B4M36DS2, BEAM36DS2: Database Systems 2
https://cw.fel.cvut.cz/b231/courses/b4m36ds2/

Lecture 10 :
0 "M \H“ A

Graph Databases: Neo4j UMA um@
Traversal Framework

Yuliia Prokop
prokoyul@fel.cvut.cz

i No

Based on the Martin Svoboda’s presentation
(martin.svoboda@matfyz.cuni.cz)

Czech Technical University in Prague, Faculty of Electrical Engineering

https://cw.fel.cvut.cz/b231/courses/b4m36ds2/
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

Graph databases
e Introduction
Neodj
e Data model: property graphs

¢ Traversal framework
e Cypher query language
= Read, write, and general clauses

Graphs: Basics

Vertices = Nodes

Usti nad Labem Liberec

Ceské Budéjovice

Kinds of Graphs

Ustinad Labem Liberec Ulldil'ected Graphs

Hradec Kralové

Directed Graphs

Ustinad
Labem Liberec Ceské Budéjovice

Hradec
Krélové

Ostrava

Pl
iy Olomouc

Ceskeé.
Budjovice

Kinds of Graphs

g Unweighted
graph

ooooo

Weighted graph

Usti nad
Labem Liberec

Coské

Hradec Budgjovice

Ostrava

*Weight typically shows the cost of traversing

Ceské

Budejovice *Example: weights are distances between cities

Kinds of Graphs
Multigraph Hypergraph

Use case: Social Network

Follow

Graph Databases

Data model
e Property graphs
= Directed / undirected graphs, i.e. collections of ...

— nodes (vertices) for real-world entities, and
— relationships (directed edges) among these nodes

= Both the nodes and relationships can be associated with
additional properties

Types of databases
¢ Non-transactional = small number of large graphs

¢ Transactional = large number of small graphs

Graph Databases

Query patterns
» Create, update or remove a node / relationship in a graph

Graph algorithms (shortest paths, spanning trees, ...)

General graph traversals

Sub-graph queries or super-graph queries
Similarity based queries (approximate matching)

Neo4j Graph Database

@ neoy]

Neodj

Graph database

https://neodj.com/
Features
= Open source, massive scalability (billions of nodes), high
availability, fault-tolerant, master-slave (primary-secondary)
replication, ACID transactions, embeddable, ...
= Expressive graph query language (Cypher),
traversal framework

Developed by Neo Technology (Neo4j, Inc.)
Implemented in Java

Operating systems: cross-platform

Initial release in 2007

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 10: Graph Databases: Neo4j | 1. 12. 2025

11

https://neo4j.com/
https://neo4j.com/
https://neo4j.com/
https://neo4j.com/
https://neo4j.com/
https://neo4j.com/
https://neo4j.com/
https://neo4j.com/

Data Model

Database system structure

| Instance — single graph |

Property graph = directed labeled multigraph
* Collection of vertices (nodes) and edges (relationships)
Graph node
* Has a unique (internal) identifier
* Can be associated with a set of labels
= Allow us to categorize nodes
* Can also be associated with a set of properties
= Allow us to store additional data together with nodes

In Neo4j Enterprise Edition, one instance can contain 100 (default) graphs

Use case: Social Network

Follow

Data Model

Graph relationship

* Has a unique (internal) identifier

* Has a direction
= Relationships are equally well traversed in either direction!
= Directions can even be ignored when querying at all

Always has a start and end node
= Can be recursive (i.e. loops are allowed as well)

Is associated with exactly one type

Can also be associated with a set of properties

Data Model

Node and relationship property
e Key-value pair
= Key is a string
= Value is an atomic value of any primitive data type,
or an array of atomic values of one primitive data type

Primitive data types
* boolean — boolean values true and false
* byte, short, int, long — integers (1B, 2B, 4B, 8B)
* float, double - floating-point numbers (4B, 8B)
¢ char — one Unicode character

* String - sequence of Unicode characters

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 10: Graph Databases: Neo4j | 1. 12. 2025

15

Sample Data

Sample graph with movies and actors

(MIMOVIE { id: "vratnelahve", title: "Vratné lahve", year: 2006 })
(M2MOVIE{ id: "samotari", title: "Samotafi", year: 2000 })
(M3MOVIE{ id: "medvidek", title: "Medvidek", year: 2007 })
(M4&MOVIE { id: "stesti", title: "Stésti", year: 2005 })

(@l:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 })

(@2:ACTOR { id: "machacek", name: "Jifi Machacek", year: 1966 })
(@3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 })
(@4:ACTOR { id: "sverak", name: "Zdenék Svérak", year: 1936 })

(m1)-[c1:PLAY { role: "Robert Landa" }]->(a2)
(m1)-[c2:PLAY { role: "Josef Tkaloun" }]->(a4)
(m2)-[c3:PLAY { role: "Ondfej" }]->(al)

(m2)-[c4:PLAY { role: "Jakub" }]->(a2)

(m2)-[c5:PLAY { role: "Hanka" }]->(a3)

(m3)-[c6:PLAY { role: "Ivan" }]->(al)

(m3)-[c7:PLAY { role: "Jirka", award: "Czech Lion" }]->(a2)

Sample Data

Variable Label Map of properties Node is in round parenthesis

B AW .

(MI:MOVIE { id: "vratnelahve", title: "Vratné lahve", year: 2006 }),
(M2MOVIE{ id: "samotari", title: "Samotari", year: 2000 }),
(M3MOVIE{ id: "medvidek", title: "Medvidek", year: 2007 }),
(m4&MOVIE { id: "stesti", title: "Stésti", year: 2005 }), Nodes

(@l:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 }),

(@2:ACTOR { id: "machacek", name: "Jifi Machacek", year: 1966 }),
(@3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 }),
(@4:ACTOR { id: "sverak", name: "Zdenék Svérak", year: 1936 }),

(m1)-[c1:PLAY { role: "Robert Landa" }]->(a2),
(m1)-[c2:PLAY { role: "Josef Tkaloun" }]->(a4),
m2)-[c3:PLAY { role: "Ondrej" }]->(al), . .
EmZ;-[CAL:PLAY { role: "Jakub" }]->(a(12),) Relationships
(m2)-[c5:PLAY { role: "Hanka" }]->(a3),
(m3)-[c6:PLAY { role: "Ivan" }]->(al),
(mw%PLAY { role: "Jirka", award: "Czech Lion" }]->(a%L

Starting node Ending node

Sample Data

Vratné lahve Ivan Trojan
Samotafi Jifi Machacek
Medvidek Jitka Schneiderova

Stésti Zdené&k Svérak

Neodj Interfaces

Database architecture

e Client-server

e Embedded database

= Directly integrated within your application

Neodj drivers

e Official: Java, .NET, JavaScript, Python, Go

e Community: C, C++, PHP, Ruby, Perl, R, ...
cypher-shell

¢ Interactive command-line tool
Query patterns

e Cypher —declarative graph query language

¢ Traversal framework

Traversal Framework

Traversal Framework

Traversal framework
e Allows us to express and execute graph traversal queries
e Based on callbacks, executed lazily
Traversal description
* Defines rules and other characteristics of a traversal
Traverser

 |nitiates and manages a particular graph traversal
according to...

= the provided traversal description, and
= graph node / set of nodes where the traversal starts

e Allows for the iteration over the matching paths, one by one

B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 10: Graph Databases: Neo4j | 1. 12. 2025

13

Traversal Framework: Example

Find actors who played in Medvidek movie

TraversalDescription td = db.traversalDescription()
.breadthFirst()
.relationships(Types.PLAY, Direction.OUTGOING)
.evaluator(Evaluators.atDepth(1));

Node s = db.findNode(Label.label("MOVIE"), "id", "medvidek");
Traverser t = td.traverse(s);

for (Path p: t) {
Noden = p.endNode();
System.out.println(
n.getProperty("name")

7

}

Ivan Trojan
Jiti Machacek

Traversal Description

Components of a traversal description
e Order
= Which graph traversal algorithm should be used
e Expanders
= What relationships should be considered
¢ Uniqueness
= Whether nodes / relationships can be visited repeatedly
e Evaluators

= When the traversal should be terminated
= What should be included in the query result

Traversal Description: Order

Order
Which graph traversal algorithm should be used?

o Standard depth-first or breadth-first methods can be selected
or

specific branch ordering policies can also be implemented

e Usage:
td.breadthFirst()
td.depthFirst()

breadthFirst()

0 current X
O discovered y
@ node done

Undiscovered edge

\ Discovered edge

bfs(x):
make a new queue called q
mark x visited
push x onto q

while q not empty:
pop q into x
for each y in X connections
if y not visited:
mark y visited
push y onto q

https://youtu.be/x-VTfcmrLEQ?list=PLtbC50fOR8aqNIKkYIrLVyOwLjSiJHwjCz

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 10: Graph Databases: Neo4j | 1. 12. 2025

depthFirst()

https://www.youtube.com/watch?v=NUgMa5coCoE

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 10: Graph Databases: Neo4j | 1. 12. 2025

current x
discovered y

node done
Undiscovered edge

Discovered edge

1 x = start vertex(1)
2 dfs(x)

3

4 def dfs(x):

5 mark x as visited

6 for eachyin x connections:
7 if y not visited then

8 afs(y)

Traversal Description: Expanders

Path expanders

Being at a given node...
what relationships should next be followed?

* Expander specifies one allowed...
= relationship type and direction
— Direction.INCOMING
— Direction.OUTGOING
— Direction.BOTH
* Multiple expanders can be specified at once
® When none is provided,
then all the relationships are permitted
e Usage:
td.relationships(type, direction)

Traversal Description: Uniqueness

Uniqueness
Can particular nodes / relationships be revisited?

e Various uniqueness levels are provided

= Uniqueness.NONE — no filter is applied
= Uniqueness.RELATIONSHIP_PATH
Uniqueness. NODE_PATH

— Nodes / relationships within a current path must be distinct

* Uniqueness. RELATIONSHIP_GLOBAL
Uniqueness. NODE_GLOBAL (default)

— No node / relationship may be visited more than once
e Usage:
td.uniqueness(level)

Traversal Description: Evaluators

Evaluators

Considering a particular path...
should this path be included in the result?
should the traversal further continue?

¢ Available evaluation actions
Evaluation.INCLUDE_AND_ CONTINUE
Evaluation.INCLUDE_AND_ PRUNE
Evaluation.EXCLUDE_AND CONTINUE
Evaluation.EXCLUDE_AND_ PRUNE
* Meaning of these actions
* INCLUDE / EXCLUDE = whether to include the path in the
* result
CONTINUE / PRUNE = whether to continue the traversal

Traversal Description: Evaluators

Predefined evaluators
e Evaluators.all()
= Never prunes, includes everything
e Evaluators.excludeStartPosition()
= Never prunes, includes everything except the starting nodes

e Evaluators.atDepth(depth)
Evaluators.toDepth(maxDepth)
Evaluators.fromDepth(minDepth)
Evaluators.includingDepths(minDepth, maxDepth)

= Includes only positions within the specified interval of depths

Traversal Description: Evaluators

Evaluators
e Usage:
td.evaluator(evaluator)
¢ Note that evaluators are applied even for the starting nodes!

* When multiple evaluators are provided...
= then they must all agree on both the questions
* When no evaluator is provided...
= then the traversal never prunes and includes everything

Traverser

Traverser
e Allows us to perform a particular graph traversal
= with respect to a given traversal description
= starting at a given node / nodes
e Usage: t=td.traverse(node, ...)
" for(Pathp:t){...}
— Iterates over all the paths
" for (Noden: t.nodes()) {...}
— Iterates over all the paths, returns their end nodes
" for (Relationship r: t.relationships()) {...}
— Iterates over all the paths, returns their last relationships

Path
* Well-formed sequence of interleaved nodes and relationships

Traversal Framework: Example

Find actors who played with Zdenék Svérdk

TraversalDescription td = db.traversalDescription()
.depthFirst()

.uniqueness(Uniqueness. NODE_GLOBAL)
.relationships(Types.PLAY)
.evaluator(Evaluators.atDepth(2))
.evaluator(Evaluators.excludeStartPosition());

Nodes = db.findNode(Label.label("ACTOR"), "id", "sverak");
Traverser t = td.traverse(s);

for (Noden: t.nodes()) {
System.out.println(
n.getProperty("name")

7

}
Jit{ Machadek ‘

Sample Data

Vratné lahve Ivan Trojan
Samotafi Jiti Machacek
Medvidek Jitka Schneiderova

Stésti Zdenék Svérak

Lecture Conclusion

Neodj = graph database

* Property graphs
¢ Traversal framework

= Path expanders, uniqueness, evaluators, traverser

