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Overview of the Lecture

® Part 1 — Randomized Sampling-based Motion Planning Methods
= Sampling-Based Methods

= Probabilistic Road Map (PRM)
= Characteristics
= Rapidly Exploring Random Tree (RRT)
® Part 2 — Optimal Sampling-based Motion Planning Methods
= Optimal Motion Planners
= Rapidly-exploring Random Graph (RRG)
= Informed Sampling-based Methods
® Part 3 — Multi-Goal Motion Planning (MGMP)
= Multi-Goal Motion Planning
= Physical Orienteering Problem (POP)
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Part |

Part 1 — Sampling-based Motion Planning
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Sampling-Based Methods

(Randomized) Sampling-based Motion Planning

Jan Faigl,

It uses an explicit representation of the obstacles in C-space.

A “black-box" function is used to evaluate if a
configuration g is a collision-free, e.g.,

Based on geometrical models and testing colli-
sions of the models.

2D or 3D shapes of the robot and environment
can be represented as sets of triangles, i.e., tesse-
lated models.

Collision test is then a test of for the intersection
of the triangles.

Creates a discrete representation of Cge..

E.g., using RAPID library http://gamma.cs.unc.edu/0BB/.

® Configurations in Cee are sampled randomly and connected to a (probabilistic) roadmap.

m Rather than the full completeness they provide probabilistic completeness or resolution com- i %;
/ @w

pleteneSS. It is probabilisticaly complete if for increasing number of samples, an admissible solution would be found (if exists).
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Sampling-Based Methods

Probabilistic Roadmaps
A discrete representation of the continuous C-space generated by randomly sampled
configurations in Cree that are connected into a graph.
= Nodes of the graph represent admissible configurations of the robot.
® Edges represent a feasible path (trajectory) between the particular configurations.

Probabilistic complete algorithms: with an increasing number of samples, an admissible
solution would be found (if exists).

Having the graph, the final path (trajectory) can be found by a graph search technique.
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Sampling-Based Methods

Incremental Sampling and Searching

® Single query sampling-based algorithms incrementally create a search graph (roadmap).

1.

N

Jan Faigl, 2020

Initialization — G(V/, E) an undirected search graph, V may contain gsart, Ggoar and/or
other points in Cpee.
Vertex selection method — choose a vertex g, € V for the expansion.
Local planning method — for some gpew € Cfree, attempt to construct a path 7 : [0,1] —
Ctree such that 7(0) = gy and 7(1) = gpew, T must be checked to ensure it is collision
free.

= |f 7 is not a collision-free, go to Step 2.
Insert an edge in the graph — Insert T into E as an edge from g., t0 @nen and insert
Qnew to V if Qnew ¢ V. How to test qpey is in V?
Check for a solution — Determine if G encodes a solution, e.g., using a single search tree
or graph search technique.
Repeat Step 2 — iterate unless a solution has been found or a termination condition is

satisfied.

LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4
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Sampling-Based Methods

Probabilistic Roadmap Strategies

Multi-Query strategy is roadmap based.
m Generate a single roadmap that is then used for repeated planning queries.
® An representative technique is Probabilistic RoadMap (PRM).

Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B: Probabilistic Roadmaps for Path Planning in
High Dimensional Configuration Spaces, |IEEE Transactions on Robotics, 12(4):566-580, 1996.

Single-Query strategy is an incremental approach.
m For each planning problem, it constructs a new roadmap to characterize the subspace
of C-space that is relevant to the problem.

m Rapidly-exploring Random Tree — RRT; LaValle. 1998
m Expansive-Space Tree — EST;

® Sampling-based Roadmap of Trees — SRT.

A combination of multiple-query and single—query approaches.
Plaku et al., 2005

Hsu et al., 1997
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Probabilistic Road Map (PRM)
Multi-Query Strategy

Build a roadmap (graph) representing the environment.
1. Learning phase

1.1 Sample n points in Cgee.

1.2 Connect the random configurations using a local planner.
2. Query phase

2.1 Connect start and goal configurations with the PRM.
E.g., using a local planner.

2.2 Use the graph search to find the path.

@ Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

First planner that demonstrates ability to solve general planning problems in more than 4-5
dimensions.
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Probabilistic Road Map (PRM)

PRM Construction

#1 Given problem domain #2 Random configuration #3 Connecting samples
#4 Connected roadmap #5 Query configurations #6 Final found path

Cree
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Probabilistic Road Map (PRM)

Practical PRM

Incremental construction.

Connect nodes in a radius p.

® Local planner tests collisions up to se-
lected resolution 4.
m Path can be found by Dijkstra’s algo-

rithm.

What are the properties of the PRM algorithm?

We need a couple of more formalisms.
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Probabilistic Road Map (PRM)

Path Planning Problem Formulation

® Path planning problem is defined by a triplet
P = (Cfree7 Ginit ngal)a where
u Cfree = C|(C \ Cobs), C = (07 1)d, for de N, d Z 2, (scaling)
B ginit € Crree is the initial configuration (condition);
B Qgoa is the goal region defined as an open subspace of Cpree.

= Function 7 : [0,1] — R of bounded variation is called:

® path if it is continuous;
m collision-free path if it is a path and 7(7) € Cgee for 7 € [0, 1];
m feasible if it is a collision-free path, and m(0) = ginir and 7(1) € cl(Qgoar)-

® A function 7 with the total variation TV(7) < oo is said to have bounded variation, where TV(7) is
the total variation

TV(7) = SUP{neN,0=ro< 11 <...<Tn=s} Z,,']:l |7(7i) — m(7i—1)l.

® The total variation TV(7) is de facto a path length.
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Characteristics

Path Planning Problem

m Feasible path planning

For a path planning problem (Cfee, Ginit; Qgoal):
® Find a feasible path 7 : [0,1] — Cfree such that 7(0) = ginir and 7(1) € cl(Qgoar), if such
path exists;
m Report failure if no such path exists.

m Optimal path planning
The optimality problem asks for a feasible path with the minimum cost.
For (Cfree Ginit, Qgoar) and a cost function ¢ : ¥ — Rxq:
® Find a feasible path 7* such that c(7*) = min{c(x) : 7 is feasible};
® Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded, i.e., there exists
ke such that c(m) < ke TV(m).
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem (Cee, init; Qgoal)-

8 g € Cpee is O-interior state of Cpe if the closed ball I ___int 8( Cfree)
of radius & centered at q lies entirely inside Cgree. , _ -

u g-interior of Ceee is int5(Crree) = {q € CreelBss €
Cfree}. A collection of all §-interior states.

= A collision free path 7 has strong J-clearance, if 7 q,- - -
lies entirely inside ints(Cfree)- ** S_interior state

® (Cfree; Qinits Qgoal) is robustly feasible if a solution exists and it is a feasible path with
strong d-clearance, for 6>0.
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Completeness 2/2
An algorithm ALG is probabilistically complete if, for any robustly feasible path
planning problem P = (Cfree; init, Qgoal ),

lim Pr(ALG returns a solution to P) = 1.

n— o0

® |t is a “relaxed” notion of the completeness.
= Applicable only to problems with a robust solution.

ft
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Characteristics

Asymptotic Optimality 1/4
Homotopy

Asymptotic optimality relies on a notion of weak j-clearance.
Notice, we use strong d-clearance for probabilistic completeness.
® We need to describe possibly improving paths (during the planning).

® Function 1 : [0,1] — Cfee is called homotopy, if 1(0) = 71 and ¢(1) = 7 and ¥(7)
is collision-free path for all 7 € [0, 1].

m A collision-free path 71 is homotopic to 7 if there exists homotopy function 1.

A path homotopic to m can be continuously transformed to 7 through Cpree.

Jan Faigl, 2020 B4M36UIR — Lecture 08: Sampling-based Motion Planning 18/ 71



Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Asymptotic Optimality 2/4
Weak d-clearance

® A collision-free path 7 : [0, 5] — Cpee has weak d-clearance if there exists a path 7/
that has strong d-clearance and homotopy ¢ with ¢(0) = 7, ¥(1) = «’, and for all
a € (0, 1] there exists d, > 0 such that 1)(«) has strong d-clearance.

Weak §-clearance does not require points along a path to be at least
a distance 6 away from obstacles.

m A path 7 with a weak d-clearance.

m 7’ lies in ints(Cree) and it is the same homotopy
class as .
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Characteristics

Asymptotic Optimality 3/4
Robust Optimal Solution

® |t is applicable with a robust optimal solution that can be obtained as a limit of robust
(non-optimal) solutions.

m A collision-free path 7* is robustly optimal solution if it has weak d-clearance and for
any sequence of collision free paths {7} nen, Tn € Chree such that lim, oo 1, = 7,

nll_)ﬂg)o c(mp) = c(m*).

There exists a path with strong d-clearance, and ©* is homotopic to such
path and ©* is of the lower cost.

® Weak d-clearance implies a robustly feasible solution problem.

Thus, it implies the probabilistic completeness.

Jan Faigl, 2020 B4M36UIR — Lecture 08: Sampling-based Motion Planning 20/ 71



Characteristics

Asymptotic Optimality 4/4
Asymptotically optimal algorithm

An algorithm ALG is asymptotically optimal if, for any path planning problem P =
(Cfrees Ginit» Qgoar) and cost function ¢ that admit a robust optimal solution with the

finite cost c*
Pr <{_Iim YALY = c}> =1
1—00

n YiAﬁg is the extended random variable corresponding to the minimum-cost solution
included in the graph returned by ALG at the end of the iteration i.
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Characteristics

Properties of the PRM Algorithm

m Completeness for the standard PRM has not been provided when it was introduced.
= A simplified version of the PRM (called sPRM) has been most studied.
m sPRM is probabilistically complete.

What are the differences between PRM and sPRM?
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Characteristics

PRM vs simplified PRM (sPRM)

Algorithm 1: PRM Algorithm 2: sPRM
Input: gjnir, number of samples n, radius p Input: gjnir, number of samples n, radius p
Output: PRM - G = (V,E) Output: PRM - G = (V,E)
V +— 0, E + 0; V < {qinit} U {SampleFree;}i=1 . n—1; E < 0;
fori=0,...,ndo foreach v € V do

Grand < SampleFree; U «Near(G = (V,E),v,p)\ {v};

U + Near(G = (V, E), Grand; p); foreach v € U do

V +— VU{Grand}: if CollisionFree(v, u) then

foreach u € U with increasing ||u — q:|| do L | E+ EU{(v,u),(u,v)}

if g,ang and u are not in the same connected

component of G = (V, E) then
L if CollisionFree(q,and, u) then

E < E U {(qrand; u); (U, Grand) };

L {(Grana u), (u, Grana)} = Connections between vertices in the same con-
L nected component are allowed.

return G = (V, E);

return G = (V, E);

There are several ways for the set U of vertices to connect them:
® k-nearest neighbors to v;

® variable connection radius p as a function of n.

Jan Faigl, 2020 B4M36UIR — Lecture 08: Sampling-based Motion Planning 23 /71



Characteristics

PRM — Properties

® sPRM (simplified PRM):

Probabilistically complete and asymptotically optimal.
Processing complexity can be bounded by O(n?).

Query complexity can be bounded by O(n?).

Space complexity can be bounded by O(n?).

m Heuristics practically used are usually not probabilistic complete.
® k-nearest sSPRM is not probabilistically complete.
= Variable radius sPRM is not probabilistically complete.

See Karaman and Frazzoli: Sampling-based Algorithms for Optimal Motion Planning, IJRR 2011.

PRM algorithm
+ It has very simple implementation.
+ It provides completeness (for sPRM).
— Differential constraints (car-like vehicles) are not straightforward.
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Characteristics

Comments about Random Sampling 1/2

m Different sampling strategies (distributions) may be applied.

’ : :. . ..o ° < . | ..l u: .'. -::’.......:..
-, . o . Le3.
.- . o ® .... . . .. . .. ..a....la'.u :

m Notice, one of the main issues of the randomized sampling-based approaches is the
narrow passage.

m Several modifications of sampling-based strategies have been proposed in the last decades "
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Comments about Random Sampling 2/2

= A solution can be found using only a few samples.
Do you know the Oraculum? (from Alice in Wonderland)
® Sampling strategies are important: Near obstacles; Narrow passages; Grid-based,;

Uniform sampling must be carefully considered.

James J. Kuffner (2004): Effective Sampling and Distance Metrics for 3D Rigid Body
Path Planning, ICRA, 2004.

N &
5 Ny " (0
S 0 g
T

SN

Naive sampling Uniform sampling of SO(3) using Euler angles
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Rapidly Exploring Random Tree (RRT)

Rapidly Exploring Random Tree (RRT)

Single—Query algorithm

m |t incrementally builds a graph (tree) towards the goal area.
It does not guarantee precise path to the goal configuration.

1. Start with the initial configuration qo, which is a root of the constructed graph (tree).
2. Generate a new random configuration gnew in Cree.

Find the closest node gpear t0 Gnew in the tree.
E.g., using KD-tree implementation like ANN or FLANN libraries.
4. Extend gnear towards gpew .

Extend the tree by a small step, but often a direct control u € U that will move
robot the position closest to qnew is selected (applied for 6t ).

5. Go to Step 2 until the tree is within a sufficient distance from the goal configuration.

Or terminates after dedicated running time.
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RRT Construction

Rapidly Exploring Random Tree (RRT)

#1 new random configuration

/
A

q new

#2 the closest node

Vi
/

q near

q new

= iUz
S~ / Uy

a, |./// q near \'\“\\
T i u4

\ u5

[
9 new

Jan Faigl, 2020
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Rapidly Exploring Random Tree (RRT)

RRT Algorithm

® Motivation is a single query and control-based path finding.
® |t incrementally builds a graph (tree) towards the goal area.

Algorithm 3: Rapidly Exploring Random Tree (RRT)

Input: gjni:, number of samples n
Output: Roadmap G = (V, E)
V < {Qinit }; E < 0;
fori=1,...,ndo
Qrand < SampleFree;
Qnearest <— NeareSt(G = (V7 E)7 qrand)§
Qnew <— Steer(Qnearesty Qrand);
if CollisionFree(qnearest; Gnew) then
L V+—Vu {Xnew}i E<+ EU {(Xnearestyxnew)}F

return G = (V,E);

Extend the tree by a small step, but often a direct control u € U that will move robot to the
position closest to qnew is selected (applied for dt).

@ Rapidly-exploring random trees: A new tool for path planning

S. M. LaValle,
Technical Report 98-11, Computer Science Dept., lowa State University, 1998.
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Rapidly Exploring Random Tree (RRT)

Properties of RRT Algorithms

The RRT algorithm rapidly explores the space.

gnew Will more likely be generated in large, not yet covered parts.

Allows considering kinodynamic/dynamic constraints (during the expansion).

Can provide trajectory or a sequence of direct control commands for robot controllers.

A collision detection test is usually used as a “black-box".
E.g., RAPID, Bullet libraries.

Similarly to PRM, RRT algorithms have poor performance in narrow passage problems.

RRT algorithms provide feasible paths.

It can be relatively far from an optimal solution, e.g., according to
the length of the path.

® Many variants of the RRT have been proposed.
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Sampling-Base

d Methods

Probabilistic Road Map (PRM)

Charac teristics

Examples 1/4 — Variants of RRT algorithms

Jan Faigl, 2020

@ [ [ [ T

B

RFETICobnget | |

Courtesy of P. Vanék
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Rapidly Exploring Random Tree (RRT)

Examples 2/4 — Motion Planning Benchmarks

Alpha puzzle benchmark Bugtrap benchmark

Courtesy of V. Vonasek
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Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Examples 3/4 — Planning on Terrain Considering Frictions

Planning on a 3D surface Planning with dynamics (friction forces)

Courtesy of V. Vonasek %
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Rapidly Exploring Random Tree (RRT)

Examples 4/4 — Motion Planning for Complex Shape and Car-like Robot

* * * *
I
OO * * *
* * * *
* * * *
Apply rotations to reach the goal Planning for a car-like robot

Courtesy of V. Vonasek and P. Vanék.
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Rapidly Exploring Random Tree (RRT)

Car-Like Robot \
= Configuration

X = |v

position and orientation.

forward velocity, steering angle.

m System equation
Kinematic constraints dim(d) < dim(X).

X = Vvcoso
y = vsing .
(é Via Differential constraints on possible §:
= 7 n =)
L 4 xsin(¢) — y cos(¢) = 0.
36 / 71
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Control-Based Sampling

Rapidly Exploring Random Tree (RRT)

m Select a configuration g from the tree T of the current configurations.

® Pick a control input @ = (v, ¢) and the
integrate system (motion) equation over a
short period At:

Ax HRAL /oy, cos ¢
Ay | = vsing | dt.
A ¢ 7tangp

m |f the motion is collision-free, add the
endpoint to the tree.

E.g., considering k configurations for kit = dt.
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Part |l

Part 2 — Optimal Sampling-based Motion Planning
Methods
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Optimal Motion Planners

Sampling-Based Motion Planning
® PRM and RRT are theoretically probabilistic complete.
m They provide a feasible solution without quality guarantee.
Despite that, they are successfully used in many practical applications.
® In 2011, a systematical study of the asymptotic behavior of randomized sampling-based

p|annel’s has been pu bI|Shed . It shows, that in some cases, they converge to a non-optimal value with a probability 1.
It builds on properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

m Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT*).

Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning, 1JRR, 30(7):846—894, 2011.

http://sertac.scripts.mit.edu/rrtstar
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Optimal Motion Planners

RRT and Quality of Solution 1/2

m Let Y*RT be the cost of the best path in the RRT at the end of the iteration i.
» YRRT converges to a random variable

||m \/I_RRT — YOIS)RT'

1—00
= The random variable YRRT is sampled from a distribution with zero mass at the opti-

mum, and
PriYERT > 1] = 1.
Karaman and Frazzoli, 2011

m The best path in the RRT converges to a sub-optimal solution almost surely.
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Optimal Motion Planners

RRT and Quality of Solution 2/2

®m RRT does not satisfy a necessary condition for the asymptotic optimality.
® For 0 < R < infgeq,., [1q — Ginic||, the event {lim,_,oc YRTT = c*} occurs only if the
k-th branch of the RRT contains vertices outside the R-ball centered at gj,;; for infinitely

many k.

See Appendix B in Karaman and Frazzoli, 2011.
m |t is required the root node will have infinitely many subtrees that extend at least a
distance € away from gjpj:.

The sub-optimality is caused by disallowing new better paths to be discovered.
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Rapidly-exploring Random Graph (RRG)

Rapidly-exploring Random Graph (RRG)
Algorithm 4: Rapidly-exploring Random Graph (RRG)
Input: gj,;z, number of samples n
Output: G =(V,E)
V0, E <0
fori=0,...,ndo
Grand < SampleFree;
Gnearest < NeareSt(G = (V7 E)7 qrand);
Qnew < Steer(qnearesﬁ qrand);
if CollisionFree(qnearest, Gnew) then
Qnear < Near(G = (V, E), gnew, min{yrre(log(card(V))/ card(V))l/d,n});
V+—Vu {qnew}; E+ EU {(qnearesh qnew)» (qneW7 qnearest)};

foreach Qnear € Qnear do
L if CollisionFree(qnear, Gnew) then

L E <« EU{(grand u), (t, Grana) }:

return G = (V, E);

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG)
introduced by Gilbert (1961) and further studied by Penrose (1999).
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Rapidly-exploring Random Graph (RRG)

RRG Expansions

m At each iteration, RRG tries to connect new sample to all vertices in the r,, ball centered
at it.

® The ball of radius
. log (card(V))\ /¢
r(Card(V)) = min <{ YRRG <gc(ardr(\(/)))> 0y,
where

® 7 is the constant of the local steering function;
" YRrRG > Vire = 2(1+ 1/d)Y9(1u(Chree) /Ca) ¥
- d — dimension of the space;
- 14(Ctree) — Lebesgue measure of the obstacle—free space;
- (4 — volume of the unit ball in d-dimensional Euclidean space.

® The connection radius decreases with n.
® The rate of decay = the average number of connections attempted is proportional to
log(n).
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Rapidly-exploring Random Graph (RRG)

RRG Properties

Probabilistically complete;

Asymptotically optimal;

Complexity is O(log n).

(per one sample)

Computational efficiency and optimality:

® |t attempts a connection to ©(log n) nodes at each iteration;
in average
® Reduce volume of the “connection” ball as log(n)/n;
® Increase the number of connections as log(n).
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Rapidly-exploring Random Graph (RRG)

Other Variants of the Optimal Motion Planning

® PRM* follows the standard PRM algorithm where connections are attempted between
roadmap vertices that are the within connection radius r as the function of n:

r(n) = verm(log(n)/n)*/7.

® RRT* is a modification of the RRG, where cycles are avoided.
It is a tree version of the RRG.
m A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints.
® |t is basically the RRG with “rerouting” the tree when a better path is discovered.
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Example of Solution 1/3

RRT, n=250

RRT*, n=250 RRT*, n=500 RRT*, n=10000
Karaman & Frazzoli, 2011
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Optimal Motion Planners

Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Jan Faigl, 2020

RRT, n=20000

/) ‘ U \ ..
RRT*, n=20000 %
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Informed Sampling-based Methods

Example of Solution 3/3

https://www.youtube.com/watch?v=YKiQTJpPFkA
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Rapidly-exploring Random Graph (RRG)

Overview of Randomized Sampling-based Algorithms

) Probabilistic  Asymptotic
Algorithm o
Completeness Optimality

PRM

sPRM

k-nearest sSPRM
RRT

RRG

PRM*

RRT*

b 4

RN xKX\N
RN x x X

sPRM with connection radius r as a function of n; r(n) = waM(Iog(n)/n)l/d with
vPRM > Yprm = 2(1 +1/d)* 9 (1(Crree) /Ca)* -
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Informed Sampling-based Methods

Improved Sampling-based Motion Planners

m Although asymptotically optimal sampling-based motion planners such as RRT* or RRG
may provide high-quality or even optimal solutions to the complex problem, their per-
formance in simple, e.g., 2D scenarios, is relatively poor.

In a comparison to the ordinary approaches (e.g., visibility graph).
® They are computationally demanding and performance can be improved similarly as for
the RRT, e.g.,
® Goal biasing, supporting sampling in narrow passages, multi-tree growing (Bidirectional
RRT).
m The general idea of improvements is based on informing the sampling process.
® Many modifications of the algorithms exists, selected representative modifications are

m Informed RRT*;
® Batch Informed Trees (BIT*);
m Regionally Accelerated BIT* (RABIT¥).
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Informed Sampling-based Methods

Algorithm 1: Informed RRT*(Xgtart, Xgoal )

Informed RRT* TV (e

2 E+ 0
3 Xeom < 0;
. 4+ T=(V,E);
® Focused RRT* search to increase the convergence rate. s for iteration = 1. N do ot )
H H el et rand S; start s Xgoals Chest )
® Use Euclidean distance as an admissible heuristic. V| e o el (xatarts Kgoals o)

. . M . new Steer (Xncarest; Xrand )}
= Ellipsoidal informed subset — the current best solution | ieiiieimeeos o0 ) hen

1 V + U{Xnew };

Chest 12 Xnear ¢ Near (T, Xnew, 'RRT* )
13 Xmin xncar(cst; ) ( )
1 Cmin 4= C0St (Xmin) + ¢ - Line (Xnearest, Xnew):
f= {X € XH|x5ta'T - X||2 + HX - xgoa/HZ < Cbest}~ 15 for Yxnear € Xnear do

16 Cnew 4 Cost (Xnear) 4 ¢ - Line (Xnear, Xnew);
17 if cnew < ¢min then

Algorithm 2: Sample (X.{art: Xgoal: Cunax) 18 if CollisionFree (Xnear; Xnew) then

if emax < 00 then - Xmin = Xnear}

Ve = i (¢ Xstart Xgoal ® Cunin = |[Xgoal —XW.HE, 2 Cmin “ Cnow;
— /2

[&
e Cmin Xeentre < (Xatart + Xgoal

1
3

a C + RotationToWorldFrame (Xstart; Xgoal )
5 T1 4 Cmax /23
.

7

s

2 E — EU{(Xmin, Xnew) };
= Chest s idica,n © (Vehan — ) /2 2 for Vxnear € Xnear do
L diag {ri, 7, .., ra s 23 Cnear < Cost (Xnear);
= Directly Based on the RRT* Xpail = SampleUnitlBall; 4 Cnew 4 Cost (Xnew) + ¢ Line (Xnew; Xnear);
’ Xrand ¢ (CLXball + Xcentre) N X3 N N
. . . 2 if cnew < Cnear then
= Having a feasible solution . elEex 0 2 if CollisionFree (Xnew,Xnear) then
- . . . 2 Xparent < Parent (Xnear);
Sampling inside the ellipse 12 return x;and; . ECE\ {(xpamont. X i
2 E + E U {(Xnew; Xnear) }:
Gammell, J. B., Srinivasa, S. S., Barfoot, T. D.: Informed RRT*: L
Optimal Sampling-based Path Planning Focused via Direct Sam- 30 if InGoalRegion (Xnew) then
pling of an Admissible Ellipsoidal Heuristic. IROS, 2014. 3 | Xeoln ¢ Xsoln U {Xnew};

32 return 7
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Optimal Motion Planners

Informed RRT* — Demo

Rapidly-exploring Random Graph (RRG)

000808

000462

PP>-RRT*

/I Informed RRT*

Jan Faigl, 2020

https://www.youtube.com/watch?v=d7dX5MvDYTc
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Informed Sampling-based Methods

Batch Informed Trees (BIT*)

® Combining RGG (Random Geometric Graph) with the heuristic in incremental graph search
technique, e.g., Lifelong Planning A* (LPA*) The properties of the RGG are used in the RRG and RRT*.

® Batches of samples — a new batch starts with denser implicit RGG.

m The search tree is updated using LPA* like incremental search to reuse existing information.

During each batch, the search| [When a.solution is féund, the| [A new batch of samples is then| [The process repeats indefinitely,

expands outwards -aréund the| |batch finishes and the éxpansion| [added and the search restarts. restarting each time an im-
minimum  solution using‘. a| |staps. o " ™ -- proved solution is found.

heuristic.

G I N () (d)
Fig. 3. An illustration of the informed search procedure used by BIT*. The start and goal states are shown as green and red, respectively. The current
solution is highlighted in magenta. The subproblem that contains any better solutions is shown as a black dashed line, while the progress of the current
batch is shown as a grey dashed line. Fig. (a) shows the growing search of the first batch of samples, and (b) shows the first search ending when a solution
is found. After pruning and adding a second batch of samples, Fig. (c) shows the search restarting on a denser graph while (d) shows the second search
ending when an improved solution is found. An animated illustration is available in the attached video.

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D.: Batch Informed Trees (BIT*): Sampling-based optimal
planning via the heuristically guided search of implicit random geometric graphs, ICRA, 2015.
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Batch Informed Trees

Informed Sampling-based Methods

RRT*
t = 00.034344s
c = 01.724808

Informed RRT#*
t = 00.034316s
¢ = 01.724528

7
‘4
‘.

I—:
[# t = 00.034406s
"4 ¢ =01.518589

Jan Faigl, 2020

https://www.youtube.com/watch?v=TQIoCC48gp4

B4M36UIR — Lecture 08: Sampling-based Motion Planning 57 /71


https://www.youtube.com/watch?v=TQIoCC48gp4

Regionally Accelerated BIT* (RABIT*)

m Use local optimizer with the BIT* to improve the convergence speed.

Informed Sampling-based Methods

® Local search Covariant Hamiltonian Optimization for Motion Planning (CHOMP) is utilized to
connect edges in the search graphs using local information about the obstacles.

X X5 X
o™ o™ o™
’ ° ’ 0 ’ 0
Xstart Xgoal Xstart B Xgoal Xstart B Xgoal
* . ——& o P , 0 PR ,
Xi Xi -
(¢]
D Xk D Xk~ O AN
(a) o (b) So (c) Yo

Fig. 2. An illustration of how the RABIT* algorithm uses a local optimizer to exploit obstacle information and improve a global search. The global search
is performed, as in BIT*, by incrementally processing an edge queue (dashed lines) into a tree (a). Using heuristics, the potential edge from x; to xj, is
processed first as it could provide a better solution than an edge from x; to x;. The initial straight-line edge is given to a local optimizer which uses
information about obstacles to find a local optima between the specified states (b). If this edge is collision free, it is added to the tree and its potential

outgoing edges are added to the queue. The next-best edge in the queue is then processed in the same fashion, using the local optimizer to once again
propose a better edge than a straight-line (c).

Jan Faigl, 2020

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S.: Regionally

Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate Local Information

into Optimal Path Planning. ICRA, 2016.
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Informed Sampling-based Methods

Regionally Accelerated BIT* (RABIT*) — Demo
RABIT* matches BIT* performance on eas) problems (R2)

e
¥

Informed RRT* BIT* RABIT*
500 s 1.67 s 1.57

RABIT* has 1.8 times
faster convergence on
hard problems (R8)

=
o
¥

Mexlinn solution cos!
b an ey
-}

/ M
.l'

w ' W w'
Crmputational e <

BT e T[T

* RET ®  RRT-Connect  se—RET* Infoemned B

https://www.youtube.com/watch?v=mgq-DW36jSo
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Informed Sampling-based Methods

Overview of Improved Algorithm

= Optimal path/motion planning is an active research field.

Approaches Constraints Planning Mode Kinematic Model Sampling Strategy Metric

L. RRT* Wl Holonomic Offline Point Uniform Euclidean

2. Anytime RRT* [4]  Non-holonomic ~ Online Dubin Car Uniform Euclidean + Velocity
3. B-RRT* [58] Holonomic Offline Rigid Body Local bias Goal biased

4. RRT*FN [33] Holonomic Offline Robotic Arm Uniform Cumulative Euclidean
5. RRT*-Smart [35]  Holonomic Offline Point Intelligent Euclidean

6. Optimal B-RRT* [36]Holonomic Offline Point Uniform Euclidean

7. RRT# [50] Holonomic Offline Point Uniform Euclidean

8. ﬁ&(iﬁpled RRT* [64], Non-holonomic  Offline Car-like and UAV  Uniform A* Heuristic

9. SRRT* [44] Non-holonomic  Offline UAV Uniform Geometric + dynamic constraint
10. Informed RRT* [34] Holonomic Offline Point Direct Sampling Euclidean

11 1B.RRT* [37] Holonomic Offline Point Intelligent Greedy + Euclidean
12. DT-RRT [39] Non-holonomic  Offline Car-like Hybrid Angular + Euclidean
13. RRT*i 31 Non-holonomic ~ Online UAV Local Sampling A* Heuristic

14 RTR+CS* [43] Non-holonomic  Offline Car-like Uniform + Local Planning ~ Angular + Euclidean
15. Mitsubishi RRT* [2] Non-holonomic ~ Online Autonomous Car  Two-stage sampling Weighted Euclidean
16. CARRT* [65] Non-holonomic ~ Online Humanoid Uniform MW Energy Cost

17. prrT* [48] Non-holonomic  Offline P3-DX Uniform Euclidean

Noreen, |., Khan, A., Habib, Z.: Optimal path planning using RRT* based approaches: a survey and future directions. 1JACSA, 2016.
Jan Faigl, 2020 B4M36UIR — Lecture 08: Sampling-based Motion Planning 60 / 71



Informed Sampling-based Methods

Motion Planning for Dynamic Environments — RRT*

® Refinement and repair of the search graph during the navigation (quick rewiring of the shortest path).

RRTX - Robot in 2D
https://www.youtube.com/watch?v=KxFivNgTV4o

RRTX - Robot in 2D
https://www.youtube.com/watch?v=S9pguCPUo3M
Otte, M., & Frazzoli, E. (2016). RRTX: Asymptotically optimal single-query sampling-based motion planning
with quick replanning. International Journal of Robotics Research, 35(7), 797--822.
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Multi-Goal Motion Planning Physical Orienteering Problem (POP)

Part Il
Part 3 — Multi-goal Motion Planning (MGMP)
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Multi-Goal Motion Planning

Multi-Goal Motion Planning

® |n the previous cases, we consider existing roadmap or relatively “simple” collision free (shortest)
paths in the polygonal domain.

= However, determination of the collision-free path in high dimensional configuration space (C-
space) can be a challenging problem itself.

® Therefore, we can generalize the MTP to multi-goal motion planning (MGMP) considering
motion planners using the notion of C-space for avoiding collisions.

® An example of MGMP can be to plan a cost efficient trajectory for hexapod walking robot to

visit a set of target locations. , !
#Expansions; 14900; Vertices: 8849; Edges: 25256

Path length: 125.7
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Multi-Goal Motion Planning

Problem Statement — MGMP Problem

= The working environment W C R3 is represented as a set of obstacles © C W and the
robot configuration space C describes all possible configurations of the robot in W.

® For g € C, the robot body A(q) at q is collision free if A(q) N O = 0 and all collision
free configurations are denoted as Cee.

m Set of n goal locations is G = (g1,.-.,8n), & € Ctree-

= Collision free path from gstarr t0 Ggoas is £ @ [0,1] — Cfee With £K(0) = Gstarr and
d(k(1), gend) < €, for an admissible distance e.

® Multi-goal path 7 is admissible if 7 : [0,1] — Cfree, 7(0) = 7(1) and there are n points
suchthat 0 <t; <t <... <ty d(7(t;),vi) <€ and U;_;c,vi =G.

m The problem is to find the path 7* for a cost function ¢ such that c(7%) =
min{c(7) | 7 is admissible multi-goal path}.
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Multi-Goal Motion Planning

MGMP — Existing Approches

= Determining all paths connecting any two locations gj, g; € G is usually very computationally demanding.
m Considering Euclidean distance as an approximation in the solution of the TSP as the Minimum Spanning Tree
(MST) — Edges in the MST are iteratively refined using optimal motion planner until all edges represent a

feasible solution. Saha, M., Roughgarden, T., Latombe, J.-C., Sanchez-Ante, G.: Planning Tours of Robotic Arms among
Partitioned Goals., International Journal of Robotlcs Research, 5(3):207-223, 2006

= Synergistic Combination of Layers of Planning (SyCLoP) — A combination of route and trajectory planning.
Plaku, E., Kavraki, L.E., Vardi, M.Y. (2010): Motion Planning With Dynamics by a Synergistic Combination
of Layers of Planning, |IEEE Transactions on Robotics, 26(3):469-482, 2010.

m Steering RRG roadmap expansion by unsupervised learning for the TSP.

® Steering PRM* expansion using VNS-based routing planning in the Physical Orienteering Problem (POP).
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Multi-Goal Motion Planning Physical Orienteering Problem (POP)

Multi-Goal Trajectory Planning with Limited Travel Budget
PhyS|ca| Orienteering Problem (POP)

= Orienteering Problem (OP) in an environment with obstacles and
motion constraints of the data collecting vehicle. samples S
= A combination of motion planning and routing problem with profits.
= VNS-PRM* —
dressed by PRM*.

= An initial low-dense roadmap is continuously expanded during the
VNS-based POP optimization to shorten paths of promising solu-

tions.

= Shorten trajectories allow visiting more locations within Tmax.

s r— target configurations reward

20025 80

—— found path
-~ flown trajectory |

VNS-based routing and motion planning is ad-

0 &

Y A4
B Ip B

[0

— [

®m  Pénicka, Faigl and Saska: Physical Orienteering Problem for Unmanned
Aerial Vehicle Data Collection Planning in Environments with Obstacles.

IEEE Robotics and Automation Letters 4(3):3005-3012, 2019.

Jan Faigl, 2020
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Multi-Goal Motion Planning Physical Orienteering Problem (POP)

Multi-Goal Trajectory Planning with Limited Travel Budget
Physical Orienteering Problem (POP) — Real Experimental Verification

d VNS-PRM*

path length = 218

callocted rovard = 75 %
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Topics Discussed

Summary of the Lecture
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Topics Discussed

Topics Discussed — Randomized Sampling-based Methods

Jan Faigl,

Single and multi-query approaches
Probabilistic Roadmap Method (PRM); Rapidly Exploring Random Tree (RRT)

Optimal sampling-based planning — Rapidly-exploring Random Graph (RRG)

Properties of the sampling-based motion planning algorithms

Path, collision-free path, feasible path

Feasible path planning and optimal path planning

Probabilistic completeness, strong §-clearance, robustly feasible path planning problem
Asymptotic optimality, homotopy, weak J-clearance, robust optimal solution

PRM, RRT, RRG, PRM*, RRT*

Improved randomized sampling-based methods

® Informed sampling — Informed RRT*; Improving by batches of samples and reusing previous searches using
Lifelong Planning A* (LPA¥*)

= |Improving local search strategy to improve convergence speed

= Planning in dynamic environments — RRTX

Multi-goal motion planning (MGMP) problems are further variants of the robotic TSP

Next: Game Theory in Robotics
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