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Lecture Outline
Different aspects of data distribution

• Scaling
Vertical vs. horizontal

• Distribution models
Sharding
Replication: master-slave vs. peer-to-peer architectures

• CAP properties
Consistency, availability and partition tolerance 
ACID vs. BASE guarantees

• Consistency
Read and write quorums
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Lecture 2 overview:
Horizontal vs. Vertical Scaling

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
Source: https://ded9.com/what-is-horizontal-scaling
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Lecture 2 overview: Sharding

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
Source: https://nadermedhatthoughts.medium.com/understand-database-sharding-the-good-and-ugly-868aa1cbc94c
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Replication
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Replication in distributed systems
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Replication refers to maintaining identical copies of data across 
multiple servers. 

The primary motivations include:

• Fault tolerance: 

System resilience against individual node failures

• High availability: 

Continued operation during partial system failures

• Performance optimization: 

Reduced latency through geographic proximity
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Replication in distributed systems
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Source: https://www.scylladb.com/glossary/database-replication
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Replication Lag
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Source: hhttps://blog.bytebytego.com/p/a-guide-to-database-replication-key
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Replication Lag
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Source: https://tarunjain07.medium.com/cap-theorem-notes-68b04523cbce
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Consensus Protocols
Consensus protocols ensure data consistency among replicas. 
They are essential for making unified decisions about the system's 
state, especially during failures and network partitions.

Main Protocols:

• Paxos
• Raft
• Viewstamped Replication
• Zookeeper’s Zab Protocol.

Role of Consensus Protocols:

• Ensuring data consistency across replicas.
• Leader or master election within the system.
• Coordinating data updates and managing node failures.
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CAP Theorem
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CAP Theorem
Assumptions

• Distributed system with sharding and replication
• Read and write operations on a single aggregate only

CAP properties
• Properties of a distributed system
• Consistency, Availability, and Partition tolerance CAP 

theorem

In the presence of a network partition, a distributed system 
can choose either consistency or availability, but not both.

But, what these properties actually mean?
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Source: https://tarunjain07.medium.com/cap-theorem-notes-68b04523cbce
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CAP Properties
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Property Formal Definition Practical Meaning

Consistency Linearizability: Operations 
appear to execute atomically

All reads return the 
most recent write

Availability Every request receives a 
response (success or failure)

The system always 
responds, never 
times out

Partition 
Tolerance

System continues despite 
message loss between nodes

Works even when 
network splits occur

• Hardware failures are inevitable
• Network congestion causes effective partitions
• Slow networks trigger timeouts
• Geographic distribution increases partition probability
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CAP Properties: Consistency Details
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• Intuition: Each read/write on a key is atomic.

• Formal (linearizability): There is a single global order of 
operations; each operation takes effect at an instantaneous 
point between its call and completion – as if all ran sequentially 
on one node.

• Consequence: After a successful write, any later read of the 
same key returns the updated value (read-after-write).

• Replication requirement: If any replica can serve reads, a 
write must be replicated to a sufficient set (e.g., a quorum) 
before acknowledgment to preserve strong consistency.

• Weaker consistency models also exist.
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CAP Properties
Availability

• If a node is working, it must respond to user requests
A bit more formally…
Every read or write request successfully received by a 
non-failing node in the system must result in a response
(success or failure), not be silently dropped.
I.e., their execution must not be rejected

Partition tolerance
• The system continues to operate even when two or more

sets of nodes get isolated
A bit more formally…
The network is allowed to lose arbitrarily many messages sent 
from one node to another

• I.e. a connection failure must not shut the whole system down
B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
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CAP Theorem Proof
• Proof by contradiction 

§ Assume all three properties can be satisfied simultaneously
§ Consider a network partition scenario

• Partition scenario setup 
§ Network splits into two disjoint sets of nodes: G₁ and G₂
§ No communication possible between G₁ and G₂

• Write operation on G₁ 
§ Client writes to G₁, must be consistent across all replicas
§ G₂ cannot receive this update due to partition

• Read operation on G₂ 
§ If system is available, G₂ must respond to read requests
§ If system is consistent: G₂ must return the updated value

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 

⚡ Contradiction: G₂ cannot have updated value (violates C) but must 
respond (requires A)

C ∧ A ∧ P is impossible in distributed systems
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CAP Theorem Consequences

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
Source: https://www.linkedin.com/pulse/cap-theorem-optimizing-database-selection-enhanced-application-kar--ey86f
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Consistency Spectrum

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 

• Strong consistency models 
§ Linearizability (strongest for a single operation/key)
§ Transactional models (Serializability / Snapshot Isolation)
§ Sequential consistency
§ Causal consistency

•Weak consistency models 
§ Session consistency
§ Monotonic read/write consistency
§ Eventual consistency (weakest)

• Consistency vs. Performance trade-off 
§ Stronger consistency → Higher latency
§ Weaker consistency → Better performance

• Application requirements determine choice 
§ Banking: Strong consistency required
§ Social media: Eventual consistency acceptable
§ Collaborative editing: Causal consistency needed
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CAP Theorem Consequences
If at most two properties can be guaranteed…

• CA = consistency + availability
Traditional ACID properties are easy to achieve 
Examples: RDBMS
Any single-node system, but even clusters (at least in theory)

– However, should the network partition happen, all the nodes 
must be forced to stop accepting user requests

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 

CA: Consistency + Availability – only possible if no network 
partitions occur 

(e.g., traditional RDBMS under normal conditions)
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CAP Theorem Consequences
If at most two properties can be guaranteed…

• CP = consistency + partition tolerance
Other examples: distributed locking

• AP = availability + partition tolerance
New concept of BASE properties
Examples: Apache Cassandra, Apache CouchDB.
Other examples: web caching, DNS

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 

In real-world environments, network partitions can and do occur. 
Distributed systems therefore should be designed to tolerate 
partitions (P) and then choose between C and A during a 
partition. Systems that sacrifice P effectively stop responding 
when a partition occurs.
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CAP Theorem Consequences

Design for partitions in clusters
• Why?

Because it is difficult to detect network failures
• Does this mean that only purely CP and AP systems are possible?

• No…
The real meaning of the CAP theorem:

• The real world does not need to be just black and white
• Partition tolerance is a must,

but we can trade off consistency versus availability
A relaxed consistency can bring a lot of availability.
Such trade-offs are not only possible,
but often work very well in practice
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ACID Properties
Traditional ACID properties

• Atomicity
Partial execution of transactions is not allowed (all or nothing)

• Consistency
Transactions bring the database from one consistent (valid) 
state to another

• Isolation
Transactions executed in parallel do not see uncommitted 
effects of each other

• Durability
Effects of committed transactions must remain durable

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
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BASE Properties
New concept of BASE properties

• Basically Available
The system works basically all the time
Partial failures can occur, but there are no total system failures

• Soft State
The system is in flux (unstable), non-deterministic state 
Changes occur all the time

• Eventual Consistency
Sooner or later the system will be in some consistent state

BASE is just a vague term, no formal definition was provided
• Proposed to illustrate design philosophies at the opposite 

ends of the consistency-availability spectrum

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
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ACID and BASE
ACID

• Choose consistency over availability
• Pessimistic approach

• Implemented by traditional relational databases 
BASE

• Choose availability over consistency
• Optimistic approach
• Common in NoSQL databases
• Allows levels of scalability that cannot be acquired with ACID

Historical move: 
strong consistency → eventual consistency 

Current trend in NoSQL:
eventual only → tunable/stronger consistency options
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Consistency

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
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Consistency
Consistency in general…

• Consistency is the lack of contradiction in the database
• However, it has many facets…

For example, we only assume atomic operations that constantly 
manipulate a single aggregate.
But set operations could also be considered, etc.

Strong consistency is achievable in clusters with appropriate 
replication/consensus (e.g., quorum/majority, consensus 
protocols), but eventual consistency might often be sufficient.

• A one-minute-old article on a news portal does not matter
• Even when an already unavailable hotel room is booked once 
again, the situation can still be figured out in the real world
• …

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
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Consistency vs. Latency Trade-offs

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 

• Strong consistency costs 
§ Synchronous replication to a quorum/majority of nodes
§ Latency ≈ latency to the slowest node in the quorum
§ Example: 3 nodes, majority = 2, 100 ms max → ~100 ms latency

• Weak consistency benefits 
§ Asynchronous replication 
§ Latency = latency to a single node 
§ Example: 3 nodes, 10ms local → 10ms total latency 

• Real-world measurements 
§ MongoDB: 5ms local read, 50ms strongly consistent read 
§ Cassandra: 2ms eventual read, 20ms quorum read  

• Tunable consistency (modern approach) 
§ Applications can choose per-operation 
§ Critical operations: strong consistency 
§ Non-critical operations: eventual consistency
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Consistency

Write consistency (update consistency)
• Problem: write-write conflict

Two or more write requests on the same aggregate are 
initiated concurrently

• Context: peer-to-peer architecture only
• Issue: lost update
• Solution:

Pessimistic strategies
– Preventing conflicts from occurring
– Write locks, …

Optimistic strategies
– Conflicts may occur, but are detected and resolved later on
– Version stamps, vector clocks, …

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 



30

Consistency
Read consistency (replication consistency)

• Problem: read-write conflict
Write and read requests on the same aggregate are initiated 
concurrently

• Context: both master-slave and peer-to-peer architectures
• Issue: inconsistent read
• When not treated, inconsistency window will exist

Propagation of changes to all the replicas takes some time
Until this process is finished, inconsistent reads may happen
Even the initiator of the write request may read wrong data!

– Session consistency / read-your-writes / sticky session

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
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Strong Consistency
How many nodes need to be involved to get strong consistency?

General rule: R + W > N (read and write quorums must intersect)
• Write quorum: W > N/ 2

Idea: a majority write ensures only one write can succeed at a time
W =number of nodessuccessfully acknowledged the write
N =number of nodes involved in replication (replication factor)

• Readquorum: choose R such that R + W > N (e.g., R > N − W)
Idea: intersecting quorums ensure reads see the latest committed write

R = number of nodes participating in the read 

If the retrieved replicas return different versions, resolve to the 
latest committed version (e.g., via version/timestamp) and then 
return it.

When a quorum is not attained → the request cannot be handled
B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
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Strong Consistency
Examples

Examples for replication factorN = 3
• Write quorumW = 3 and read quorum R = 1

All the replicas are always updated
⇒we can read any one of them

• Write quorumW = 2 and read quorum R = 2
Typical configuration, reasonable trade-off

Consequence
• Quora can be configured to balance read and write workload

The higher the write quorum is required,
the lower the read quorum can then be required
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Bank: 
Different Tasks = Different Decisions

Prefer CP semantics

• Account Balance
• Money Transfers
• Loan Approvals
• Transaction Processing
• Credit Limits

Prefer AP semantics

• Transaction History
• Product 

Recommendations
• Market News
• Branch Locator
• Customer Chat

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 
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E-commerce System
Online Store: Customer Journey

Product
Browsing

AP
Discovery

over accuracy

Shopping
Cart

Mixed
Session

consistency

Inventory
Check

CP
Prevent

overselling

Payment
Processing

CP
Financial
accuracy

Order
Confirm

CP
Customer

trust
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University: Academic vs Administrative

Academic Functions (CP)

• Student Grades
• Course Registration
• Tuition Payments
• Financial Aid
• Transcripts

Campus Services (AP)
• Library Search
• Campus Events
• Dining Menus
• Student 

Organizations
• News & Updates
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University: 
Critical Example – Course Registration

Problem: Popular Course with Limited Seats

'Machine Learning 101' - 30 seats, 200 students at 8 AM → 
Need fair, accurate registration

Solution: CP (Consistency Required): the system may sacrifice 
availability to avoid overbooking.

Trade-off: System slower during peak times, but zero overbooking
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Universal Patterns Across Industries

Function type predicts CP/AP choice across all industries

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 3: Basic Principles | 6. 10. 2025 

Function Type Bank E-commerce University Pattern

Money/Financial CP CP CP Usually CP

User Identity CP Mixed CP Usually CP

Limited Resources — CP CP Usually CP

Content/Search AP AP AP Usually AP

History/Logs AP AP AP Usually AP

Recommendations AP AP AP Usually AP
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How to Decide: CP or AP?

1 Identify Function Type

Financial? → Usually CP
Content? → Usually AP
Registration? → Usually CP

2 Analyze Error Impact

Money lost? → CP required
User frustration? → AP better
Legal issue? → CP required

3 User Expectations
Instant response? → AP
Accuracy critical? → CP
Both needed? → Hybrid

4 Design Implementation
CP: Transactions, locks
AP: Caches, replicas
Mixed: Different DBs
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Lecture Conclusion
There is a wide range of options influencing…

• Availability – when nodes may refuse to handle user requests?
• Consistency – what level of consistency is required?
• Latency – how long does it take to handle user requests?
• Durability – is the committed data written reliably?
• Resilience – can the data be recovered in case of failures?

⇒ it’s good to know these properties and choose the right trade-off
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