
1

Lecture 3

Basic Principles: CAP
theorem, Consistency
Yuliia Prokop
prokoyul@fel.cvut.cz

6. 10. 2025

Czech Technical University in Prague, Faculty of Electrical Engineering

Based on the presentation of Martin Svoboda
(martin.svoboda@matfyz.cuni.cz)

https://cw.fel.cvut.cz/b251/courses/b4m36ds2/start

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@matfyz.cuni.cz
https://cw.fel.cvut.cz/b251/courses/b4m36ds2/start

2

Lecture Outline
Different aspects of data distribution

• Scaling
Vertical vs. horizontal

• Distribution models
Sharding
Replication: master-slave vs. peer-to-peer architectures

• CAP properties
Consistency, availability and partition tolerance
ACID vs. BASE guarantees

• Consistency
Read and write quorums

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

3

Lecture 2 overview:
Horizontal vs. Vertical Scaling

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025
Source: https://ded9.com/what-is-horizontal-scaling

4

Lecture 2 overview: Sharding

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025
Source: https://nadermedhatthoughts.medium.com/understand-database-sharding-the-good-and-ugly-868aa1cbc94c

5

Replication

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

6

Replication in distributed systems

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

Replication refers to maintaining identical copies of data across
multiple servers.

The primary motivations include:

• Fault tolerance:

System resilience against individual node failures

• High availability:

Continued operation during partial system failures

• Performance optimization:

Reduced latency through geographic proximity

7

Replication in distributed systems

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

Source: https://www.scylladb.com/glossary/database-replication

8

Replication Lag

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

Source: hhttps://blog.bytebytego.com/p/a-guide-to-database-replication-key

9

Replication Lag

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

Source: https://tarunjain07.medium.com/cap-theorem-notes-68b04523cbce

10

Consensus Protocols
Consensus protocols ensure data consistency among replicas.
They are essential for making unified decisions about the system's
state, especially during failures and network partitions.

Main Protocols:

• Paxos
• Raft
• Viewstamped Replication
• Zookeeper’s Zab Protocol.

Role of Consensus Protocols:

• Ensuring data consistency across replicas.
• Leader or master election within the system.
• Coordinating data updates and managing node failures.

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

11

CAP Theorem

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

12

CAP Theorem
Assumptions

• Distributed system with sharding and replication
• Read and write operations on a single aggregate only

CAP properties
• Properties of a distributed system
• Consistency, Availability, and Partition tolerance CAP

theorem

In the presence of a network partition, a distributed system
can choose either consistency or availability, but not both.

But, what these properties actually mean?

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

13B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

Source: https://tarunjain07.medium.com/cap-theorem-notes-68b04523cbce

14

CAP Properties

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

Property Formal Definition Practical Meaning

Consistency Linearizability: Operations
appear to execute atomically

All reads return the
most recent write

Availability Every request receives a
response (success or failure)

The system always
responds, never
times out

Partition
Tolerance

System continues despite
message loss between nodes

Works even when
network splits occur

• Hardware failures are inevitable
• Network congestion causes effective partitions
• Slow networks trigger timeouts
• Geographic distribution increases partition probability

15

CAP Properties: Consistency Details

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

• Intuition: Each read/write on a key is atomic.

• Formal (linearizability): There is a single global order of
operations; each operation takes effect at an instantaneous
point between its call and completion – as if all ran sequentially
on one node.

• Consequence: After a successful write, any later read of the
same key returns the updated value (read-after-write).

• Replication requirement: If any replica can serve reads, a
write must be replicated to a sufficient set (e.g., a quorum)
before acknowledgment to preserve strong consistency.

• Weaker consistency models also exist.

16

CAP Properties
Availability

• If a node is working, it must respond to user requests
A bit more formally…
Every read or write request successfully received by a
non-failing node in the system must result in a response
(success or failure), not be silently dropped.
I.e., their execution must not be rejected

Partition tolerance
• The system continues to operate even when two or more

sets of nodes get isolated
A bit more formally…
The network is allowed to lose arbitrarily many messages sent
from one node to another

• I.e. a connection failure must not shut the whole system down
B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

17

CAP Theorem Proof
• Proof by contradiction

§ Assume all three properties can be satisfied simultaneously
§ Consider a network partition scenario

• Partition scenario setup
§ Network splits into two disjoint sets of nodes: G₁ and G₂
§ No communication possible between G₁ and G₂

• Write operation on G₁
§ Client writes to G₁, must be consistent across all replicas
§ G₂ cannot receive this update due to partition

• Read operation on G₂
§ If system is available, G₂ must respond to read requests
§ If system is consistent: G₂ must return the updated value

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

⚡ Contradiction: G₂ cannot have updated value (violates C) but must
respond (requires A)

C ∧ A ∧ P is impossible in distributed systems

18

CAP Theorem Consequences

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025
Source: https://www.linkedin.com/pulse/cap-theorem-optimizing-database-selection-enhanced-application-kar--ey86f

19

Consistency Spectrum

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

• Strong consistency models
§ Linearizability (strongest for a single operation/key)
§ Transactional models (Serializability / Snapshot Isolation)
§ Sequential consistency
§ Causal consistency

•Weak consistency models
§ Session consistency
§ Monotonic read/write consistency
§ Eventual consistency (weakest)

• Consistency vs. Performance trade-off
§ Stronger consistency → Higher latency
§ Weaker consistency → Better performance

• Application requirements determine choice
§ Banking: Strong consistency required
§ Social media: Eventual consistency acceptable
§ Collaborative editing: Causal consistency needed

20

CAP Theorem Consequences
If at most two properties can be guaranteed…

• CA = consistency + availability
Traditional ACID properties are easy to achieve
Examples: RDBMS
Any single-node system, but even clusters (at least in theory)

– However, should the network partition happen, all the nodes
must be forced to stop accepting user requests

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

CA: Consistency + Availability – only possible if no network
partitions occur

(e.g., traditional RDBMS under normal conditions)

21

CAP Theorem Consequences
If at most two properties can be guaranteed…

• CP = consistency + partition tolerance
Other examples: distributed locking

• AP = availability + partition tolerance
New concept of BASE properties
Examples: Apache Cassandra, Apache CouchDB.
Other examples: web caching, DNS

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

In real-world environments, network partitions can and do occur.
Distributed systems therefore should be designed to tolerate
partitions (P) and then choose between C and A during a
partition. Systems that sacrifice P effectively stop responding
when a partition occurs.

22

CAP Theorem Consequences

Design for partitions in clusters
• Why?

Because it is difficult to detect network failures
• Does this mean that only purely CP and AP systems are possible?

• No…
The real meaning of the CAP theorem:

• The real world does not need to be just black and white
• Partition tolerance is a must,

but we can trade off consistency versus availability
A relaxed consistency can bring a lot of availability.
Such trade-offs are not only possible,
but often work very well in practice

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

23

ACID Properties
Traditional ACID properties

• Atomicity
Partial execution of transactions is not allowed (all or nothing)

• Consistency
Transactions bring the database from one consistent (valid)
state to another

• Isolation
Transactions executed in parallel do not see uncommitted
effects of each other

• Durability
Effects of committed transactions must remain durable

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

24

BASE Properties
New concept of BASE properties

• Basically Available
The system works basically all the time
Partial failures can occur, but there are no total system failures

• Soft State
The system is in flux (unstable), non-deterministic state
Changes occur all the time

• Eventual Consistency
Sooner or later the system will be in some consistent state

BASE is just a vague term, no formal definition was provided
• Proposed to illustrate design philosophies at the opposite

ends of the consistency-availability spectrum

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

25

ACID and BASE
ACID

• Choose consistency over availability
• Pessimistic approach

• Implemented by traditional relational databases
BASE

• Choose availability over consistency
• Optimistic approach
• Common in NoSQL databases
• Allows levels of scalability that cannot be acquired with ACID

Historical move:
strong consistency → eventual consistency

Current trend in NoSQL:
eventual only → tunable/stronger consistency options

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

26

Consistency

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

27

Consistency
Consistency in general…

• Consistency is the lack of contradiction in the database
• However, it has many facets…

For example, we only assume atomic operations that constantly
manipulate a single aggregate.
But set operations could also be considered, etc.

Strong consistency is achievable in clusters with appropriate
replication/consensus (e.g., quorum/majority, consensus
protocols), but eventual consistency might often be sufficient.

• A one-minute-old article on a news portal does not matter
• Even when an already unavailable hotel room is booked once
again, the situation can still be figured out in the real world
• …

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

28

Consistency vs. Latency Trade-offs

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

• Strong consistency costs
§ Synchronous replication to a quorum/majority of nodes
§ Latency ≈ latency to the slowest node in the quorum
§ Example: 3 nodes, majority = 2, 100 ms max → ~100 ms latency

• Weak consistency benefits
§ Asynchronous replication
§ Latency = latency to a single node
§ Example: 3 nodes, 10ms local → 10ms total latency

• Real-world measurements
§ MongoDB: 5ms local read, 50ms strongly consistent read
§ Cassandra: 2ms eventual read, 20ms quorum read

• Tunable consistency (modern approach)
§ Applications can choose per-operation
§ Critical operations: strong consistency
§ Non-critical operations: eventual consistency

29

Consistency

Write consistency (update consistency)
• Problem: write-write conflict

Two or more write requests on the same aggregate are
initiated concurrently

• Context: peer-to-peer architecture only
• Issue: lost update
• Solution:

Pessimistic strategies
– Preventing conflicts from occurring
– Write locks, …

Optimistic strategies
– Conflicts may occur, but are detected and resolved later on
– Version stamps, vector clocks, …

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

30

Consistency
Read consistency (replication consistency)

• Problem: read-write conflict
Write and read requests on the same aggregate are initiated
concurrently

• Context: both master-slave and peer-to-peer architectures
• Issue: inconsistent read
• When not treated, inconsistency window will exist

Propagation of changes to all the replicas takes some time
Until this process is finished, inconsistent reads may happen
Even the initiator of the write request may read wrong data!

– Session consistency / read-your-writes / sticky session

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

31

Strong Consistency
How many nodes need to be involved to get strong consistency?

General rule: R + W > N (read and write quorums must intersect)
• Write quorum: W > N/ 2

Idea: a majority write ensures only one write can succeed at a time
W =number of nodessuccessfully acknowledged the write
N =number of nodes involved in replication (replication factor)

• Readquorum: choose R such that R + W > N (e.g., R > N − W)
Idea: intersecting quorums ensure reads see the latest committed write

R = number of nodes participating in the read

If the retrieved replicas return different versions, resolve to the
latest committed version (e.g., via version/timestamp) and then
return it.

When a quorum is not attained → the request cannot be handled
B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

32

Strong Consistency
Examples

Examples for replication factorN = 3
• Write quorumW = 3 and read quorum R = 1

All the replicas are always updated
⇒we can read any one of them

• Write quorumW = 2 and read quorum R = 2
Typical configuration, reasonable trade-off

Consequence
• Quora can be configured to balance read and write workload

The higher the write quorum is required,
the lower the read quorum can then be required

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

33

Bank:
Different Tasks = Different Decisions

Prefer CP semantics

• Account Balance
• Money Transfers
• Loan Approvals
• Transaction Processing
• Credit Limits

Prefer AP semantics

• Transaction History
• Product

Recommendations
• Market News
• Branch Locator
• Customer Chat

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

34

E-commerce System
Online Store: Customer Journey

Product
Browsing

AP
Discovery

over accuracy

Shopping
Cart

Mixed
Session

consistency

Inventory
Check

CP
Prevent

overselling

Payment
Processing

CP
Financial
accuracy

Order
Confirm

CP
Customer

trust

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

35

University: Academic vs Administrative

Academic Functions (CP)

• Student Grades
• Course Registration
• Tuition Payments
• Financial Aid
• Transcripts

Campus Services (AP)
• Library Search
• Campus Events
• Dining Menus
• Student

Organizations
• News & Updates

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

36

University:
Critical Example – Course Registration

Problem: Popular Course with Limited Seats

'Machine Learning 101' - 30 seats, 200 students at 8 AM →
Need fair, accurate registration

Solution: CP (Consistency Required): the system may sacrifice
availability to avoid overbooking.

Trade-off: System slower during peak times, but zero overbooking

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

37

Universal Patterns Across Industries

Function type predicts CP/AP choice across all industries

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

Function Type Bank E-commerce University Pattern

Money/Financial CP CP CP Usually CP

User Identity CP Mixed CP Usually CP

Limited Resources — CP CP Usually CP

Content/Search AP AP AP Usually AP

History/Logs AP AP AP Usually AP

Recommendations AP AP AP Usually AP

38

How to Decide: CP or AP?

1 Identify Function Type

Financial? → Usually CP
Content? → Usually AP
Registration? → Usually CP

2 Analyze Error Impact

Money lost? → CP required
User frustration? → AP better
Legal issue? → CP required

3 User Expectations
Instant response? → AP
Accuracy critical? → CP
Both needed? → Hybrid

4 Design Implementation
CP: Transactions, locks
AP: Caches, replicas
Mixed: Different DBs

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

39

Lecture Conclusion
There is a wide range of options influencing…

• Availability – when nodes may refuse to handle user requests?
• Consistency – what level of consistency is required?
• Latency – how long does it take to handle user requests?
• Durability – is the committed data written reliably?
• Resilience – can the data be recovered in case of failures?

⇒ it’s good to know these properties and choose the right trade-off

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025

