders

= Shadow test in image precision

- Using stencil buffer as counter!
o Light Source

i |
Viewer //ﬂ/\
| !
// /)

53

Shadow Volume Algorithm

@® Light source

Shadow casting object
<

Ny &

Step 1: Render scene = Z-values

Shadow Volume Algorithm

@® Light source
Shadow casting object

S

e
/ :

Front face: +1 Back face: -1

Step 2: Render shadow volume faces

Shadow Volume Algorithm

@® Light source

Shadow casting object
-

e

Froht face: +0 (Depth test)
Backface: +0 (Depth test)

Y= +0

Shadow Volume Algorithm

® Light source
Shadow casting object
<<

i

Front face; +1

Back face: +0 (Depth test)

2= +1

Shadow Volume Algorithm

@® Light source

Shadow casting object
-

i

NS ‘\\\\ : h

Front face: +1
Back face: -1

Y= +0

Shadow Volume Algorithm

@® Light source

Shadow casting object
-

Step 3: Apply shadow mask to scene

Shadow Volume Algorithm (Zpass)

= Render scene to establish z-buffer
- Can also do ambient illumination

= For each light
- Clear stencil
- Draw shadow volume twice using culling
- Render front faces and increment stencil
- Render back faces and decrement stencil
- llluminate all pixels not in shadow volume
- Render testing stencil = 0
- Use additive blend

60

Zpass Technique (Before Shadow)

Light e
source

Shadowing object
H /
l \

Z€ero

ZEero
@ aue ‘ \
® o 1 2
I 1 +2| +2 '\ \ nshadowed

\ :
Eye | *1 < \ object
position ; \ / 3 \

{ \/ |

Shadow Volume Count = O (no depth tests passes)

61

Zpass Technique (In Shadow)

. el
Light — Shadowing object
source
I \
ZEro I +1 \
\
\ Zero
I
@ RS 3 S
) [3
f I 1 T —
I 1 +2l \ +2 '\ \ Shadowed
Eye. . 1+ +3) < \ object
position v \ / \
{ \/ Y

Shadow Volume Count = +1+1+1-1 =2

62

Zpass Technigue (Behind Shadow)

. el
Light - Shadowing object
source
I \
ZEero I +1 \
\
\ Zero
@ I
® © © ¢ - _ .
- Y S . @ *Unshadowed
’ | 1\ \ A\ object
Eye | +1 < \
position ; v 3 \
{ \/ K

Shadow Volume Count = +1+1+1-1-1-1 =0

63

Zpass Near Plane Problem

Missed shadow volume
intersection due to
near clip plane
clipping; leads to
mistaken count

Near clip
plane

Far clip
plane

64

Alternative: Zfail Technique

= Zpass near plane problem difficult to solve
- Have to “cap” shadow volume at near plane
- Expensive and not robust, many special cases (camera in shadow)

= Reversing test order - Zfail technique
(also known as Carmack’s reverse)
- Start from infinity and stop at nearest intersection

- Render shadow volume fragments only when
depth test fails

- Render back faces first and increment

- Then front faces and decrement

- Need to cap shadow volume at infinity or light extent

- Special projection matrix that moves zfar to infinity! [Kilgard2004]

65

Zfail, Behind Shadow

Light e —
source
I \
ZETO I +1 \
\
\ Zero
@ ' A\
’ A » | @ *Unshadowed
I 1 \ \' N\
|] 2 ll \ +2 \ \
Eye | +1 < \
position ‘ ; +3: \

Shadow Volume Count = O (zero depth tests fail)

Shadowing object

66

Zfail, In Shadow

. el
Light — Shadowing object
source
fr—,
I \
ZEro I +1 \
\
\ Zero
@ ! \
o8 ®
’ I 1 I\ \
I | 2 [\ +2 \ \ Shadowed
Eye 1 1] 3y < \ object
position ‘ v \
\/ |

Shadow Volume Count = +1+1 =2

67

Zfail, before Shadow

. e
Light - Shadowing object
source —
' \
Zero
Zero
@ ."‘_+ \ S
[
’ 7 + — \ \

I 1 +2l \ +2 \ N —Dnshadowed
Eye | *1 < \ object
position ! ‘ 3\ \

' \ 4

Shadow Volume Count = -1-1-1+1+1+1 =0

68

Shadow Volumes

Shadow volume = closed polyhedron

Actually 3 sets of polygons!
Object polygons facing the light (“light cap”)

Object polygons facing away from the light and projected to infinity (with w
= 0) (“dark cap”)

Actual shadow volume polygons (extruded object edges) (“sides”)
—> but which edges?

Computing Actual SV Polygons

= Trivial but bad: one volume per triangle
- 3 shadow volume polygons per triangle

= Better: find exact silhouette
- Expensive on CPU

= Even better: possible silhouette edges

- Edge shared by a back-facing and front-facing polygon (with respect to light
source!), extended to infinity

- Actual extrusion can be done by vertex shader

70

Shadow Volumes Summary

= Advantages
- Arbitrary receivers
- Fully dynamic
- Omnidirectional lights (unlike shadow maps!)
- Exact shadow boundaries (pixel-accurate)
- Automatic self shadowing
- Broad hardware support (stencil)

= Disadvantages
- Fill-rate intensive
- Difficult to get right (Zfail vs. Zpass)
- Silhouette computation required
- Doesn’t work for arbitrary casters (smoke, fog...)

12

Outline

= Motivation & Terminology MPG 12

= Approximate & projection shadows MPG 12.1
= Shadow maps MPG 12.3
= Shadow volumes MPG 12.2

= Summary

74

KATEDRA POCITACOVE GRAFIKY A INTERAKCE

Questions?

+ 4+

+

+ + + + o+ + + + +

+ + + + + + o+ + o+

+ + + o+

+ + + + + + + + + + + + 4

+

+ + +

+ + 4+ + + + + + + + + + +

+ + + +

+ + + + + + 4+ 4+ 4+ + 4+ + + + + + + + + + +

+ + 4+ 4+ 4+ + + + 4+ 4+ + + + + + + + + o+

+ + + +

-+

-+

+ + 4+ + + + + + 4+ + + + + + + + + + + + +

+ + +

+

T+ 4+ + +H O+ O+ F O OF O OFEF O OEF OHF O OF YT OHF OOYF OYF OO OOF O OYOEFOYFICOCF OFIOCEOYEISITE O*FOQPYE OO+

