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Part |

Part 1 — Path and Motion Planning
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Introduction to Path Planning

Robot Motion Planning — Motivational problem

m How to transform high-level task specification (provided by humans) into a low-level
description suitable for controlling the actuators?

To develop algorithms for such a transformation.

The motion planning algorithms provide transformations how to move a robot (object)
considering all operational constraints.

Jan Faigli%§

Introduction to Path Planning
Piano Mover's Problem
A classical motion planning problem

Having a CAD model of the piano, model of the environment, the problem is how to move the

Basic motion planning algorithms are focused primarily on rotations and translations.

m We need notion of model representations and formal definition of the problem.

m Moreover, we also need a context about the problem and realistic assumptions.
The plans have to be admissible and feasible.
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Introduction to Path Planning

Robotic Planning Context

Mission Planning

Tasks and Actions Plans

symbol level

Path (Motion) Planning / Trajectory Planning

Problem Path Planning Trajectory Generation
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Robot Control
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Introduction to Path Planning

Real Mobile Robots

In a real deployment, the problem is more complex.

m The world is changing.
m Robots update the knowledge about the
environment.
localization, mapping and navigation
m New decisions have to made based on the

feedback from the environment.
Motion planning is a part of the mission re-
planning loop.

An example of robotic mission:

. . . Josef Strunc, Bachelor thesis, CTU, 2009.
Multi-robot exploration of unknown environment.

How to deal with real-world complexity?
Relaxing constraints and considering realistic assumptions.
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Notation

Notation

m VW — World model describes the robot workspace and its boundary determines the

obstacles O;. ,
2D world, W = R’

= A Robot is defined by its geometry, parameters (kinematics) and it is controllable by
the motion plan.

m C - Configuration space (C-space)
A concept to describe possible configurations of the robot. The robot's configuration
completely specify the robot location in W including specification of all degrees of

freedom.
E.g., a robot with rigid body in a plane C = {x,y, ¢} = R? x S'.

m Let A be a subset of W occupied by the robot, A = A(q).
m A subset of C occupied by obstacles is
Cobs = {q €C: A(q) N O}, Vi}.
m Collision-free configurations are
Crree = C \ Cobs- A
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Notation

Path / Motion Planning Problem
m Path is a continuous mapping in C-space such that
71 [0,1] = Cfree, with 7(0) = qo, and 7(1) = gr.
m Trajectory is a path with explicate parametrization of time, e.g., accompanied by a

description of the motion laws (v : [0,1] — U, where U is robot’s action space).
It includes dynamics.

[To. Tf] 2t~ 7 €[0,1] : q(t) = 7(7) € Chree
The path planning is the determination of the function ().

Additional requirements can be given:
m Smoothness of the path;
m Kinodynamic constraints, e.g., considering friction forces;
Optimality criterion — shortest vs fastest (length vs curvature).

m Path planning - planning a collision-free path in C-space.
m Motion planning — planning collision-free motion in the state space.
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Notation

Planning in C-space
Robot motion planning robot for a disk robot with a radius p.

Goal position

Q Goal configuration
.

Cres

Cot

Start position
Start gontguration

Disk robot Point robot
C-space
Motion planning problem in geometrical

N Motion planning problem in C-space representation
representation of W P e P P P

C-space has been obtained by enlarging obstacles by the disk A with the radius p.
By applying Minkowski sum: O ® A= {x+y | x € O,y € A}.
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Notation

Example of Cops for a Robot with Rotation

y
=2 ; Robot body 0
y

Reference point x

A simple 2D obstacle — has a complicated Cops

m Deterministic algorithms exist.

Requires exponential time in C dimension, J. Canny, PAMI, 8(2):200-209, 1986.

m Explicit representation of Cpee is impractical to compute.

Jan Faigl, 2020 B4M36UIR — Lecture 03: Path Planning

13 /118

Notation

Representation of C-space

How to deal with continuous representation of C-space?

Continuous Representation of C-space J

0

Discretization
processing critical geometric events, (random) sampling
roadmaps, cell decomposition, potential field

Graph Search Techniques
BFS, Gradient Search, A*
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Path Planning Methods

Planning Methods - Overview
(selected approaches)
= Point-to-point path/motion planning.

Multi-goal path/motion/trajectory planning later

= Roadmap based methods — Create a connectivity graph of the free space.
m Visibility graph
m Cell decomposition
m Voronoi graph

(complete but impractical)

m Discretization into a grid-based (or lattice-based) representation (resolution complete)

(complete only for a “navigation function”, which is hard to compute
in general)

m Potential field methods

Classic path planning algorithms

m Randomized sampling-based methods
m Creates a roadmap from connected random samples in Cree.

= Probabilistic roadmaps. o
Samples are drawn from some distribution.

m Very successful in practice.
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Vlfl b&Li%utGer\ﬁgg?lity graph

2. Find the shortest path

Visibility graph

Problem

Constructions of the visibility graph:
= Naive — all segments between n vertices of the map O(n®);
m Using rotation trees for a set of segments — O(n?).
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M. H. Overmars and E. Welzl, 1988

Path Planning Methods

E.g., by Dijkstra's algorithm.

Found shortest path
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Path Planning Methods

Minimal Construct: Efficent Shortest Path in Polygonal Maps

m Minimal Construct algorithm computes visibility graph during the A* search instead of first computation of the
complete visibility graph and then finding the shortest path using A* or Dijkstra algorithm.
ES)

m Based on A* search with line intersection tests are delayed until wof Ol
they become necessary. z ~

m The intersection tests are further accelerated using bounding

boxes. . -
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Marcell Missura, Daniel D. Lee, and Maren Bennewitz (2018): Minimal Construct: Efficient Shortest Path Finding for Mobile Robots in

Polygonal Maps. IROS. :

Jan Faigl, 2020 B4M36UIR — Lecture 03: Path Planning 18 / 118

Path Planning Methods
Voronoi Graph

1. Roadmap is Voronoi graph that maximizes clearance from the obstacles.
2. Start and goal positions are connected to the graph.

3. Path is found using a graph search algorithm.
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Visibility Graph vs Voronoi Graph
Visibility graph

m Shortest path, but it is close to obstacles. We have to consider safety
of the path.
An error in plan execution can lead to a
collision.

n Complicated in higher dimensions

Path Planning Methods

Voronoi graph
= |t maximize clearance, which can provide conservative paths.
m Small changes in obstacles can lead to large changes in the graph.
m Complicated in higher dimensions.

A combination is called Visibility-Voronoi — R. Wein, J. P. van den Berg,
D. Halperin, 2004.

For higher dimensions we need other types of roadmaps.
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Path Planning Methods

Cell Decomposition

1. Decompose free space into parts. Any two points in a convex region can be directly connected by a
segment.

2. Create an adjacency graph representing the connectivity of the free space.
3. Find a path in the graph.

Trapezoidal decomposition

Centroids represent cells Connect adjacency cells Find path in the adjacency graph

= Other decomposition (e.g., triangulation) are possible.
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Path Planning Methods

Shortest Path Map (SPM)

m Speedup computation of the shortest path towards a particular goal location p, for a polygonal

domain P with n vertices.

m A partitioning of the free space into cells with respect to the
particular location pg.

Each cell has a vertex on the shortest path to pg.

%Ny
-

Shortest path from any point p is found by determining the cell
(in O(log n) using point location alg.) and then travesing the
shortest path with up to k bends, i.e., it is found in O(log n+k).

Determining the SPM using "wavefront” propagation based on
continuous Dijkstra paradigm.

Joseph S. B. Mitchell: A new algorithm for shortest paths among obstacles in the plane,
Annals of Mathematics and Artificial Intelligence, 3(1):63-105, 1991.

SPM is a precompute structure for the given P and pg;
m single-point query.

| §

A similar structure can be found for two-point query, e.g., H. Guo, A. Maheshwari, J.-R. Sack, 2008.
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Path Planning Methods

Point Location Problem

m For a given partitioning of the polygonal domain into a discrete set of cells, determine the cell
for a given point p.

Masato Edahiro, Iwao Kokubo and Takao Asano: A new point-location algorithm and its practical efficiency: comparison with
existing algorithms, ACM Trans. Graph., 3(2):86-109, 1984.

m It can be implemented using interval trees — slabs and slices.
RN B

ENEEE

B e
Point location problem, SPM and similarly problems are from the Computational Geometry field.
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Path Planning Methods

Approximate Shortest Path and Navigation Mesh

m We can use any convex partitioning of the polygonal map to speed up shortest path queries.
1. Precompute all shortest paths from map vertices to p, using visibility graph.
2. Then, an estimation of the shortest path from p to p, is the shortest path among the one
of the cell vertex.

v U, Tt

m The estimation can be further improved by “ray-shooting” technique combined with walking in
triangulation (convex partitioning). (Faigl, 2010) |*

Jan Faigl, 2020 B4M36UIR — Lecture 03: Path Planning 24 /118

Path Planning Methods
Path Refinement

m Testing collision of the point p with particular vertices of the estimation of the shortest path.

m Let the initial path estimation from p to p, be a sequence of k vertices (p, vy, ..., Vi, pg).
= We can iteratively test if the segment (p,v;), 1 < i < k is collision free up to (p, pg).

path over vy path over v; full refinement

With precomputed structures, it allows to estimate the shortest path in units of microseconds.
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Path Planning Methods

Navigation Mesh

m In addition to robotic approaches, fast shortest path queries are studied in computer games.
m There is a class of algorithms based on navigation mesh.
= A supporting structure representing the free space.

It usually originated from the grid based maps, but it is represented as CDT — Constrained
Delaunay triangulation.
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Grid mesh Merged grid mesh CDT mesh Merged CDT mesh

m E.g., Polyanya algorithm based on navigation mesh and best-first search.
M. Cui, D. Harabor, A. Grastien: C:

R
ona v

Mesh, 1JCAI 2017, 496-502.
https://bitbucket.org/dharabor/pathfinding
Jan Faigl, 2020
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Path Planning Methods
Artificial Potential Field Method

m The idea is to create a function f that will provide a direction towards the goal for any
configuration of the robot.

m Such a function is called navigation function and —Vf(q) points to the goal.

m Create a potential field that will attract robot towards the goal gr while obstacles will
generate repulsive potential repelling the robot away from the obstacles.

The navigation function is a sum of potentials.
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Such a potential function can have several local minima.
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Path Planning Methods
Avoiding Local Minima in Artificial Potential Field
m Consider harmonic functions that have only one extremum
V2f(q) = 0.

m Finite element method with defined Dirichlet and Neumann boundary conditions.

J. Macsk, Master thesis, CTU, 2009 | |
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Part Il
Part 2 — Grid and Graph based Path Planning Methods
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Grid-based Planning
Grid-based Planning

m A subdivision of Cgee into smaller cells.
m Grow obstacles can be simplified by growing bor-
ders by a diameter of the robot.

m Construction of the planning graph G = (V, E) for
V as a set of cells and E as the neighbor-relations.

m 4-neighbors and 8-neighbors

| [l
| | [

m A grid map can be constructed from the so-called

occupancy gl’id maps. E.g., using thresholding.

Jan Faigl, 2020
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Grid-based Planning Plan S Grid-based Planning Grid-based Planning

Grid-based Environment Representations Example of Simple Grid-based Planning Example — Wave-Front Propagation (Flood Fill)

m Hiearchical planning with coarse resolution and re-planning on finer resolutlon
Holte, R. C. et al. (1996): Hierarchical A *: searching abstraction hierarchies
efficiently. AAAI.

m Wave-front propagation using path simplication

Initial map with a robot and goal.

Obstacle growing.

Find a path using a navigation function.

u
]
m Wave-front propagation — “flood fill".
]
u

Path simplification. T 120 e sz 2 g
; . o . ) ) 101010 1010 10 10 10
m Octree can be used for the map representation. = “Ray-shooting” technique combined with 99999999 00
L | . A . s 8s a8 s st
= In addition to squared (or rectangular) grid a hexagonal Bresenham’s line algorithm. [AKEAALAaL] 88 910m
grid can be used. m The path is a sequence of "key" cells for avoiding . | HHEHE A e n
; . ) i Brnn 567 s s0m
m 3D grid maps — OctoMap  https://octomap.github.io. obstacles. A5s 2234 ST4[513]3(3 31| 4 s T o] sl
. . . 432222234 5431222223455
— Memory grows with the size of the environment. 13211123 543211125
= L o 43210123 5432107733
— Due to limited resolution it may fail in narrow passages / 43211123 543211123
/ 43222223 543222223 Buguee
Ofo,se. 43333333 54/333(3333 BBBBBBB
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Grid-based Planning Grid-based Planning DT for Path Planning
Path Simplification Bresenham's Line Algorithm Distance Transform based Path Planning

m Filling a grid by a line with avoding float numbers.

The initial path is found i id using 8-neighborhood.
m The initial path is found in a grid using 8-neighborhoo u A line from (x0,yo) o (x1,y1) is given by y = 5= (x — x0) + yo.

m For a given goal location and grid map compute a navigational function using wave-front

o . > o . noy . - . s
m The rayshoot cast a line into a grid and possible collisions of the robot with obstacles 1 CoordsVestort breseaham(censt Coordah pol, const Coordsk pt2, 26 iat twody = 2 * dy; algorithm, ie., a kind of p"te"t_’al field. )
are checked CoordsVectort line) 27 int twoDyTwoDx = twoDy - 2 * dx; //2+Dy - 24Dx m The value of the goal cell is set to 0 and all other free cells are set to some very high
. 2 ¢ 28 int e = twoDy - dx; //2+Dy - Dx
The “farthest” cells with llisi das A 3 // The pt2 point is not added into line 29 int y = yo; value.
m lhe 'art est” cells without collisions are used as ‘turn™ points. : s [ ﬁ N g:;:"f » e e ety x e xstep) € m For each free cell compute a number of cells towards the goal cell.
m The final path is a sequence of straight line segments. & Coords Zixi o 3 i )‘(;::Pi; m It uses 8-neighbors and distance is the Euclidean distance of the centers of two cells, i.e
8 intdy-yl- yoi 3 VDraw = x: EV=1 for orthogonal cells or EV = /2 for diagonal cells.
! A T ! [ 0 int stesp - (abatdy) >= aba(d); 35 ¥ else { he val ) vel d until the val hangi
T [l i | 10 if (steep) { 36 xDrav = x; m The values are iteratively computed until the values are changing.
4 ] 11 SWAP(x0, y0); 37 yDraw = y; H
T T T by St T 3 ) m The value of the cell ¢ is computed as
1 1 13 dx = xt - x0; // recompute Dx, Dy 39 p.c = xDraw; 8
14 dy = y1 - y0; 40 p.r = yDraw; o
T 15 41 Line.push_back(p); // add to the line cost(c) = min (cost(ci) + EVq,.c),
T 16 int xstep = 1; 42 if (e > 0) =1
1 17 if (dx < 0) { 43 @ += twoDyTwoDx; //E += 24Dy - 2+Dx . . . .
1] 16 oto o143 ,,,, R where ¢; is one of the neighboring cells from 8-neighborhood of the cell c.
1 . 19 dx = -dx; 45 } else { . . .
i [ I g: 20 y T 46 O wuabys 178 += 230y m The algorithm provides a cost map of the path distance from any free cell to the goal cell.
21 int ystep = 1 a7 b . . .
[N 1 2 if @@y <0 { 48 3 2 m The path is then used following the gradient of the cell cost.
R 23 tep = -1; 49 turn line; A% [
Initial and goal locations Obtacle ﬁ:owxgii“:"”m"‘ Ray-shooting d path 24 ey s 3 e JA S Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in Known but Dynamic Environments. |
25
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DT for Path Planning DT for Path Planning DT for Path Planning
Distance Transform Path Planning Distance Transform based Path Plannlng —Impl. 1/2 Distance Transform based Path Planning — Impl. 2/2
Algorithm 1: Distance Transform for Path Plannin 3 ik pTcomputo(Gridn grid) const prfmeron-zroo . . . . .
€ s 3 static const double DIAGOIL = agre(2); 23 o a1t 1 Frogei m The path is retrived by following the minimal value towards the goal using
for y := 0 to yMax do 4 static const double ORTOGONAL = 1; 38 continue; in8Poi )
for x := 0 to xMax do 5 39 ¥ //obstacte detected min8Point ().
] 6 40 double t[4];
if goal [xy] then 7 41 1) = grid(r + 1][c] + ORTOGONAL; 1  Coordsk min8Point(const Gridk grid, Coords& p) 22 CoordsVectork DT::findPath(const Coords& start, comst Coordsk
| cell [xy] ; 8 42 00 = gridlr + 11[c + 1] + DIAGONAL; 2 goal, CoordsVectork path)
" ' 9 43 03] = gridlrl[c + 1] + ORTOGONAL; 3 23 {
else L . . 10 while (anyChange) { a4 2] = gridlr + 11[c - 1] + DIAGONAL; 2 2 static const double DIAGONAL = sqrt(2);
| cell [xy] ;= xMax * yMax; //initialization, e.g., pragmatic of the use longest distance as oo ; u :nyC!sz- - falsei 3 1 o ¢ :Z double pon - eridlx) (] 5 const int W = grid.u; 25 static const double ORTOGONAL = 1
L = 13 e T @ for Gow im0 1< 45 10 € 6 Coords t; 26 const int H = map.H;
14 if (maplr] [c] = m:zsmc:) < a8 if (pom > t0iD) € 7 27 const int W = map.W;
repeat 15 continue 49 pom = t[il; 8 for (int r = p.r - 1; ¥ <= p.r + 1; r++) { 28 Grid grid(H, W, H«W); // H#W max grid value
for y := 1 to (yMax - 1) do 16 ¥ //ubstac]e detected 50 s = true; 9 if (r < 0 or r >= H) { continue; } 29 grid[goal.r] [goal.c] = 0;
_ 17 double t[4]; 51 ) 10 for (int ¢ = p.c - 1; ¢ o+ 15 ) { 30 compute (grid);
for x ;= 1 to (xMax - 1) do 18 (0] = gridlr - 1][c - 1] + DIAGONAL; 52 b 11 if (c < 0 or ¢ >= W) { continue; } 31
if not blocked [x,y] then i £l - gridlx - 11(e) » oRTOGOMAL: 5 w1 12 if (min > grid(rl(e]) € 32 if (gridlstart.r] [start.c] >= He) {
i . . rialr - 10c + 1] + ; anyChange = true; . ; B D,
| cell [xy] := cost(x, y); 21 ©03] = grid[r)[c - 1] + ORTOGONAL; 55 gridlrlfc] = pom; it min - gridlx] (] bt ) oaR{Path hag not been found %
22 double pom = grid[r][c]; 56 ¥ 1 - o ’ c _ .
. 23 for Gnt 1 - 0; 1 < 4 i+ € 57 ¥ 5 » 35 oords pt = start;
for y := (yMax-1) downto 1 do 24 if (pom > t[i]) { 58 b3 if:, N ¥ g{:’ while épt-rh!: 5;?1; or pt.c != goal.c) {
= 25 on =l 59 countar+t; path. push_back(pt) ;
for X o= (xMax-1) downto 1 do 26 inycha:nge 2 true; 60 3 /iena wnie aay change 18 =t 38 ninBPoint (grid, pt);
if not blocked [x,y] then 27 ¥ 61 return grid; 19 return p; 39 b
| celllx,y] := cost(x, y); b4 e CanyCrange € 62 ¥ 20 3 40 | PR-push_back (goa);
L 30 gridlrl[c] = pom; A boundary is assumed around the rectangular map e 42 return path;
31 b / ’
until no change; 32 3y i 43}
33 ¥
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DT for Path Planning

DT Example

md=10cm, L=272m

md=30cm, L=428m

Jan Faigl, 2020
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Graph Search Algorithms

Graph Search Algorithms

m The grid can be considered as a graph and the path can be found using graph search
algorithms.
m The search algorithms working on a graph are of general use, e.g.,
m Breadth-first search (BFS);
m Depth first search (DFS);
m Dijsktra’s algorithm,;
m A* algorithm and its variants.
m There can be grid based speedups techniques, e.g.,
m Jump Search Algorithm (JPS) and JPS™.
m There are many search algorithms for on-line search, incremental search and with
any-time and real-time properties, e.g.,
m Lifelong Planning A* (LPA¥).
Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AlJ.
m E-Graphs — Experience graphs
Phillips, M. et al. (2012): E-Graphs:

Planning with Experience Graphs. RSS.
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Graph Search Algorithms

rithms

N CELEED)

https: //wuw. youtube . com/watch?v=U2XNjCoKZjM. mpd
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Graph Search Algorithms
A* Algorithm

m A* uses a user-defined h-values (heuristic) to focus the search.
Peter Hart, Nils Nilsson, and Bertram Raphael, 1968
m Prefer expansion of the node n with the lowest value
f(n) = g(n) + h(n),
where g(n) is the cost (path length) from the start to n and h(n) is the estimated cost
from n to the goal.
m h-values approximate the goal distance from particular nodes.
m Admissiblity condition — heuristic always underestimate the remaining cost to reach
the goal.
m Let h*(n) be the true cost of the optimal path from n to the goal.
= Then h(n) is admissible if for all n: h(n) < h*(n).
m E.g., Euclidean distance is admissible.
B A straight line will always be the shortest path.

m Dijkstra’s algorithm — h(n) = 0.

Graph Search Algorithms

A* Implementation Notes

m The most costly operations of A* are:
m Insert and lookup an element in the closed list;
m Insert element and get minimal element (according to f() value) from the open list.
m The closed list can be efficiently implemented as a hash set.
m The open list is usually implemented as a priority queue, e.g.,
m Fibonacii heap, binomial heap, k-level bucket;
m binary heap is usually sufficient with O(logn).
m Forward A*
1. Create a search tree and initiate it with the start location.
2. Select generated but not yet expanded state s with the smallest f-value,
f(s) = g(s) + h(s).
3. Stop if s is the goal.
4. Expand the state s.
5. Goto Step 2.

Similar to Dijsktra’s algorithm but it uses f(s) with the heuristic h(s) instead of pure g(s).

Graph Search Algorithms

htt
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Graph Search Algorithms Graph Search Algorithms Graph Search Algorithms
Jump Point Search Algorithm for Grid-based Path Planning Theta* — Any-Angle Path Planning Algorithm Theta* Any-Angle Path Planning Examples
m Jump Point Search (JPS) algorithm is based on a macro operator that identifies and m Any-angle path planning algorithms simplify the path during the search. = Example of found paths by the Theta* algorithm for the same problems as for the DT-based
selectively expands only certain nodes (jump points). m Theta* is an extension of A* with Line0fSight (). | B 3 B s examples on Slide 42.
Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAI. Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path A
Planning on Grids. AAAI. . 4| ssart
= Natural neighbors after neighbor prunning with | Ren s R Torith " T e
forced neighbors because of obstacle. adex |5 | [o] x| Algorithm 2: Theta* Any-Angle Planning B 3
if LineOfSight(parent(s), s') then
el e |7 | /* Path 2 — any-angle path */
. . if g(parent(s))+ c(parent(s), s') < g(s') then ¢
m Intermediate nodes on a path connecting two 1 parent(s') := parent(s); Sqoal s
jump points are never expanded. B g(s') := g(parent(s)) + c(parent(s), s'); 1 2 3 4 5
else A 20
T /* Path 1 - A* path */ 7|
N . d heads while i d A* if g(s) + c(s,s") < g(s') then e
n . b
o preprocessing and no memory overheads while it speeds up L Z?;e)nf ;_(s):,. oo B . ¢ S—10cm L—263m 5= 30cm L—403m
https://harablog.wordpress. con/2011/09/07/junp-point-search/ The same path planning problems solved by DT (without path smoothing) have Ls—19 =
+ i imi i i i 27.2 m and Ls—30 = 42.8 m, while DT seems to be significantly faster.
m JPST is optimized preprocessed version of JPS with goal bounding u Path 2: considers path from start to parent(s) and from parent(s) to s < 5-30 g y
https://github.com/SteveRabin/JPSPlusWithGoalBounding if s’ has line-of-sight to parent(s). o Path1 Path 2 m Lazy Theta* - reduces the number of line-of-sight checks.
http://www.gdcvault . com/play/1022094/JPS-Over-100x-Faster-than http://aigamedev.com/open/tutorials/theta- star-any-angle-paths/ i"rl‘a;'[')v.%kﬁemz‘ S. and Tovey, C. (2010): Lazy The?:cvpA/'Z;/;:ﬂ:e?2:‘;;;.‘75\:::‘):;x‘;;;f;::ﬁ:ﬁ-‘j
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Graph Search Algorithms

A* Variants — Online Search

= The state space (map) may not be known exactly in advance.
m Environment can dynamically change.
m True travel costs are experienced during the path execution.
m Repeated A* searches can be computationally demanding.
m Incremental heuristic search
m Repeated planning of the path from the current state to the goal.
= Planning under the free-space assumption.
= Reuse information from the previous searches (closed list entries).
m Focused Dynamic A* (D*) — h* is based on traversability, it has been used, e.g., for the
Mars rover “Opportunity”
Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. 1JCAI
m D* Lite — similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.
m Real-Time Heuristic Search
m Repeated planning with limited look-ahead — suboptimal but fast
m Learning Real-Time A* (LRTA*) Korf, E. (1990): Real-time heuristic search. JAI.
® Real-Time Adaptive A*¥ (RTAA*) Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS,
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Graph Search Algorithms

Real-Time Adaptive A* (RTAA*)

T
m Execute A* with limited look-ahead. while (e ¢ GOAL) do

astar(lookahead);
if ' = FAILURE then
| return FAILURE;
for all s € CLOSED do
| H(s) = g(s') + h(s) - g(s);
execute(plan); // perform one step
return SUCCESS;

s’ is the last state expanded during the previous A*
search.

m Learns better informed heuristic from
the experience, initially h(s), e.g., Eu-
clidean distance.

m Look-ahead defines trade-off between
optimality and computational cost.

m astar(lookahead)
A* expansion as far as "lookahead” nodes
and it terminates with the state s'.
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D* Lite

D* Lite — Demo

https://www.youtube . con/watch?v=X5a149nSE9s
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D* Lite
D* Lite Overview

m It is similar to D¥*, but it is based on Lifelong Planning A*.

Koenig, S. and Likhachev, M. (2002): D* Lite. AAAI
m |t searches from the goal node to the start node, i.e., g-values estimate the goal distance.
m Store pending nodes in a priority queue.
m Process nodes in order of increasing objective function value.
m Incrementally repair solution paths when changes occur.
m Maintains two estimates of costs per node:

m g — the objective function value — based on what we know;

m rhs — one-step lookahead of the objective function value — based on what we know.
m Consistency:

n Consistent — g = rhs;

m Inconsistent — g # rhs.

m Inconsistent nodes are stored in the priority queue (open list) for processing.
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D* Lite

D* Lite: Cost Estimates

m rhs of the node u is computed based on g of its successors in the graph and the
transition costs of the edge to those successors

hs(u) = 0 if U= Setart
et = Mingesuce(u)((s') + ¢(s'; u)) otherwise

m The key/priority of a node s on the open list is the minimum of g(s) and rhs(s) plus a
focusing heuristic h

[min(g(s), rhs(s)) + h(Sstart, 5); min(g(s), rhs(s))]-

m The first term is used as the primary key.
m The second term is used as the secondary key for tie-breaking.

D* Lite Algorithm

= Main — repeat until the robot reaches the goal (or g(ssare) = oo there is no path).

Initialize(); Procedure Initialize
ComputeShortestPath(); U=0;
while (sm" # 5goa/) do foreach s € S do

Sstart = ABMINgc Succ(sye) (¢(Sstart: ') + £(5)); rhs(s) := s(s)

Move to Setart; rhs(Sgoar) -

U.Insert(syou1, CalculateKey(sgou)):

Scan the graph for changed edge costs;
if any edge cost changed perform then
foreach directed edges (u, v) with changed edge costs
do
Update the edge cost c(u, v);
UpdateVertex(u);
foreach s € U do
| U.Update(s, CalculateKey(s));

ComputeShortestPath();

U is priority queue with the vertices.
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D* Lite

D* Lite Algorithm — ComputeShortestPath()

Procedure ComputeShortestPath
while U.TopKey() < CalculateKey(sstart) OR rhs(sstart) # g(Sstart) do
:= U.Pop();
if g(u) > rhs(u) then
g(u) = rhs(u);
foreach s € Pred(u) do UpdateVertex(s);

else

g(u) = oo;
foreach s € Pred(u) J{u} do UpdateVertex(s);

Procedure UpdateVertex

if U # sgoar then  rhs(u) == ming ¢ syce(u)(c(u, ") + &(s));
u € U then U.Remove(u);

if g(u) # rhs(u) then U.lnsert(u, CalculateKey(u));

Procedure CalculateKey
return [min(g(s), rhs(s)) + h(sstart, ); min(g(s), rhs(s))]
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D* Lite
D* Lite — Demo
| |@]5[4]3]2
5|4[3]2]1
43211
P21
2
https://github.com/ndeyo/d-star-1lite -
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D* Lite

D* Lite — Example

30 31 32 33 34 Legend
l Free node ] Obstacle node
lOn open list “ Active node ]
20 L 2 3 4 gtart = A grid map of the environment
(what is actually known).
% m 8-connected graph superimposed
on the grid (bidirectional).
1,0 1 ,2 3 4
= Focusing heuristic is not used
(h=0).
00 Foalfor .2 3 4

m Transition costs
B Free space — Free space: 1.0 and 1.4 (for diagonal edge).
m From/to obstacle: co.
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D* Lite — Example Planning (1)

D* Lite

D* Lite

D* Lite — Example Planning (2)

D* Lite — Example Planning (3-init)

D* Lite

30 31 32 33 34 Legend 30 31 32 33 34 Legend 30 31 32 33 34 Legend
g oo g oo g 0o g o g [Free node HObstacle node ] g 0o g oo g g o g oo [Free node H Obstacle node ] g oo g 0o g o g oo g 0o [Free node H Obstacle node ]
ths: co ||| rhs: oo ||| rhs: oo ||| rhs: co ||| rhs: 0o lon open list “Active node | rhs: 0o ||| rhs: co ||| rhs: oo ||| rhs: oo ||| rhs: oo lon open list “ Active node | rhs: 0o ||| rhs: 0o ||| rhs: oo ||| rhs: co ||| rhs: 0o lon open list “ Active node |
N S N (R X nitiaization N R R - R iniilzation CEN S - T ComputeShortestPath
e ‘ Bioo )& oo B ‘ B QJ  Set rhs = 0 for the goal. e B ‘ B ‘ e ‘ HE QJ = Put the goal to the open list. B ‘ e ‘ HE ‘ Boo & S,’J a Pop the minimum element from the
rhs: o0 ||| rhs: oo || rhs: oo ||| rhs: oo || st oo u Set rhs — 5 = oo for il other nodes. rhs: oo ||| hs: oo | rhs: oo || rhs: oo | rhs: 0@ 1 b inconsistent. rhs: o0 || ths: oo || rhs: o0 ||| rhs: oo || rhs: 0o open list (goal).
1,0 11 12 13 14 10 11 12 13 14 1,0 11 12 13 14 m It is over-consistent (g > rhs).
g 00 g g g 00 g 00 g: 00 g oo g oo g 00 g 00 g 00 g o g o g: 00 g 00
rhs: oo ||| 'rhsi 80 ||| ¥hsi 0 ||| rhs: oo ||| rhs: oo rhs: oo ||| thsi oe ||| ths:i o0 ||| rhs: oo ||| rhs: 0o rhs: oo ||['rhsi o0 ||| rhsi o0 ||| rhs: oo rhs: 0o
0,0 goa| 0,1 0,2 03 04 0,0 goal 0,1 0.2 03 04 0,0 goal 0,1 0.2 0,3 04
g 00 g 00 g g 00 g 00 g g 00 g oo g 00 g 00 g 00 g 00 ) g 00 g: 00
rhs: 0 rhs: oo rhs: co rhs: 0o rhs: 0o rhs: 0 rhs: 0o rhs: oo rhs: 0o rhs: oo rhs: 0 rhs: 0o rhs: co rhs: oo rhs: 0o
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D* Lite D* Lite D* Lite
D* Lite — Example Planning (3) D* Lite — Example Planning (4) D* Lite — Example Planning (5-init)
30 31 32 33 34 Legend 30 31 32 33 34 Legend 30 31 32 33 34 Legend
g: 0o g: 0o g oo g oo g 0o [Free node ] Obstacle node g oo g 00 g 0o g: 0o [Free node ] Obstacle node g 0o g 0o g: 0o g: 0o g: oo [Free node ] Obstacle node
rhs: 0o ||| rhsi oo ||| rhsi 0o ||| rhsi 0o ||| rhs: oo [on open list “Active node | rhs: oo rhs: oo ||| rhs: 0o ||| rhs: oo lon open list “Active node | rhs: 0o ||| rhs: 0o ||| rhs: 0o ||| rhsi 0o ||| rhsi oo [on open list “Active node |
i 21 22 23 24 start ComputeShortestPath 22 23 24 start ComputeShortestPath 20 21 22 23 24 start ComputeShortestPath
g 00 g 00 g 00 g 00 g 00 - g 00 g 00 g 00 g 00 g 00 g 00 g 00 g oo .
m Pop the minimum element from the m Expand popped node (UpdateVertex () m Pop the minimum element from the
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oog open list (goal). rhs: oo rhs: oo rhs: oc,\ on all its predecessors). rhs: oo rhs: oo rhs: oo rhs: oo rhs: oog open list (1,0).
12 13 14 m It is over-consistent (g > rhs) 12 13 14 m This computes the rhs values for the 1,0 11 12 13 14 m It is over-consistent (g > rhs).
g g 0o g oo therefore set g = rhs. g 0o g oo g oo predecessors. g oo g oo g 0o g oo g oo
ths: 00 ||| rhs: oo ||| rhs: oo ths: 00 ||| rhs: oo ||| rhs: oo = Nodes that become inconsistent are rhs: 1 rhs: oo ||| rhs: o0 ||| rhs: oo ||| rhs: oo
added to the open list. T
02 03 04 02 03 04 00 $oal |01 0.2 03 04
g: 0o g o g oo g 00 g 00 g 00 g0 g 00 g oo g 00 g oo
rhs: co rhs: oo rhs: 0o rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: co rhs: co rhs: oo

Small black arrows denote the node used for computing the rhs value, i.e., using the respective
transition cost.

m The rhs value of (1,1) is oo because the transition to obstacle has cost co.
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D* Lite D* Lite D* Lite
D* Lite — Example Planning (5) D* Lite — Example Planning (6) D* Lite — Example Planning (7)

3.0 31 32 33 34 Legend 30 31 32 33 34 Legend 30 31 32 33 34 Legend
g oo g oo g 0o g o g [Free node HObstacle node ] g 0o g oo g g o g oo [Free node H Obstacle node ] g oo g 0o g oo g oo g 0o [Free node H Obstacle node ]
rhs: co ||| rhs: oo ||| rhs: oo ||| rhs: co ||| rhs: 0o lon open list “Active node | rhs: 0o ||| rhs: co ||| rhs: oo ||| rhs: oo ||| rhs: oo lon open list H Active node | rhs: 0o ||| rhs: 0o ||| rhs: oo ||| rhs: co ||| rhs: 0o lon open list “ Active node |
20 21 22 23 24 start ComputeShortestPath 20 21 22 23 24 start ComputeShortestPath 22 23 2* start ComputeShortestPath
& oo & oo & oo g oo g oo o g oo g oo & oo & oo & oo & oo o

‘ ‘ ‘ QJ u Pop the minimum element from the ‘ ‘ QJ m Expand  the  popped  node ‘ S,’J u Pop the minimum element from the
rhs: oo rhs: oo ||| rhs: oo rhs: oo rhs: ooA open list (1,0). rhs: 0o rhs: oo rhs: oc,\ (UpdateVertex() on all predecessors rhs: oo rhs: oo rhs: aoA open list (0,1).
1,0 11 12 13 14 m It is over-consistent (g > rhs) set g = 12 13 14 in the graph). 12 13 14 m It is over-consistent (g > rhs) and thus
o1 smlEE e e ths. TEe = |z = = Compute rhs values of the predecessors gEle= e= set g = rhs.

dingly.
es | " )| | - | | scrdng " - ] e Eaars e poped dmen, o5,
T T m Put them to the open list if they be- UpdateVertex().

00 goal [01 02 03 04 00 boal [0 02 03 04 come inconsistent. 02 03 04
g0 g o g oo g oo g oo g0 g oo g o0 g oo g o g oo g oo g 0o
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: oo rhs: 0o rhs: 0o rhs: oo rhs: oo rhs: oo
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= The rhs value of (0,0), (1,1) does not change.
u They do not become inconsistent and thus they are not put on the open list.
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D* Lite — Example Planning (8)

D* Lite

D* Lite — Example Planning (9)

D* Lite

D* Lite — Example Planning (10-init)

D* Lite

30 31 32 33 34 Legend 32 33 34 Legend 30 31 32 33 34 Legend
g oo g oo g 0o g o g [Free node HObstacle node ] g oo g oo g oo [Free node H Obstacle node ] g: oo g o0 g: 00 g o0 g oo [FVee node ” Obstacle node l
ths: co ||| rhs: oo ||| rhs: oo ||| rhs: co ||| rhs: 0o lon open list “Active node | rhs: 0o ||| rhs: oo ||| rhs: oo lon open list “ Active node | rhs: co ||| rhs: oo ||| rhs: oo lon open list “ Active node |
22 23 24 start ComputeShortestPath 22 23 24 start ComputeShortestPath 22 23 24 start ComputeShortestPath
g oo g 0o g 00 o g 0o g oo g oo g oo g oo g oo o
‘ QJ u Pop the minimum element from the ‘ ‘ QJ u Expand the popped element and put the ‘ S,’J u Pop the minimum element from the
rhs: oo rhs: o0 rhs: OOA open list (2,0). rhs: o0 rhs: o0 rhs: OCA predecessors that become inconsistent rhs: oo rhs: oo rhs: 90,\ open list (2,1).
12 13 14 = It is over-consistent (g > rhs) and thus 12 13 14 onto the open list. 12 13 14 u It is over-consistent (g > rhs).
g g oo g oo set g = rhs. P g oo g g ) &
rhs: co rhs: 0o rhs: 0o rhs: oo rhs: 0o rhs: oo ths: 00 ||| rhs: o0 rhs: 0o
02 03 04 02 03 04 0.2 03 04
g 0o g oo g 0o g 00 g 0o g 0o g: 0o g: 0o g: oo
rhs: oo rhs: 0o rhs: 0o rhs: 0o rhs: 0o rhs: oo rhs: oo rhs: oo rhs: oo
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D* Lite D* Lite D* Lite
D* Lite — Example Planning (10) D* Lite — Example Planning (11) D* Lite — Example Planning (12)
30 31 32 33 34 Legend 30 31 32 33 34 Legend 30 31 32 33 34 Legend
g o g o g oo g oo g oo [Free node ] Obstacle node g oo g oo g oo g o [Free node ] Obstacle node g3 g 0 g © g o g: oo [Free node ] Obstacle node
rhs: 3 ths: 3.4 ||| rhs: oo ||| rhs: oo ||| rhs: oo [on open list “Active node | rhs: 3 rhs: 3.8 ||| rhs: oo ||| rhs: o0 [On open list “ Active node | rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo ||| rhs: 0o [On open list “ Active node |
T T T
20 L 2 22 23 24 start ComputeShortestPath 20 ] 2 «>2 23 24 start ComputeShortestPath 20 L 21 w22 23 24 start ComputeShortestPath
g2 g: 24 g oo g: oo g: 0o L. 32 g g: 00 g: 00 g: 0o g2 g 2.4 g: 0o g: 0o g: oo L.
o m Pop the minimum element from the m Expand the popped element and put the o m Pop the minimum element from the
rhs: 2 rhs: 2.4 ||| rhs: o0 rhs: 0o rhs: ooA open list (2,1). ’ rhs: 3.4 ||| rhs: o0 rhs: oc,\ predecessors that become inconsistent rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: o rhs: oo,\ open list (3,0).
i 12 13 14 = It is over-consistent (g > rhs) 12 13 14 onto the open list. i 12 13 14 m It is over-consistent (g > rhs) and thus
g 0o g oo g oo and thus set g = rhs. g 0o g oo g oo g 0o g oo g oo set g = rhs.
ths: 00 ||| rhs: oo ||| rhs: oo ths: 00 ||| rhs: oo ||| rhs: oo ths: 00 ||| rhs: oo ||| rhs: oo = Expand the popped element and put the
T predecessors that become inconsistent
02 03 04 02 03 04 00 §oal |01 02 03 04 onto the open list.
g: 00 g g 8: 00 g 00 g oo g0 g1 g 00 g o0 g oo = In this cases, none of the predecessors
rhs: co rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: co become inconsistent.
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D* Lite D* Lite D* Lite
D* Lite — Example Planning (13) D* Lite — Example Planning (14) D* Lite — Example Planning (15)
31 32 33 34 Legend 31 32 33 34 Legend 31 33 34 Legend
g: 3.4 g 0o g o0 g o0 [Free node J[Obstacle node | g 3.4 g o0 g o0 g o0 [Free node [Obstacle node | g 34 g o0 g 0o [Free node [Obstacle node |
rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo ||| rhs: 0o lon open list “Active node | rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo ||| rhs: oo lon open list H Active node | rhs: 3.4 rhs: 4.8 ||| rhs: 0o lon open list “ Active node |
21 22 23 24 start ComputeShortestPath 2 22 23 24 start ComputeShortestPath 23 2* start ComputeShortestPath
g 2.4 g oo g: 00 g: 0o L. g 3.4 g: 00 g: 00 . g oo
o u Pop the minimum element from the u Pop the minimum element from the o u Expand the popped element and put
rhs: 2.4 ||| rhs: 3.4 ||| rhs: o rhs: ooA open list (3,0). rhs: 3.4 ||| rhs: co rhs: oc,\ open list (2,2). rhs: 4.4 ||| rhs: aoA the predecessors that become inconsis-
14 o
11 12 13 14 = It is over-consistent (g > rhs) and thus 12 13 14 = It is over-consistent (g > rhs) and thus N 14 t;"; onto the open list, i.e., (3,2), (3,3),
g 0o g oo g ) set g = rhs. T o ) ) set g = rhs. g 0o g oo (2:3).
ths: 00 ||[thsioe ||| rhs: oo ||| rhs: oo = Expand the popped element and put the ths: 00 ||| rhs: oo ||| rhs: 0o rhs: 4.8 ||| rhs: 0o
predecessors that become inconsistent
0.1 02 03 04 onto the open list. 02 03 04 03 04
g0 g1 B g oo g oo m In this cases, none of the predecessors S g o0 g oo g: oo g: oo
rhs: 0 || rhs: 1 ||[thsiea || rhs: oo || rhs: o0 become inconsistent. ths: 00 ||| rhs: 0o ||| rhs: 0o rhs: oo ||| rhs: oo
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D* Lite

D* Lite — Example Planning (16)

31 32 33 34 Legend
g 34 g 38 g o0 g o0 [Free node [Obstacle node |
rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 0o ‘ [On open list |[Active node |
L ¢ — 4 24 start ComputeShortestPath
e H g 34 H gioo || 80 J = Pop the minimum element from the
rhs: 2.4 || rhs: 3.4 [[| rhs: 4.4 ||| rhs: 00 open list (3,2).
11 12 X N3 14 = m It is over-consistent (g > rhs) and thus
g oo g oo g o0 g o0 set g = rhs.
the oo | ehetee || rhs: 4.8 ‘ ths: o0 ‘ = Expand the popped element and put the
predecessors that become inconsistent
0.1 0.2 03 04 onto the open list.
g0 g1l S g oo g oo = In this cases, none of the predecessors
rhs: 0 H rhs: 1 ‘ rhsi o0 ||| rhs: o0 ‘ rhs: 0o ‘ become inconsistent.
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D* Lite — Example Planning (17)

3,2
g 38
ths: 3.8

34
g oo ‘

rhs: oo

2.2 ]2 24 start

g 3.4 g oo

rhs: 3.4 rhs: oo
& ~

12 N3 14

g g 00 g 00

rhs: o0 ||| rhs: 4.8 ||| rhs: 00

0.2 03 0.4

g g 0o g: 00

rhs: oo rhs: oo rhs: oo

Jan Faigl, 2020
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D* Lite

Legend

lFree node

[Obstacle node |
“ Active node ]

lOn open list

ComputeShortestPath

= Pop the minimum element from the
open list (2,3).

m It is over-consistent (g > rhs) and thus
set g = rhs.
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D* Lite — Example Planning (18)

D* Lite

33 3,4

g: 0o g: 0o

Legend

[Free node [Obstacle node |
lOn open list “ Active node ]
ComputeShortestPath

» Expand the popped element and put
the predecessors that become inconsis-

tent onto the open list, i.e., (3,4), (2,4),

(1.4).
The start node is on the open list.

However, the search does not finish at

this stage.

There are still inconsistent nodes (on
the open list) with a lower value of rhs.
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D* Lite

D* Lite — Example Planning (19)

30 31 32 33 34 Legend
g3 g 3.4 g 38 g 48 g © [Free node ] Obstacle node
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
T
20 L o gfasd |2 start ComputeShortestPath
22 1 2.4 1 4.4 3
B3 e B g 4 m Pop the minimum element from the
rhs: 4.4 ||| rhs: 5. open list (3,2).
1.3 X Ly
3 = It is over-consistent (g > rhs) and thus
g: 0o set g = rhs.
rhs: 4.8 ||| rhs: 5.8 = Expand the popped element and put the
predecessors that become inconsistent
0.2 03 04 onto the open list.
g: 00 g: 00 g = In this cases, none of the predecessors
rhs: oo rhs: 0o rhs: 0o become inconsistent.
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D* Lite — Example Planning (20)

3,0 3,1 32 33 34
g3 g 3.4 g: 3.8 g 4.8 g: 00
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8

2.2 | 24 start

g: 3.4 g: 0o

rhs: 3.4 rhs: 5.
1.4 ~

12 N3 N4

g 0o g 4.8 g: 0o

thsi 00 ||| rhs: 4.8 ||| rhs: 5.8

0,2 03 04

g oo g 0 g: 00

rhs: oo rhs: oo rhs: oo
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D* Lite

Legend
[Free node

] Obstacle node

“ Active node ]

l On open list

ComputeShortestPath

m Pop the minimum element from the
open list (1,3).

m It is over-consistent (g > rhs) and thus
set g = rhs.
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D* Lite — Example Planning (21)

D* Lite

30 31 32 33 Legend
g3 g 3.4 g 38 g 48 [Free node ] Obstacle node
rhs:l3 ‘ rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 lOn open list “ Active node ]
20 L o w22 w23 Y ComputeShortestPath
&2 ‘ & 24 g 34 g 44 }4 m Expand the popped element and put the
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 predecessors that become inconsistent
f 12 X B onto the open list, i.e., (0,3) and (0,4).
g: 0o
] rhs: oo
0,0 ioal 0,1 0,2
g0 gl g 00 g: 00
’ rhs: 0 H rhs: 1 ‘ rhs: oo rhs: 6.2

Jan Faigl, 2020

B4M36UIR — Lecture 03: Path Planning 85 / 118

D* Lite

D* Lite — Example Planning (22)

3,0 31 3.2 33 3.4 Legend

g3 g 34 g 38 g 438 g o0 [Free node J[Obstacle node |

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list “Active node ]
22 24 start ComputeShortestPath

34
g 3 u Pop the minimum element from the
open list (2,4).

N4 m It is over-consistent (g > rhs) and thus

12

& o T & set g = rhs.
ths: 00 ||| rhs: 4.8 ||| rhs: 5.8 ‘ = Expand the popped element and put the
= predecessors that become inconsistent
0,2 03 | N4 (none in this case) onto the open list.
g0 g1l g: oo g 0o g: 0o
rhs: 0 rhs: 1 rhs: o0 ||| rhs: 5.8 ||| rhs: 6.2

= The start node becomes consistent and the top key on the open list is not less than the key of the start node. .
= An optimal path is found and the loop of the ComputeShortestPath is breaked.
Jan Faigl, 2020
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D* Lite — Example Planning (23)

3,0 31 32 33 3.4

g3 g 34 |[e38 |[e48 |[ao
ths: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
2,1
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D* Lite

Legend
[Free node [Obstacle node |
[On open list “ Active node ]

m Follow the gradient of g values from the
start node.

87 / 118

D* Lite — Example Planning (24)

D* Lite

3,0 31 3.2 33 3.4 Legend
g3 g 34 g 38 g 48 g 0o [Free node [Obstacle node |
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “ Active node ]

22

23 24 start
g 4.4

m Follow the gradient of g values from the
start node.

rhs: 6.2 ‘
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D* Lite — Example Planning (25)

3,0 31 32 33 3,4
g3 g:34 |[e38 g 438 g oo
rhs: 3.4 ||| rhs: 3.8 rhs: 4.8 rhs: 5.8
24 start
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D* Lite

Legend
[Free node [Obstacle node |
lOn open list “Active node i

m A new obstacle is detected during the
movement from (2,3) to (2,2).

= Replanning is needed!
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D* Lite

D* Lite — Example Planning (25 update)

3,0 32 33 34 Legend
g3 g 3.8 g 4.8 g o0 [Free node [Obstacle node |
rhs:(3.8 ||| rhé: 4.8 ||| rhs: 5.8 lOn open list “ Active node i
23 24 start
g 4.4 P m All directed edges with changed edge,
we need to call the UpdateVertex().
rhs: 4. rhs:
\J = All edges into and out of (2,2) have to
N3 N4 be considered.
N g 00
rhs: 4.8 ||| rhs: 5.8
03 | 4
: g oo
rhs: oo rhs: 5.8 ||| rhs: 6.2
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D* Lite — Example Planning (26 update 1/2)

30 34
g3 g 0
rhs: 3 rhs: 5.8

24 start

rhs: co

Jan Faigl, 2020

B4M36UIR — Lecture 03: Path Planning

D* Lite

Legend
[Free node [Obstacle node |
lOn open list “ Active node i

Update Vertex

= Outgoing edges from (2,2).

= Call UpdateVertex() on (2,2).

= The transition costs are now oo because
of obstacle.

Therefore the rhs = oo and (2,2) be-
comes inconsistent and it is put on the
open list.
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D* Lite — Example Planning (26 update 2/2)

3,0 31 32 33 3.4

g: 3.4 g: 3.8 g 0o

|

2,0 i 21 o

rhs: 3 rhs:N rhs:/3.8 rhs: 5.8
g 2 g 2.4 )

rhs: 2 rhs: 2.4 g

10 11

12

g:4.8 g oo
rhs: oo rhs: 4.8 ||| rhs: 5.8

0,2 03 | N4
g oo g g
rhs: oo rhs: 5.8 ||| rhs: 6.2
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D* Lite

Legend
[Free node ] Obstacle node
lOn open list “Active node i

Update Vertex

m Incomming edges to (2,2).

m Call UpdateVertex() on the neighbors
(22).

= The transition cost is 0o, and therefore,

the rhs value previously computed using
(2,2) is changed.
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D* Lite

D* Lite — Example Planning (27)

3.0 31 32 33 34 Legend
g3 g 3.4 g: 3.8 g 48 g [Free node ] Obstacle node
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “ Active node i
T
20l e ]2 i 24 start Update Vertex
36 ‘ &% }1 g 4.4 m The neighbor of (2,2) is (3,3).
ih3 OOR che:L¥ m The minimum possible rhs value of
12 N3 (3.3) is 4.8 but it is based on the g
g oo g 4.8 g o value of (3,2) and not (2,2), which is
the detected obstacle.
rhs: 50 ||| rhs: 4.8 ||| rhs: 5.8 - y
= The node (3,3) is still consistent and
02 03 | N4 thus it is not put on the open list.
g 00 g 00 g 00
rhs: oo rhs: 5.8 ||| rhs: 6.2
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D* Lite — Example Planning (28)

31 32 33 34
g: 3.4 g: 3.8 g: 4.8
rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8

=

3

o ||[g4a
rhs: oo rhs: 5.
K

12 \{‘3
g o g: 4.8 g o
i ths: o0 ||| rhs: 4.8 ||| rhs: 5.8
0,0 iﬁai 0,1 0.2 03 | N4
g0 gl g 00 g: 00 g: 0o
i rhs: 0 H rhs: 1 i rhs: oo ||| rhs: 5.8 ||| rhs: 6.2
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D* Lite

Legend
l Free node ] Obstacle node
lOn open list “ Active node i

Update Vertex

m (2,3) is also a neighbor of (2,2).

m The minimum possible rhs value of
(2,3) is 5.2 because of (2,2) is obsta-
cle (using (3,2) with 3.8 + 1.4).

m The rhs value of (2,3) is different than
g thus (2,3) is put on the open list.
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D* Lite — Example Planning (29)

3,0 31 3,2 33 3,4
g3 g: 3.4 g:3.8 g 4.8 g o
rhs: 3 ths: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8

T K,

rhs: 5.8

|

K‘Q“

g
rhs: 6.2

|
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D* Lite

Legend
[Free node J[Obstacle node |
lOn open list “Active node i

Update Vertex
= Another neighbor of (2,2) is (1,3).
s The minimum possible rhs value of

(1,3) is 5.4 computed based on g of
(2,3) with 4.4 + 1 =5.4.

= The rhs value is always computed using
the g values of its successors.
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D* Lite

D* Lite — Example Planning (29 update)

31 32 33 34 Legend
234 |[z38 |[e48 |[eo [Free node |[Obstacle node |
rhs:\:)\Q rhs:|3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “ Active node i
2 22 3 24 start Update Vertex
g 2.4 i > g 5.4 )
= None of the other neighbor of (2,2) end
rhs: 2.4 i rhs: 5.4 up being inconsistent.
11 12 13 | 4 = We go back to calling
g oo g b g 4.8 g 0o ComputeShortestPath () until  an
optimal path is determined.
rhsi o0 ||| rhsi o0 ||| rhs: 5.4 ||| rhs: 5.8
0,1 02 03 | 4
g0 g1l g o g: 00 g: 00
rhs: 0 rhs: 1 rhs: oo rhs: 5.8 ||| rhs: 6.2

= The node corresponding to the robot's current position is inconsistent and its key is greater than
the minimum key on the open list.
m Thus, the optimal path is not found yet.
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D* Lite — Example Planning (30)

3,1 32 33 3,4

g 3.4 g 3.8 g 4.8
rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8
5 4

4
g: 0o g: 0o
rhs: co rhs: 5.8
1.4
0.2 R4
g0 g1 g: 0o g: 0o g oo
rhs: 0 rhs: 1 ths: 00 ||| rhs: 5.8 ||| rhs: 6.2

= Because (2,2) was under-consistent (when popped), UpdateVertex () has to be called on it.

u However, it has no effect as its rhs value is up to date and consistent.
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D* Lite

Legend

[Free node [Obstacle node |
lOn open list “ Active node i
ComputeShortestPath

= Pop the minimum element from the
open list (2,2), which is obstacle.

m It is under-consistent (g < rhs), there-
fore set g = oo.

u Expand the popped element and put the
predecessors that become inconsistent
(none in this case) onto the open list.
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D* Lite

D* Lite — Example Planning (31-init)

3,0 31 32 33 34 Legend
rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
X
24 start ComputeShortestPath

m Pop the minimum element from the
open list (2,3).
= |t is under-consistent g < rhs.

- »
Y N

o
©

D* Lite
D* Lite — Example Planning (31)
30 34 Legend
€ B ‘ [Free node __|[Obstacle node |
rhs: 5.8 lOn open list “ Active node ]
24 start ComputeShortestPath

m Pop the minimum element from the
open list (2,3).

= |t is under-consistent g < rhs
therefore set g = oo.

D* Lite — Example Planning (32)

3,2

g 38

ths: 3.8
=

rhs: 6.2 ‘
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D* Lite

Legend

Free node ) [Obstacleinode |

lOn open list “ Active node ]

ComputeShortestPath

m Expand the popped element and update
the predecessors.

m (2,4) becomes inconsistent.

m (1,3) gets updated and still inconsis-
tent.
u The rhs value (1,4) does not changed,

but it is now computed from the g value
of (1,3).
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D* Lite
D* Lite — Example Planning (33)
3,0 31 32 33 34 Legend
g3 g 3.4 g 38 g 4.8 g © Free node _
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
T . K,
22 ComputeShortestPath

m Because (2,3) was under-consistent
(when popped), call UpdateVertex()
on it is needed.

-
N

m As it is still inconsistent it is put back
onto the open list.

°

.2

bese)
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D* Lite
D* Lite — Example Planning (34)
31 32 33 34 Legend
g 3.4 g: 3.8 g 48 g o Free node _
rhs: 3.4 ||| rhs: 3.8 lOn open list “Active node ]
K,
ComputeShortestPath

m Pop the minimum element from the
open list (1,3).

= It is under-consistent (g < rhs), there-
fore set g = oc.

D* Lite — Example Planning (35)

31 32 33 3,4

g: 3.4 g: 3.8 g: 48 g oo
rhs: 3.8
K,

rhs: 3.4
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D* Lite

Legend

lOn open list “Active node ]

ComputeShortestPath

m Expand the popped element and update
the predecessors.

= (1,4) gets updated and still inconsis-
tent.

= (0,3) and (0,4) get updated and now
consistent (both g and rhs are co).
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D* Lite
D* Lite — Example Planning (36)
3.0 31 32 33 34 Legend
g3 |[s34 |[e38 |[s48 |[E [Free node _|[Obstacle nade |
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
X X
22 ComputeShortestPath

m Because (1,3) was under-consistent
(when popped), call UpdateVertex()
on it is needed.

Y

m As it is still inconsistent it is put back
onto the open list.

o

2

g
rhs: 0o

rhs: 0o
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D* Lite
D* Lite — Example Planning (37)

30 31 32 33 34 Legend
g3 |[s34 |[e38 |[s48 |[E= [Free node _|[Obstacle nade |

rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list “ Active node ]

X
: ComputeShortestPath

m Pop the minimum element from the
open list (2,3).

m It is over-consistent (g > rhs), there-
fore set g = rhs.
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D* Lite — Example Planning (38)

30 31 32 33 34
g3 g 3.4 g 3.8 g 4.8 g 0
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
13 14
2.2 3 4 start

s
Y

o
©

rhs: oo

rhs: oo
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D* Lite

Legend

Free node ) [Obstaclenode |

lOn open list “ Active node ]

ComputeShortestPath

m Expand the popped element and update
the predecessors.

(1,3) gets updated and still inconsis-
tent.

The node (2,3) corresponding to the
robot’s position is consistent.

Besides, the top of the key on the open
list is not less than the key of (2,3).
The optimal path has been found and
we can break out of the loop.
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D* Lite
D* Lite — Example Planning (39)
3,0 33 34 Legend
e w4s (e [Free node _|[Obstacleinode ]
rhs: 4.8 ||| rhs: 5.8 lOn open list “Active node ]
4
3 4 start

m Follow the gradient of g values from the
robot's current position (node).

oal [o.
A g1l
0 rhs: 1

32
12 =
0,2

rhs: 0o ‘

rhs: 0o
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D* Lite

D* Lite — Comments

m D* Lite works with real valued costs, not only with binary costs (free/obstacle).

m The search can be focused with an admissible heuristic that would be added to the g
and rhs values.

m The final version of D* Lite includes further optimization (not shown in the example).

m Updating the rhs value without considering all successors every time.
m Re-focusing the search as the robot moves without reordering the entire open list.
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RD-based Planning
Reaction-Diffusion Processes Background

m Reaction-Diffusion (RD) models — dynamical systems capable to reproduce the au-
towaves.

m Autowaves - a class of nonlinear waves that propagate through an active media.
At the expense of the energy stored in the medium, e.g., grass combustion.
m RD model describes spatio-temporal evolution of two state variables u = u(X,t) and
v = v(X, t) in space X and time t
0 o=
v

f(u,v)+ DyAu
= g(u,v)+ DAV’

where A is the Laplacian.

This RD-based path planning is informative, just for curiosity.
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RD-based Planning

Reaction-Diffusion Background

m FitzHugh-Nagumo (FHN)
u
v

model FitzHugh R, Biophysical Journal (1961)
5(u7u37 v+¢>) + D,Au

(u—av+p)+D,Au '

where a, 3, ¢, and ¢ are parameters of the model.

= Dynamics of RD system is

determined by the associated nullcline configurations for 1=0

and v=0 in the absence of diffusion, i.e.,

which have associated geo

Jan Faigl, 2020

€ (u —B—v+ zb)
(u—av+p)
metrical shapes.
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RD-based Planning

Nullcline Configurations and Steady States

05
m Nullclines intersections represent:

v m Stable States (5Ss);

m Unstable States.

m Bistable regime

The system (concentration levels of (u, v) for each grid cell)
tends to be in SSs.

-0.5

-1.5 -1.0 -05 0.0 1.5

u
m We can modulate relative stability of both SS.

“preference” of SS* over SS.

05 1.0

= System moves from SS~ to SST, if a small perturbation is intro-
duced.

m The SSs are separated by a mobile frontier — a kind of traveling
frontwave (autowaves).
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RD-based Planning

RD-based Path Planning — Computational Model

m Finite difference method on a Cartesian grid with Dirichlet boundary
conditions (FTCS).

m External forcing — introducing additional information
i.e., constraining concentration levels to some specific values.

discretization — grid based computation — grid map

= Two-phase evolution of the underlying RD model.
1. Propagation phase
m Freespace is set to SS~ and the start location SS*. .
m Parallel propagation of the frontwave with non-annihilation property.
Vazquez-Otero and Mufiuzuri, CNNA (2010)
m Terminate when the frontwave reaches the goal.
2. Contraction phase
= Different nullclines configuration.
m Start and goal positions are forced towards SS+.
m S5~ shrinks until only the path linking the forced points remains.

Jan Faigl, 2020 B4M36UIR — Lecture 03: Path Planning 113 / 118

Example of Found Paths

700 x 700

m The path clearance maybe a

Jan Faigl, 2020

n E RD-based Planning

700 x 700 1200 x 1200

djusted by the wavelength and size of the computational grid.
Control of the path distance from the obstacles (path safety).
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RD-based Planning

Comparison with Standard Approaches

Distance Transform Voronoi Diagram Reaction-Diffusion

ST

Otero A, Faigl J, Mufuzuri A
IROS (2012)

Jarvis R
Advanced Mobile Robots (1994)

Beeson P, Jong N, Kuipers B
ICRA (2005)

m RD-based approach provides competitive paths regarding path length and clearance,
while they seem to be smooth.
B4M36UIR — Lecture 03: Path Planning
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RD-based Planning

Robustness to Noisy Data

Vazquez-Otero, A, Faigl, J., Duro, N. and Dormido, R. (2014): Reaction-Diffusion based Computational Model for Autonomous Mobile
Robot ion of Unknown Envi ional Journal of U ional Computing (1JUC).
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Topics Discussed

Topics Discussed

m Motion and path planning problems
m Path planning methods — overview
m Notation of configuration space

m Path planning methods for geometrical map representation
m Shortest-Path Roadmaps
m Voronoi diagram based planning

Summary Of the LeCtU re m Cell decomposition method

m Distance transform can be utilized for kind of navigational function
W Front-Wave propagation and path simplification

m Artificial potential field method

m Graph search (planning) methods for grid-like representation
m Dijsktra’s, A*, JPS, Theta*
m Dedicated speed up tect can be employed to decreasing ional burden, e.g., JPS
m Grid-path can be smoothed, e.g., using path simplification or Theta* like algorithms

m We can avoid demanding planning from scratch reusing the previous plan for the updated

environment map, e.g., using D* Lite
m Unconventional reaction-diffusion based planning (informative)

m Next: Robotic Information Gathering — Mobile Robot Exploration
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