Lecture 2 { IEJKB‘G” ";”?v
Basic Principles: Scaling, : DMAW&GP
Sharding & Replication "

—':r

Yuliia Prokop

prokoyul@fel.cvut.cz N O

29.9. 2025

Based on the presentation of Martin Svoboda
(martin.svoboda@matfyz.cuni.cz)

Czech Technical University in Prague, Faculty of Electrical Engineering

mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

Different aspects of data distribution
* Scaling
= Vertical vs. horizontal
e Distribution models

= Sharding
= Replication: master-slave vs. peer-to-peer architectures

e CAP properties
= Consistency, availability and partition tolerance
= ACID vs. BASE guarantees

e Consistency
= Read and write quora

Scalability

Scalability

What is scalability?

* = capability of a system to handle growing amounts of data
and/or queries without losing performance, or its potential
to be enlarged in order to accommodate such a growth

Two general approaches

e \ertical scaling

e Horizontal scaling

Vertical Scalability

Vertical scaling (scaling up/down)
* = adding resources to a single node in a system
= E.g. increasing the number of CPUs, extending system memory,

using larger disk arrays, ...
= |l.e. larger and more powerful machines are involved

¢ Traditional choice

= In favor of strong consistency
= Easy to implement and deploy + Memory
= Noissues caused by data distribution , ~pyy

"o + Disk Space v

Works well in many cases but ...

$$$$9$

Vertical Scaling '
(Scale-Up)

Vertical Scalability: Drawbacks

Performance limits
* Even the most powerful machine has a limit

* Moreover, everything works well...
at least until we start approaching such limits

Higher costs
e The cost of expansion increases exponentially

= In particular, it is higher than the sum of costs of equivalent
commodity hardware

Proactive provisioning
* New projects / applications might evolve rapidly
* Upfront budget is needed when deploying new machines
e And so flexibility is seriously suppressed

B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

Vertical Scalability: Drawbacks

Vendor lock-in

* There are only a few manufacturers of large machines
e Customer is made dependent on a single vendor
= Their products, services, but also implementation details,
proprietary formats, interfaces, support, ...
e l.e. itis difficult or impossible to switch to another vendor
Deployment downtime

e |nevitable downtime is often required when scaling up

Horizontal Scalability

Horizontal scaling (scaling out/in)
* = adding more nodes to a system
= |l.e. system is distributed across multiple nodes in a cluster
e Choice of many NoSQL systems
Advantages

* Commodity hardware, cost effective

Flexible deployment and maintenance s

$ $
e ...
-—r’ .y’

Hardware

Often surpasses the vertical scaling

Often no single point of failure

° “ee
Horizontal Scaling
- (Scale-Out)
~_
'

Horizontal Scalability: statistics

Apple Corporation uses Cassandra (October, 2022):
* thousands of clusters

* about 300,000 nodes

* about 100 Petabytes of data

Horizontal Scalability: Consequences

Significantly increases complexity
* Complexity of management, programming model, ...
Introduces new issues and problems

 Data distribution

e Synchronization of nodes

¢ Data consistency

* Recovery from failures

And there are also plenty of false assumptions ...

Horizontal Scalability: Fallacies

False assumptions
* Network is reliable
e Latency is zero
e Bandwidth is infinite
e Network is secure
¢ Topology does not change
e There is one administrator
e Network is homogeneous
» Transport cost is zero

Source: https://blogs.oracle.com/jag/resource/Fallacies.html

Horizontal Scalability: Conclusion

= a standalone node still might be a better option in certain cases

* E.g. for graph databases
= Simply because it is difficult to split and distribute graphs
e |n other words

= |t can make sense to run even a NoSQL database system
on a single node
= No distribution at all is the most preferred / simple scenario

But in general, horizontal scaling really opens new possibilities

Horizontal Scalability: Architecture

What is a cluster?

* = a collection of mutually interconnected commodity nodes
* Based on the shared-nothing architecture
Nodes do not share their CPUs, memory, or hard drives,
... Each node runs its operating system instance
Nodes send messages to interact with each other
* Nodes of a cluster can be heterogeneous
» Data, queries, calculations, requests, workload, ...
this is all distributed among the nodes within a cluster

[I !
Cluster 1 Cluster 2 Cluster 3
Cluster
- 000 o0l oog
o .
Nodes Nodes Nodes Nodes

https://www.geopits.com/blog/mongodb-replication-and-sharding.html
B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025 12

Distribution Models

Distribution Models

Generic techniques of data distribution

e Sharding

= |dea: different data on different nodes
= Motivation: increasing volume of data, increasing performance

¢ Replication
= |dea: the same data on different nodes
= Motivation: increasing performance, increasing fault tolerance

Both the techniques are mutually orthogonal

¢ |.e. we can use either of them, or combine them both
Distribution model
* = specific way how sharding and replication is implemented

NoSQL systems often offer automatic sharding and replication

B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

14

Sharding

CPU: 16 L]

CPU: 16 L]

Memory: 64 GB []

Memory: 64 GB [J

Storage: 2 TB Storage: 2 TB

|7 | | ace | [Alaska | |1 | | Faith | | california |
| 8 | | Devon | | Texas | | 2 | | Max | | Arizona |
I 9 I | Joyce I I California I | 3 I I Pablo I | Georgia I
| 10 | | sian | | california | | 4 | | pora | | california |
I 1" I I Maia I I Nevada I I 5 II Philippa I I Texas I
I 12 I | Amna I I Minnesota I | 6 I I Finnian I | Alaska I

B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025 15

Sharding

Sharding (horizontal partitioning)

* Placement of different data on different nodes
= What different data means? Usually aggregates
— E.g. key-value pairs, documents, ...

= Related pieces of data that are accessed together
should also be kept together

— Specifically, operations involving data on multiple
shards should be avoided (if possible)

The questions are...
* how to design aggregate structures?
e how to actually distribute these aggregates?

B4AM36DS2, BE4AM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

i

Sharding vs Partitioning

Sharded Data

Database Instance Sharded Database

Partition 1

Last Name FBV:rife Database Instance 1 Database Instance 2
Fool

Bob Smith Bacon Shard 2

Richard Jones Shrimp Last Name | Favorite Last Name | Favorite
Food Food

Milton Pizza .
S CEEW Sara Simon Brocolli

Partition 2 Richard Jones Shrimp Aldene Harris Barbeque

- N Lori Milton Pizza
Sara Simon Brocolli

5 Aldene Harris Barbeque

Notice in the partitioned architecture the data is divided into chunks, but the chunks live on a single database instance
(node). In the sharded data example, each shard lives on a separate database instance (node).

https://www.pingcap.com/blog/database-sharding-defined/

Sharding

Source: Sadalage, Pramod J. - Fowler, Martin: NoSQL Distilled. Pearson Education, Inc., 2013.

Jonas | Prague

(1| _name |
2 [Wana |

Sharding

Objectives
* Achieve uniform data distribution
* Achieve balanced workload (read and write requests)
e Respect physical locations
= E.g. different data centers for users around the world
* ...
Unfortunately, these objectives...
* may mutually contradict each other
* may change in time

So, how to actually determine shards for aggregates?

B4AM36DS2, BE4AM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025 17

Sharding

Sharding strategies

random fashion

= Knowledge of the

aggregates to

| Data

1 | Datal

A # | Data / 4 | Datad

e Based on mapping structures 1 | Datal 7 | Data7
n . . 2 | Data2 10 | Datal0
Data is placed on shards in a T outes 3 Tooets
4 | Data4d 16 | Datal6

. 5 | Data5

— E.g. round-robin, ... 6 Datac % | Dot
7 | Data7 2 | Data2

. . . . 8 | Data8 5 | Data5
mapping of individual o | Datad 8 | Datag
10 | Datal0 11 | Datall
. 11 | Datall 14 | Datal4
particular shards must T 22
then be maintained 13 |Data13 # | Data
— Thus usually maintained using |22t 3 | Data3
. y . g 15 | Datal5 6 | Data6b

a centralized index structures [16]|patal6 9 | Data9
with all the disadvantages 12 | Datal2
15 | Datal5

B4AM36DS2, BE4AM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

18

Sharding

Sharding strategies

e Based on general rules

Each shard is responsible for storing certain data
Hash sharding

Jonas | Prague

(3 [rstan | Plen |

Sharding

Sharding strategies

e Based on general rules
. Each shard is responsible for storing specific data
Range-based sharding

Shard 1: 1-6

Original data 1 Faith California
1 Faith California 2 Max Arizona
2 Max Arizona | 3 | [Pablo] I Georgia I
I 3 I I Pablo I I Georgia] | 4 | [Dora] I California |
I 4 | | Dora I I California] | 5 | I Philippa] I Texas I
I 5 I I Philppa I I Texas] | 6 | | Finnian I | Alaska |
6 Finnian Alaska
7 Kade Alaska Shard 2: 7-12
8 Devon Texas | 7 | [Kade] I ‘Alaska I
9 Joyce California | s | [Devon] I Texas |
I 10 I | Sian I I California] | 9 | Joyce I California
I i I | Maia I I Nevada] 10 Sian California
[12 |[Amna_][Minnesota | = Viala Novada
12 Amna Minnesota

B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

18

Shardi

ng

Hotspot
Shard 1 Shard 2

id [name city || id [name city

2 Hana Brno || 1 Jonas Prague

3 [Kristian Plzen || 4 | Ahmed | Prague

5 Tomas Brno

6 Ella Brno

7 Matej Plzen = Shard 3 =

8 Lenka Brno “ id name city "
|| 9 Jakub | Ostrava ||

B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

16

Sharding

Sharding strategies based on general rules:

* Directory-based sharding:

= In an e-commerce system, a central directory server stores
information about which shard contains each user's data. When
requesting data, the system first consults the directory to
determine the appropriate shard.

[Z][jacket][red] S Lookup Table
Shard A Shard B (e JC 8)
() [e)

@ [hat] [blue]

Sharding

Sharding strategies based on general rules:

* Hash sharding : downsides

= How to add server D and redistribute data between nodes?
Node A (1-250), node B (251-500), node C (501-750), and
node D (751-1000).

A lot of the 1000 data items now need to be shifted to make

room for Node D

Node A Node B Node C

—_—
—_—
e _ Gl

blog.devtrovert.co m

Source: https://blog.devtrovert.com/p/what-is-consistent-hashing-the-backbone

Sharding

Sharding strategies based on general rules:

e Consistent hash sharding :

= Adistributed cache system uses a hash ring. Only a portion of the
data is redistributed when adding or removing a node, minimizing
data movement between shards.

AN

Consistent Hashing \

Node A

Node A == NodeB
—~

Node D

blog.devtrovert.com
Source: https://blog.devtrovert.com/p/what-is-consistent-hashing-the-backbone

[[] blog.devtrovert.com

Sharding

Sharding strategies based on general rules:

* Entity/relationship-based sharding:

= In a social network, a user and all related data (posts, friends,
messages) are stored on a single shard. This ensures quick
access to related information.

* Geography-based sharding :

= A global video streaming service distributes content across
servers in different geographical regions. Users in Europe are
served by European servers, those in Asia by Asian servers, and
so on.

Sharding

Sharding strategies based on general rules:

* Functional sharding (by application functionality or modules):

= Data is divided based on its functional purpose or logical
affiliation with specific application parts. For example, in an
extensive e-commerce system, separate shards can be
created for user data, product data, order data, and so on.

¢ Time-based sharding:

= Data is distributed across shards depending on the
timestamp or date associated with each record.

= Each shard contains data for a specific time (for example, a
day, week, month, or year).

Sharding

Sharding strategies based on general rules:

* Combined sharding (combination of multiple strategies):

= A banking system uses geographic sharding to distribute
data by region, and within each region, range sharding is
applied based on account numbers.

Sharding

Why is sharding difficult?
* Not only we need to be able to determine particular shards
during write requests
* |.e. when a new aggregate is about to be inserted

= So that we can actually make a decision where it should be
physically stored

e but also during read requests
= |.e. when existing aggregate/s are about to be retrieved
= So that we can actually find and return them efficiently
(or detect they are missing)
= And all that only based on the search criteria provided
(e.g. key, id, ...) unless all the nodes should be accessed

B4AM36DS2, BE4AM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

19

Sharding

Why is sharding even more difficult?

e Structure of the cluster may be changing
= Nodes can be added or removed

* Nodes may have incomplete / obsolete cluster knowledge
= Nodes involved, their responsibilities, sharding rules, ...

* Individual nodes may be failing

* Network may be partitioned
= Messages may not be delivered even though sent

B4AM36DS2, BE4AM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

20

Replication

Replication

* Placement of multiple copies of the same data (replicas)
on different nodes
* Replication factor = number of such copies
Two approaches

e Master-slave architecture

* Peer-to-peer architecture

Replication

Read Write Primary DB
Instance

Load Balancer

Source: https://www.red-gate.com/simple-talk/databases/sql-server/performance-sql-server/designing-highly-scalable-database-architectures/

B4AM36DS2, BE4AM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

21

Replication

Master-Slave Architecture

Master

DTy
All updates are made to
the master \

Slaves

Source: Sadalage, Pramod J. - Fowler, Martin: NoSQL Distilled. Pearson Education, Inc., 2013.

Replication

Master-Slave Architecture

Architecture
* One node is primary (master), all the other secondary (slave)
* Master node bears all the management responsibility
» All the nodes contain identical data

Read requests can be handled by both the master or slaves
» Suitable for read-intensive applications
= More read requests to deal with = more slaves to deploy

* When the master fails, read operations can still be handled

B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025 23

Replication

Master-Slave Architecture

Write requests can only be handled by the master

* Newly written replicas are propagated to all the slaves
Consistency issue
= At most, one write request is handled at a time.

" But the propagation still takes some time, during which obsolete
reads might happen.
" Hence certain synchronization is required to avoid conflicts

In case of master failure, a new one needs to be appointed

* Manually (user-defined) or automatically (cluster-elected)
= Since the nodes are identical, appointments can be fast

Master might therefore represent a bottleneck
(because of the performance or failures)

B4AM36DS2, BE4AM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

24

Replication

Peer-to-Peer Architecture

All nodes read and
write all data

Source: Sadalage, Pramod J. - Fowler, Martin: NoSQL Distilled. Pearson Education, Inc., 2013.

Replication

Peer-to-Peer Architecture

Architecture
e All the nodes have equal roles and responsibilities
e All the nodes contain identical data once again

Both read and write requests can be handled by any node
* No bottleneck, no single point of failure

e Both the operations scale well
= More requests to deal with = more nodes to deploy

e Consistency issues
= Unfortunately, multiple write requests can be initiated

independently and being executed at the same time
= Hence synchronization is required to avoid conflicts

B4AM36DS2, BE4AM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025 26

Consensus Protocols

Consensus protocols ensure data consistency among replicas.
They are essential for making unified decisions about the system's

state, especially during failures and network partitions.
Main Protocols:

* Paxos

* Raft

* Viewstamped Replication
» Zookeeper’s Zab Protocol.

Role of Consensus Protocols:

* Ensuring data consistency across replicas.
* Leader or master election within the system.

* Coordinating data updates and managing node failures.

Sharding and Replication

Observations with respect to the replication:

* Does the replication factor really need to correspond to the
number of nodes?

= No, replication factor of 3 will often be the right choice
= Consequences

— Nodes will no longer contain identical data
— Replica placement strategy will be needed

* Do all the replicas really need to be successfully written when
write requests are handled?

" No, but consistency issues have to be tackled carefully

Sharding and replication can be combined... but how?

B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 3: Basic Principles | 29. 9. 2025

27

Sharding and Replication

Sharding and Master-Slave Replication

waster for two shards slave for two shards master for one shard

L3
£
waster for one shard

posrptsEiinadriselr slave for two shards slave for one shard

Source: Sadalage, Pramod J. - Fowler, Martin: NoSQL Distilled. Pearson Education, Inc., 2013.

Sharding and Replication

Sharding and Peer-to-Peer Replication

Source: Sadalage, Pramod J. - Fowler, Martin: NoSQL Distilled. Pearson Education, Inc., 2013.

Sharding and Replication

Sharding and Peer-to-Peer Replication

Storing information about data location:
* Cluster metadata

* Storage format (for example):

{
"shardl": {
"primary": "nodel",
"replicas": ["node2", "node3"],
"keyRange": {"min": 0, "max": 1000}
b
"shard2": {
"primary": "node4",
"replicas": ["node5", "node6"],
"keyRange": {"min": 1001, "max": 2000}
}
}

Sharding and Replication

Combinations of sharding and replication
* Sharding + master-slave replication

= Multiple masters, each for different data
= Roles of the nodes can overlap

— Each node can be master for some data and/or slave for other

e Sharding + peer-to-peer replication
= Basically placement of anything anywhere
(although certain rules can still be applied)

Sharding and Replication

Questions to figure out for any distribution model
* Can all the nodes serve both read and write requests?

Which replica placement strategy is used?

How the mapping of replicas is maintained?

What level of consistency and availability is provided?

What extent of infrastructure knowledge do the nodes have?

