
APG

Raster Graphics - Line

JIŘÍ ŽÁRA

 About 90% of knowledge given in Lectures

 About 10% of knowledge from literature (above)

APG – Line Drawing

(2)

About this course

 česky

English 

J. Žára a kol.:

Moderní počítačová grafika

J. Hughes et al.:

Computer Graphics: Principles

and Practice

https://dcgi.fel.cvut.cz/ModerniPocitacovaGrafika/
https://www.amazon.com/Computer-Graphics-Principles-Practice-Edition/dp/0321399528

 About Computer Graphics

 Raster graphics

 Line drawing

– DDA algorithm

– Bresenham algorithm

 Dashed line

 Thick line

 Antialiasing

APG – Line Drawing

(3)

Contents

 Vector VERSUS Raster

 Conversion from abstract description into digital

form (pixels) = digitization (2D), rendering (3D)

APG – Line Drawing

(4)

Computer Graphics

Scene

description

(geometry, etc.)
IMAGE

Computer

Vision

Image

Processing

Computer

Graphics

Computer Graphics

Image Processing

Computer Vision

APG – Line Drawing

(5)

Raster

0.7

[x2, y2]

[x1, y1]

0.2

8.0

9.7

𝒌 =
𝜟𝒚

𝜟𝒙
= (𝒚𝟐− 𝒚𝟏)/(𝒙𝟐− 𝒙𝟏)

slope

shift, intercept

𝒚 = 𝒌 ∙ 𝒙 + 𝒃

 Mathematics – infinitely thin line

 Computer Graphics

– Sequence of neighboring pixels (pixel, px, picture

element)

– Digitization = sampling of a continuous function

 Slope defines a driving/major axis for sampling

(by 1 pixel step)

APG – Line Drawing

(6)

Line

x

y

k < 1, positive

k > 1

k > -1, negative

k < -1

𝒌 =
𝜟𝒚

𝜟𝒙

APG – Line Drawing

(7)

Line drawing methods

0.7

[x2, y2]

[x1, y1]

0.2

8.0

9.7

 DDA (Digital Differential Analyzer) [float]

 Bresenham algorithm [int]

APG – Line Drawing

(8)

DDA (Digital Differential Analyzer)

x

y

0 ≤ 𝑘 ≤ 1

45°

xi+1 = xi+1

yi+1 = yi+k

𝑠𝑡𝑒𝑝𝑋 = 1

𝑠𝑡𝑒𝑝𝑌 =
Δ𝑦

Δ𝑥
= 𝑘

Note: is a real (float) number𝒌

DDA (int x1, int y1, int x2, int y2) {

double k, Y;

k = (y2 – y1) / (x2 - x1);

setPixel (x1, y1);

Y = y1;

for (int i = x1+1; i<=x2; i++) {

Y += k;

setPixel (i, round(Y));

}

}

APG – Line Drawing

(9)

DDA algorithm

k ∈ <0, 1>

x1 < x2

Endpoints preprocessing:

 Coordinate rounding (to int)

 Driving axis determination

 Orientation (from left/bottom)

APG – Line Drawing

(10)

Jack Elton Bresenham, *1937

yi

yi+1

xi xi+1

d2

d1

Integer only algorithm

 IBM, developed in 1962,

published in 1965

APG – Line Drawing

(11)

Bresenham algorithm (1/2)

yreal = k (xi + 1) + b

d1 = yreal – yi

d2 = yi + 1 – yreal

Const.

pi+1 = pi + 2Δy – 2Δx (yi+1 – yi) prediction

k =
Δy

Δx

yi

yi+1

xi xi+1

d2

d1

[xi, yi, pi] [xi+1, yi+1, pi+1]

xi+1 = xi + 1

APG – Line Drawing

(12)

Bresenham algorithm (2/2)

yi

yi+1

xi xi+1

d2

d1

yi+1 = yi + 1

pi+1 = pi + 2Δy - 2Δx

yi+1 = yi

pi+1 = pi + 2Δy

pi

≥ 0 < 0

Note: p0 = 2Δy – Δx

from pi = …, where x0 = y0 = b = 0

pi+1 = pi + 2Δy – 2Δx (yi+1 – yi)

Bresenham (int x1, int y1, int x2, int y2) {

int c0, c1, p;

init (c0, c1, p);

setPixel (x1, y1);

for (int i = x1 + 1; i <= x2; i++) {

if (p < 0) {

p += c0;

} else {

p += c1;

y1++;

}

setPixel (i, y1);

}

}

APG – Line Drawing

(13)

Bresenham algorithm – code

init (int c0, int c1, int p) {

c0 = 2 ∙ (y2 – y1);

c1 = c0 – 2 ∙ (x2 – x1);

p = c0 – (x2 – x1);

}

k ∈ <0, 1>

x1 < x2

 Pairs/triplets of pixel

 Computing distance to minor axis change

APG – Line Drawing

(15)

Multi-step methods – interesting research

 Line appearance defined in a length segment array

 Odd segment drawn, even skipped

APG – Line Drawing

(16)

Dashed line

class DashedLine {

int numberOfSegments; // e.g. 6

int [] lengths;

}

 Two possible approaches:

1. By individual segments

2. The whole line at once (modified Bresenham alg.)

APG – Line Drawing

(17)

1. Drawing by segments

length = lengthOfLine;

segm = 0; [xp, yp] = [x1,y1]

length>0 END

END

length > lengths[segm]

Calculate point [xk, yk]

according to lengths[segm]

Draw to the line

endpoint

segm mod 2 = 0

Draw line [xp, yp] - [xk, yk]

length -= lengths[segm]

segm = (segm+1) mod numberOfSegments

[xp, yp] = [xk, yk]

+

+

+

-

-

-

Study @home



 Bresenham algorithm modification

 Blocking setPixel() according to odd/even segment:

a) int segm; int segmLength;

b) segm mod 2 enable/disable setPixel()

c) decrement segmLength, when 0 prepare for next segment

APG – Line Drawing

(18)

2. Drawing the whole line at once

APG – Line Drawing

(19)

Problems with raster metric

3 pixels

l = 3

3 pixels

l = 3 ∙ 𝟐

𝐥

𝐥

 length VERSUS Nr. of pixels

 Oblique lines appear thinner

 Modified Bresenham = bad approach

 By segments = good technique

a) Trivial solution – Bresenham modified

setPixel T × setPixel (in a proper direction)

b) Angular correction

c) Filling boundary line (outline) = correct solution

Outline computation + polygon filling (see next lectures)

APG – Line Drawing

(21)

Thick line

T TREAL

TVERTICAL 𝜶

𝑻 = 𝑻𝑹𝑬𝑨𝑳

= 𝑻𝑽𝑬𝑹𝑻𝑰𝑪𝑨𝑳 ∙ cos 𝜶

𝑻𝑽𝑬𝑹𝑻𝑰𝑪𝑨𝑳 =
𝑻

cos 𝜶

 a) Bresenham

 b) Fill area

APG – Line Drawing

(22)

Thick lines ending

3) Circular

extension

1) No extension

 Ending types:

2) With extension
4) General

outline

 Aliasing = causes jaggy lines (result of subsampling)

 Antialiasing = smoothing (via pixel intensities)

APG – Line Drawing

(23)

Aliasing & Antialiasing of lines

Aliasing

Antialiasing

 Local (Line) antialiasing

– when individual line is drawn

 Global (Full screen) antialiasing

– after the whole image/screen is generated

– image processing technique (filtering)

APG – Line Drawing

(26)

Antialiasing

 Input = image memory

 Final pixel intensity influenced by neighboring

intensities

APG – Line Drawing

(27)

Global antialiasing

𝐻 𝑖, 𝑗 =

1

16

2

16

1

16
2

16

𝟒

16

2

16
1

16

2

16

1

16

ൗ𝒊 𝒋 -1 0 1

-1

0

1

𝐼´ 𝑥, 𝑦 = 𝐻 𝑖, 𝑗 ∙ 𝐼 𝑥 + 𝑖, 𝑦 + 𝑗

Filter function H (kernel)

APG – Line Drawing

(29)

Thank you for your attention

Jiří Žára, 23.09.2020

… and study “Circle Digitizing” methods @home

