% FAKULTA ELEKTROTECHNICKA
Ceské vysoké uéeni technické v Praze

B4M36DS2 — Database Systems 2

Practical Class 5

Types of NoSQL data stores

Yuliia Prokop
prokoyul@fel.cvut.cz, Telegram @Yulia_Prokop

@NAVEICRWILA https://cw.fel.cvut.cz/b251/courses/b4m36ds2/start

mailto:prokoyul@fel.cvut.cz
https://cw.fel.cvut.cz/b251/courses/b4m36ds2/start
https://cw.fel.cvut.cz/b251/courses/b4m36ds2/start
https://cw.fel.cvut.cz/b251/courses/b4m36ds2/start

Types of NoSQL Databases

Key-Value

Key (— QI

Key — QELE

- D

Column-Family

Document

|

i
)
'}
\

I

Types of NoSQL data stores: key—value, in-memory

Key-value, in-memory (Redis)

Strengths (+) Weaknesses (-)
e Extremely fast X Filtering and search are limited
* Perfect for counters and leaderboards X No general-purpose query language
* Excellent caching layer in core
e Good for temporary or session data X Not designed for long-term or large-
* Very simple data model scale storage

X Durability is limited

When to use: caching, counters, rate limiting, real-time leaderboards, short-term statistics,
and ephemeral queues.

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Types of NoSQL data stores: wide-column

Wide-column, distributed storage (Cassandra)

Strengths (+) Weaknesses (-)
* Very high write throughput X No joins at all
* Scales horizontally without downtime X Filtering is limited
* Excellent for time-series and activity logs X Limited guery or analytics language
* High availability X Data model must be planned in
* Predictable performance for predefined advance (query-driven)

queries

When to use: large event streams, logs, time-series data, fixed-pattern queries where keys
are known in advance.

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Types of NoSQL data stores: document-oriented

Document-oriented (MongoDB)

Strengths (+) Weaknesses (—)
* Flexible schema X Not ideal for extremely high write rates
* Powerful filtering and aggregation X slow for cross-collection operations
e Secondary indexes X Less efficient for very long time series
e Suitable for moderate-scale analytics X performance depends heavily on
* Stores complex objects naturally indexes

When to use: flexible analytical reports by attributes or time, content metadata,
recommendations, and moderate aggregations.

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Types of NoSQL data stores: graph database

Graph database (Neo4j)

Strengths (+) Weaknesses (-)
* Optimized for relationships X Not suited for large-scale tabular
* Excellent for recommendations and reports
community analysis X Horizontal scaling limited
* Flexible node and edge types X Not designed for time-series or
* Efficient for multi-step traversals streaming data
* Intuitive model X Updating large subgraphs is expensive

X High memory use

When to use: relationship-driven recommendations, social and content networks,
pathfinding, and community detection.

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Types of NoSQL data stores

. Main
System Core model Best for Avoid for Key strengths .
limitations
) Caching, counters, | Analytics, No filtering,
. Key—value in . . .
Redis leaderboards, rate | filters, Ultra-fast, simple | limited
memory . . o
limits history durability
. . Ad-hoc Scalable, . .
Wide-column | High-volume . . No joins, limited
Cassandra L ; . . analytics, predictable, e
(distributed) | writes, time-series | . . filtering
joins always on
. . Extreme o Slower for
Flexible queries, . Powerful filtering, .
MongoDB | Document . write loads, . cross-collection
metadata analytics e flexible schema .
deep joins gueries
Recommendations, | Bulk Relationship
. : : . . Hard to scale
Neo4j Graph relationships, path | aggregation, | traversal, intuitive .
: . . horizontally
queries time series model
@ B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Example 1

1. Count ratings by users from a given country during the previous
calendar month

Primary DBMS: MongoDB (document)

Attribute + time filtering in one place

The task selects events by a user attribute (country) and by a precise calendar window (previous
month). A document store keeps flexible fields together, so you can filter directly on attributes

and timestamps without redesigning storage.

Multi-level aggregation without precomputation

The result needs per-user totals and each user’s percentage of the country’s total. Document
analytics can compute group totals, overall totals for the same filter, and derived percentages
within a single server-side aggregation pass.

Monthly batch favors flexibility

This runs once per month, so a clear analytical pipeline and freedom to add new breakdowns
later (e.g., language, registration cohort) are more valuable than extreme ingestion throughput.

cvut
B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Example 1 -2

Alternative

Cassandra (Wide-column store)

* How it would work: Maintain during ingestion per-country, per-month, per-user
counters (i.e., the exact totals your report needs). Reading the monthly report then
becomes a direct lookup of those pre-rolled totals.

* When to choose it: When rating volume is very high and the report shape is stable
and repeated (always “country x previous month x per-user”), so the cost and rigidity
of pre-aggregation are justified by predictable, low-latency reads at massive scale.

* Trade-off: Cassandra does not support ad-hoc filtering across arbitrary attributes; if
you later need new dimensions (e.g., add “city” or “platform”), you must extend
ingestion-time pre-aggregation or redesign tables.

Why are others weaker?

Redis: No filtering capabilities. Can only retrieve values if the key is known. Not suitable for
analytical queries or grouping by country.

Neodj focuses on paths, which are not needed here.

cvut
B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Example 1 -3

Expected Output Format
user_id | username | display_name | number_of ratings | percentage_of country ratings

Sorted by ratings_count_in_month (top 50).

Freshness / Latency Goal

Runs at the beginning of each month. Response time of seconds to a minute is acceptable.

Access Pattern

* Filter by user.country = selected country
* Filter by timestamp € previous month

* Group by user

e Sort by count (top 50)

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Example 2

2. Timeline of all actions for a specific user in the last 7 days

Primary DBMS: Cassandra (wide-column)

* Per-user, time-ordered storage

The query always targets one user and a short, recent time window. A wide-column
layout can place all events for that user together and order them by timestamp, so a
7-day slice is a single contiguous read rather than many scattered lookups.

e Sustained high write throughput

Action events arrive continuously. Cassandra is designed to absorb steady streams of
small writes without locks, keeping recent data hot and readable.

* Natural ordering for output

Because events are clustered by time within the user’s partition, returning them from
newest to oldest requires no expensive resorting at query time.

cvut
@ B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Example 2 - 2

2. Timeline of actions for one user (last 7 days)
Alternatives:

MongoDB

* How it would work: Store events as documents with user ID and timestamp
fields; filter by user and by the last 7 days, then sort.

* When to choose it: When volumes are moderate and you also need richer
attribute-based filters within the same timeline (for example, “only ratings and
tags,” or “only actions on documentaries”). MongoDB’s flexible filtering is
valuable in that case.

* Trade-off: At very high write rates or with many concurrent timeline reads,
Cassandra’s time-clustered layout typically remains more predictable.

Why are others weaker?
Neodj is for paths; this is a linear time series.

Redis has no filtering and is not a reliable historical store for a period.
B4M36DS2 - Database Systems2 | Lab5 - Types of NoSQL DBS | 20. 10. 2025

Example 2 - 3

Expected Output Format
timestamp | action_type | target_kind (movie/person/playlist/review) | target_id |

optional details

Freshness / Latency Goal

On-demand; sub-second to a few hundred milliseconds for typical recent windows.

Access Pattern
* Filter by user_id = selected _user
* Restrict by timestamp € [now-7d, now]

* Read a contiguous range within the user’s time-ordered events; return newest first

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Example 3

4. Top movies by new tags (past 7 days)

Primary DBMS: Redis (in-memory key-value)

* Continuously changing, small ordered list
The output is a short ranking (e.g., top 20) that must reflect each new tag event

almost immediately. Keeping tiny per-movie counters in memory allows instant
updates and fast retrieval from a maintained ZSET window.

* Short, sliding time window
The seven-day window is relatively small and must be refreshed frequently. In-
memory management of rolling windows (for example, by incrementing today’s
bucket and decrementing the bucket that just fell out) avoids heavy recomputation.

* Interactive latency requirement
Product teams often surface this ranking in dashboards or modules that expect sub-
second responses. An in-memory system is well-suited to this kind of usage.

B4M36DS2 - Database Systems2 | Lab5 - Types of NoSQL DBS | 20. 10. 2025

Example 3 - 2

Alternative:

MongoDB

How it would work: Store raw tag events with timestamps and compute the 7-day
counts in a scheduled job (e.g., hourly or daily), persisting only the aggregated results
for retrieval.

When to choose it: When “live” freshness is not needed and a scheduled
recomputation is acceptable; when you also need flexible retrospective analysis on the
same tag events (by genre, by country, etc.).

Trade-off: Scheduled recomputation introduces lag; you will not see each new tag
immediately reflected in the top list.

Why are others weaker?
Cassandra

Can maintain per-movie, per-day counts and then assemble a 7-day sum, but
achieving “always up-to-date” top-N requires additional sorting infrastructure or an

external compute step. This is heavier operationally than an in-memory ranking for
such a small result.

Neodj not relevant—no traversal.

R

B4M36DS2 - Database Systems2 | Lab5 - Types of NoSQL DBS | 20. 10. 2025

Example 3 - 3

R

Expected Output Format
A short ranking for the past 7 days:

rank | movie_id | title | new_tag _count_last_7 days

Freshness / Latency Goal
Near real-time; sub-second reads. The counts should reflect new tag events within

moments of ingestion.

Access Pattern
* Global top over many movies within a fixed, short window

* Single read returns a tiny result set (e.g., 20 rows)

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Example 4

5. Users who applied the same tag to the same movie
(last 30 days)

Primary DBMS: Neodj (graph)

* The problem is inherently relational
You are looking for groups of users who are connected to the same movie through the
same tag. In a graph, users and movies are nodes, and each “tag added” action is a
relationship labeled with the tag text. Finding “everyone connected to this movie via this
tag” is a direct neighborhood query rather than a large table scan.

* Group construction is local to the graph neighborhood
Once you anchor on a specific pair (tag text, movie), the group is simply the set of
adjacent users connected by relationships carrying that tag label. Counting group size and
collecting member lists is done without joining unrelated data.

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Example 4 - 2

R

Alternative:

MongoDB

* How it would work: Treat each tag event as a document carrying user, movie, tag,
and timestamp. For the last 30 days, group documents by (tag, movie) and collect
the set of users per group. Filter groups by size (2—20), then format output.

* When to choose it: When you only need periodic batch results (monthly) and you
do not plan to explore overlaps between groups, cross-group connections, or
further community structure.

* Trade-off: As data grows, grouping by (tag, movie) across a month can be heavy. It
remains feasible for batch, but less convenient if you later need graph-style
explorations (e.g., users co-occurring across many tags and movies).

Why are others weaker?
Redis lacks filtering and set logic over large historical windows.
Cassandra — there are no joins and only limited filtering within a partition.

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Example 4 - 3

Expected Output Format
For each (tag_text, movie_id) with 2—20 distinct users during the last 30 days:
tag_text | movie_id | movie_title | [list_of user _ids] | [list_of usernames] | group_size

Ordered primarily by tag_text (alphabetical), and within each tag by group_size descending.

Freshness / Latency Goal
Monthly (on the last day of the month). Seconds are acceptable since this is an analytical

report, not a user-facing real-time feature.

Access Pattern

* Consider all tag events from the last 30 days

* Group by (tag_text, movie_id)

* For each group, gather users and apply size constraints (2—20)
* Sort as specified and emit the groups

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Exercises

Task 4 — Top movies by new tags (top N)
* Identify which movies received the most new user tags during the past week to track
emerging interests.

Task 6 — Most active reviewers (top N)
* List the users who wrote the highest number of reviews in the previous week to
reward active contributors.

Task 7 — Average rating by genre (aggregate)
» Calculate the average user rating per genre during the last quarter to compare genre
performance and identify trending or declining genres.

Task 8 — Growth of playlists (trend)
* Monitor how many new playlists users created each day in the last ninety days to see
the growth of this feature.

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Exercises

Task 9 — Subscriptions to persons (aggregate)
* Count how many users subscribed to a specific person (actor or director) during the
last month to measure the person's popularity and inform marketing decisions.

Task 10 — Search term popularity (top N)
* Identify the most frequent search queries entered by users in the last seven days to
improve search suggestions.

Task 11 — User similarity based on rating patterns (graph + aggregate)
* Find users with similar movie tastes to a given user based on their rating history to
improve friend recommendations.

Task 12 — Movies by shortest path to subscribed persons (graph)
* Recommend movies to a user based on the actors/directors they subscribe to,
prioritizing movies with multiple connections.

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Exercises

Task 13 — Weekly retention cohort analysis (time series + aggregate)
* Track how many users from each registration week remain active in subsequent
weeks to measure retention.

Task 14 — Genre affinity by user country (aggregate + group by)
* Identify which genres are most popular in each country to tailor regional content
recommendations.

Task 15 — Playlist collaboration opportunities (graph)
* Identify pairs of users who have similar movie preferences in their playlists to
suggest potential collaboration or sharing.

Task 16 — Trending tags in real-time (time window + aggregate)
* Identify tags that are surging in popularity in the last 24 hours compared to the
previous week to highlight trending topics.

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

Exercises

Task 17 — User churn prediction features (aggregate)
e Calculate per-user activity metrics over rolling windows to feed into a churn
prediction model.

Task 18 — Cross-genre recommendation paths (graph)
* Find movies that bridge different genres based on users who rated movies from both
genres highly.

Task 19 — Review influence analysis (graph + aggregate)
* Measure how influential specific reviewers are by tracking subsequent user actions
after review publication.

B4M36DS2 - Database Systems2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025

