B4M36DS2, BEAM36DS2: Database Systems 2
https://cw.fel.cvut.cz/b231/courses/b4m36ds2/

Lecture 10 :
0 "M \H“ A

Graph Databases: Neo4j UMA um@
Traversal Framework

Yuliia Prokop
prokoyul@fel.cvut.cz

i No

Based on the Martin Svoboda’s presentation
(martin.svoboda@matfyz.cuni.cz)

Czech Technical University in Prague, Faculty of Electrical Engineering


https://cw.fel.cvut.cz/b231/courses/b4m36ds2/
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

Graph databases
e Introduction
Neodj
e Data model: property graphs

¢ Traversal framework
e Cypher query language
= Read, write, and general clauses




Graphs: Basics

Vertices = Nodes
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Ceské Budéjovice




Kinds of Graphs
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Kinds of Graphs

g Unweighted
graph
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Weighted graph
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Hradec Budgjovice

Ostrava

*Weight typically shows the cost of traversing
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Budejovice *Example: weights are distances between cities




Kinds of Graphs
Multigraph Hypergraph




Use case: Social Network

Follow




Graph Databases

Data model
e Property graphs
= Directed / undirected graphs, i.e. collections of ...

— nodes (vertices) for real-world entities, and
— relationships (directed edges) among these nodes

= Both the nodes and relationships can be associated with
additional properties

Types of databases
¢ Non-transactional = small number of large graphs

¢ Transactional = large number of small graphs




Graph Databases

Query patterns
» Create, update or remove a node / relationship in a graph

Graph algorithms (shortest paths, spanning trees, ...)

General graph traversals

Sub-graph queries or super-graph queries
Similarity based queries (approximate matching)




Neo4j Graph Database

@ neoy]



Neodj

Graph database

https://neodj.com/
Features
= Open source, massive scalability (billions of nodes), high
availability, fault-tolerant, master-slave (primary-secondary)
replication, ACID transactions, embeddable, ...
= Expressive graph query language (Cypher),
traversal framework

Developed by Neo Technology (Neo4j, Inc.)
Implemented in Java

Operating systems: cross-platform

Initial release in 2007
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Data Model

Database system structure

| Instance — single graph |

Property graph = directed labeled multigraph
* Collection of vertices (nodes) and edges (relationships)
Graph node
* Has a unique (internal) identifier
* Can be associated with a set of labels
= Allow us to categorize nodes
* Can also be associated with a set of properties
= Allow us to store additional data together with nodes

In Neo4j Enterprise Edition, one instance can contain 100 (default) graphs




Use case: Social Network

Follow




Data Model

Graph relationship

* Has a unique (internal) identifier

* Has a direction
= Relationships are equally well traversed in either direction!
= Directions can even be ignored when querying at all

Always has a start and end node
= Can be recursive (i.e. loops are allowed as well)

Is associated with exactly one type

Can also be associated with a set of properties




Data Model

Node and relationship property
e Key-value pair
= Key is a string
= Value is an atomic value of any primitive data type,
or an array of atomic values of one primitive data type

Primitive data types
* boolean — boolean values true and false
* byte, short, int, long — integers (1B, 2B, 4B, 8B)
* float, double - floating-point numbers (4B, 8B)
¢ char — one Unicode character

* String - sequence of Unicode characters
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Sample Data

Sample graph with movies and actors

(MIMOVIE { id: "vratnelahve", title: "Vratné lahve", year: 2006 })
(M2MOVIE{ id: "samotari", title: "Samotafi", year: 2000 })
(M3MOVIE{ id: "medvidek", title: "Medvidek", year: 2007 })
(M4&MOVIE { id: "stesti", title: "Stésti", year: 2005 })

(@l:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 })

(@2:ACTOR { id: "machacek", name: "Jifi Machacek", year: 1966 })
(@3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 })
(@4:ACTOR { id: "sverak", name: "Zdenék Svérak", year: 1936 })

(m1)-[c1:PLAY { role: "Robert Landa" }]->(a2)
(m1)-[c2:PLAY { role: "Josef Tkaloun" }]->(a4)
(m2)-[c3:PLAY { role: "Ondfej" }]->(al)

(m2)-[c4:PLAY { role: "Jakub" }]->(a2)

(m2)-[c5:PLAY { role: "Hanka" }]->(a3)

(m3)-[c6:PLAY { role: "Ivan" }]->(al)

(m3)-[c7:PLAY { role: "Jirka", award: "Czech Lion" }]->(a2)




Sample Data

Variable Label Map of properties Node is in round parenthesis

B AW .

(MI:MOVIE { id: "vratnelahve", title: "Vratné lahve", year: 2006 }),
(M2MOVIE{ id: "samotari", title: "Samotari", year: 2000 }),
(M3MOVIE{ id: "medvidek", title: "Medvidek", year: 2007 }),
(m4&MOVIE { id: "stesti", title: "Stésti", year: 2005 }), Nodes

(@l:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 }),

(@2:ACTOR { id: "machacek", name: "Jifi Machacek", year: 1966 }),
(@3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 }),
(@4:ACTOR { id: "sverak", name: "Zdenék Svérak", year: 1936 }),

(m1)-[c1:PLAY { role: "Robert Landa" }]->(a2),
(m1)-[c2:PLAY { role: "Josef Tkaloun" }]->(a4),
m2)-[c3:PLAY { role: "Ondrej" }]->(al), . .
EmZ;-[CAL:PLAY { role: "Jakub" }]->(a(12),) Relationships
(m2)-[c5:PLAY { role: "Hanka" }]->(a3),
(m3)-[c6:PLAY { role: "Ivan" }]->(al),
(mw%PLAY { role: "Jirka", award: "Czech Lion" }]->(a%L

Starting node Ending node




Sample Data

Vratné lahve Ivan Trojan
Samotafi Jifi Machacek
Medvidek Jitka Schneiderova

Stésti Zdené&k Svérak




Neodj Interfaces

Database architecture

e Client-server

e Embedded database

= Directly integrated within your application

Neodj drivers

e Official: Java, .NET, JavaScript, Python, Go

e Community: C, C++, PHP, Ruby, Perl, R, ...
cypher-shell

¢ Interactive command-line tool
Query patterns

e Cypher —declarative graph query language

¢ Traversal framework




Traversal Framework



Traversal Framework

Traversal framework
e Allows us to express and execute graph traversal queries
e Based on callbacks, executed lazily
Traversal description
* Defines rules and other characteristics of a traversal
Traverser

 |nitiates and manages a particular graph traversal
according to...

= the provided traversal description, and
= graph node / set of nodes where the traversal starts

e Allows for the iteration over the matching paths, one by one
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Traversal Framework: Example

Find actors who played in Medvidek movie

TraversalDescription td = db.traversalDescription()
.breadthFirst()
.relationships(Types.PLAY, Direction.OUTGOING)
.evaluator(Evaluators.atDepth(1));

Node s = db.findNode(Label.label("MOVIE"), "id", "medvidek");
Traverser t = td.traverse(s);

for (Path p: t) {
Noden = p.endNode();
System.out.println(
n.getProperty("name")

7

}

Ivan Trojan
Jiti Machacek




Traversal Description

Components of a traversal description
e Order
= Which graph traversal algorithm should be used
e Expanders
= What relationships should be considered
¢ Uniqueness
= Whether nodes / relationships can be visited repeatedly
e Evaluators

= When the traversal should be terminated
= What should be included in the query result




Traversal Description: Order

Order
Which graph traversal algorithm should be used?

o Standard depth-first or breadth-first methods can be selected
or

specific branch ordering policies can also be implemented

e Usage:
td.breadthFirst()
td.depthFirst()




breadthFirst()

0 current X
O discovered y
@ node done

Undiscovered edge

\ Discovered edge

bfs(x):
make a new queue called q
mark x visited
push x onto q

while q not empty:
pop q into x
for each y in X connections
if y not visited:
mark y visited
push y onto q

https://youtu.be/x-VTfcmrLEQ?list=PLtbC50fOR8aqNIKkYIrLVyOwLjSiJHwjCz
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depthFirst()

https://www.youtube.com/watch?v=NUgMa5coCoE
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current x
discovered y

node done
Undiscovered edge

Discovered edge

1 x = start vertex(1)
2 dfs(x)

3

4 def dfs(x):

5 mark x as visited

6  for eachyin x connections:
7 if y not visited then

8 afs(y)




Traversal Description: Expanders

Path expanders

Being at a given node...
what relationships should next be followed?

* Expander specifies one allowed...
= relationship type and direction
— Direction.INCOMING
— Direction.OUTGOING
— Direction.BOTH
* Multiple expanders can be specified at once
® When none is provided,
then all the relationships are permitted
e Usage:
td.relationships(type, direction)




Traversal Description: Uniqueness

Uniqueness
Can particular nodes / relationships be revisited?

e Various uniqueness levels are provided

= Uniqueness.NONE — no filter is applied
= Uniqueness.RELATIONSHIP_PATH
Uniqueness. NODE_PATH

— Nodes / relationships within a current path must be distinct

* Uniqueness. RELATIONSHIP_GLOBAL
Uniqueness. NODE_GLOBAL (default)

— No node / relationship may be visited more than once
e Usage:
td.uniqueness(level)




Traversal Description: Evaluators

Evaluators

Considering a particular path...
should this path be included in the result?
should the traversal further continue?

¢ Available evaluation actions
Evaluation.INCLUDE_AND_ CONTINUE
Evaluation.INCLUDE_AND_ PRUNE
Evaluation.EXCLUDE_AND CONTINUE
Evaluation.EXCLUDE_AND_ PRUNE
* Meaning of these actions
* INCLUDE / EXCLUDE = whether to include the path in the
* result
CONTINUE / PRUNE = whether to continue the traversal




Traversal Description: Evaluators

Predefined evaluators
e Evaluators.all()
= Never prunes, includes everything
e Evaluators.excludeStartPosition()
= Never prunes, includes everything except the starting nodes

e Evaluators.atDepth(depth)
Evaluators.toDepth(maxDepth)
Evaluators.fromDepth(minDepth)
Evaluators.includingDepths(minDepth, maxDepth)

= Includes only positions within the specified interval of depths




Traversal Description: Evaluators

Evaluators
e Usage:
td.evaluator( evaluator)
¢ Note that evaluators are applied even for the starting nodes!

* When multiple evaluators are provided...
= then they must all agree on both the questions
* When no evaluator is provided...
= then the traversal never prunes and includes everything




Traverser

Traverser
e Allows us to perform a particular graph traversal
= with respect to a given traversal description
= starting at a given node / nodes
e Usage: t=td.traverse(node, ...)
" for(Pathp:t){...}
— Iterates over all the paths
" for (Noden: t.nodes()) {...}
— Iterates over all the paths, returns their end nodes
" for (Relationship r: t.relationships()) {...}
— Iterates over all the paths, returns their last relationships

Path
* Well-formed sequence of interleaved nodes and relationships




Traversal Framework: Example

Find actors who played with Zdenék Svérdk

TraversalDescription td = db.traversalDescription()
.depthFirst()

.uniqueness(Uniqueness. NODE_GLOBAL)
.relationships(Types.PLAY)
.evaluator(Evaluators.atDepth(2))
.evaluator(Evaluators.excludeStartPosition());

Nodes = db.findNode(Label.label("ACTOR"), "id", "sverak");
Traverser t = td.traverse(s);

for (Noden: t.nodes()) {
System.out.println(
n.getProperty("name")

7

}
Jit{ Machadek ‘




Sample Data

Vratné lahve Ivan Trojan
Samotafi Jiti Machacek
Medvidek Jitka Schneiderova

Stésti Zdenék Svérak







Lecture Conclusion

Neodj = graph database

* Property graphs
¢ Traversal framework

= Path expanders, uniqueness, evaluators, traverser




