A practice of (robust) statistical testing

November 25, 2024

This exercise aims to demonstrate behavior of a hypothesis tests, when its assumptions are violated. We will compare a TTest, which assumes a normal distribution, and Mann-Whitney-U test, which does not assume any particular statistical distribution.

- 1. Implement generators of samples from Normal and Cauchy distributions. The generators should be functions parametrized by position (mean) and number of samples. You can keep the variance fixed.
- 2. Using library functions, compute histograms of test statistics for T-Test and Mann-Whitney-U tests for the following three cases:
 - (a) Under hypothesis H_0 , the two compared sets of samples are sampled from the same distribution. We recommend to sample them from Normal(0,1).
 - (b) Under hypothesis H_{1_a} , the two compared sets of samples are sampled from two different distributions, but both distributions are normal. We recommend to sample them from Normal(0,1) and Normal(3,1).
 - (c) Under hypothesis H_{1_b} , the two compared sets of samples are sampled from two different distributions and the distributions are different. We recommend to sample them from Normal(0,1) and Cauchy(3,1).

Note: Each repetition of sampling both sets and computing the test statistics provides a single *observation of the test statistic*. Therefore to draw histograms, you need to repeat both sampling and computation of test statistics.

- 3. Add to the plot distribution of the test statistic under null hypothesis H_0 for both tests. For the TTest, the test statistic follows Student-t distribution with 2n-2 degrees of freedom (where n is the sample size). The test statistics for Mann-Whitney U Test for large sample sizes follows Normal($\frac{n_1n_2}{2}$, $\sqrt{\frac{n_1n_2(n_1+n_2+1)}{12}}$,) where n_1 and n_2 are sample sizes.
 - You should observe that distributions fitting the histogram do not change despite changing parameters of the distribution under H_0 hypothesis.
- 4. Empirically and analytically compute thresholds on test statistics, such that the probability of rejection hypothesis H_0 when it is true (Type I error) is $\alpha = 5\%$. Empirically compute Type II error, falsely accepting hypothesis H_0 while H_1 is true. You should observe how Type II error with respect to the choice of "other" distribution.