
B4M36DS2 – Database Systems 2

Yuliia Prokop
prokoyul@fel.cvut.cz, Telegram @Yulia_Prokop

https://cw.fel.cvut.cz/b251/courses/b4m36ds2/start

Practical Class 5

Types of NoSQL data stores

mailto:prokoyul@fel.cvut.cz
https://cw.fel.cvut.cz/b251/courses/b4m36ds2/start
https://cw.fel.cvut.cz/b251/courses/b4m36ds2/start
https://cw.fel.cvut.cz/b251/courses/b4m36ds2/start

Types of NoSQL Databases

B4M36DS2 - Database Systems 2 | Lecture 2 - Types of NoSQL Databases | 20. 10. 2025 2
Source: https://www.geeksforgeeks.org/types-of-nosql-databases/

3

Types of NoSQL data stores: key–value, in-memory

3B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 3

Strengths (+)

• Extremely fast

• Perfect for counters and leaderboards

• Excellent caching layer

• Good for temporary or session data

• Very simple data model

Weaknesses (–)

❌ Filtering and search are limited

❌ No general-purpose query language

in core

❌ Not designed for long-term or large-

scale storage

❌ Durability is limited

Key–value, in-memory (Redis)

When to use: caching, counters, rate limiting, real-time leaderboards, short-term statistics,
and ephemeral queues.

4

Types of NoSQL data stores: wide-column

4B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 4

Strengths (+)

• Very high write throughput

• Scales horizontally without downtime

• Excellent for time-series and activity logs

• High availability

• Predictable performance for predefined

queries

Weaknesses (–)

❌ No joins at all

❌ Filtering is limited

❌ Limited query or analytics language

❌ Data model must be planned in

advance (query-driven)

Wide-column, distributed storage (Cassandra)

When to use: large event streams, logs, time-series data, fixed-pattern queries where keys
are known in advance.

5

Types of NoSQL data stores: document-oriented

5B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 5

Strengths (+)

• Flexible schema

• Powerful filtering and aggregation

• Secondary indexes

• Suitable for moderate-scale analytics

• Stores complex objects naturally

Weaknesses (–)

❌ Not ideal for extremely high write rates

❌ Slow for cross-collection operations

❌ Less efficient for very long time series

❌ Performance depends heavily on

indexes

Document-oriented (MongoDB)

When to use: flexible analytical reports by attributes or time, content metadata,
recommendations, and moderate aggregations.

6

Types of NoSQL data stores: graph database

6B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 6

Strengths (+)

• Optimized for relationships

• Excellent for recommendations and

community analysis

• Flexible node and edge types

• Efficient for multi-step traversals

• Intuitive model

Weaknesses (–)

❌ Not suited for large-scale tabular

reports

❌ Horizontal scaling limited

❌ Not designed for time-series or

streaming data

❌ Updating large subgraphs is expensive

❌ High memory use

Graph database (Neo4j)

When to use: relationship-driven recommendations, social and content networks,
pathfinding, and community detection.

7

Types of NoSQL data stores

7B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 7

System Core model Best for Avoid for Key strengths Main
limitations

Redis Key–value in
memory

Caching, counters,
leaderboards, rate
limits

Analytics,
filters,
history

Ultra-fast, simple
No filtering,
limited
durability

Cassandra Wide-column
(distributed)

High-volume
writes, time-series

Ad-hoc
analytics,
joins

Scalable,
predictable,
always on

No joins, limited
filtering

MongoDB Document Flexible queries,
metadata analytics

Extreme
write loads,
deep joins

Powerful filtering,
flexible schema

Slower for
cross-collection
queries

Neo4j Graph
Recommendations,
relationships, path
queries

Bulk
aggregation,
time series

Relationship
traversal, intuitive
model

Hard to scale
horizontally

8

Example 1

8B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 8

1. Count ratings by users from a given country during the previous
calendar month
Primary DBMS: MongoDB (document)

• Attribute + time filtering in one place
The task selects events by a user attribute (country) and by a precise calendar window (previous
month). A document store keeps flexible fields together, so you can filter directly on attributes
and timestamps without redesigning storage.

• Multi-level aggregation without precomputation
The result needs per-user totals and each user’s percentage of the country’s total. Document
analytics can compute group totals, overall totals for the same filter, and derived percentages
within a single server-side aggregation pass.

• Monthly batch favors flexibility
This runs once per month, so a clear analytical pipeline and freedom to add new breakdowns
later (e.g., language, registration cohort) are more valuable than extreme ingestion throughput.

9

Example 1 - 2

9B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 9

Alternative

Cassandra (Wide-column store)
• How it would work: Maintain during ingestion per-country, per-month, per-user

counters (i.e., the exact totals your report needs). Reading the monthly report then
becomes a direct lookup of those pre-rolled totals.

• When to choose it: When rating volume is very high and the report shape is stable
and repeated (always “country × previous month × per-user”), so the cost and rigidity
of pre-aggregation are justified by predictable, low-latency reads at massive scale.

• Trade-off: Cassandra does not support ad-hoc filtering across arbitrary attributes; if
you later need new dimensions (e.g., add “city” or “platform”), you must extend
ingestion-time pre-aggregation or redesign tables.

Why are others weaker?
Redis: No filtering capabilities. Can only retrieve values if the key is known. Not suitable for
analytical queries or grouping by country.
Neo4j focuses on paths, which are not needed here.

10

Example 1 - 3

10B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 10

Expected Output Format

user_id | username | display_name | number_of_ratings | percentage_of_country_ratings

Sorted by ratings_count_in_month (top 50).

Freshness / Latency Goal

Runs at the beginning of each month. Response time of seconds to a minute is acceptable.

Access Pattern

• Filter by user.country = selected country

• Filter by timestamp ∈ previous month

• Group by user

• Sort by count (top 50)

11

Example 2

11B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 11

2. Timeline of all actions for a specific user in the last 7 days

Primary DBMS: Cassandra (wide-column)

• Per-user, time-ordered storage
The query always targets one user and a short, recent time window. A wide-column
layout can place all events for that user together and order them by timestamp, so a
7-day slice is a single contiguous read rather than many scattered lookups.

• Sustained high write throughput
Action events arrive continuously. Cassandra is designed to absorb steady streams of
small writes without locks, keeping recent data hot and readable.

• Natural ordering for output
Because events are clustered by time within the user’s partition, returning them from
newest to oldest requires no expensive resorting at query time.

12

Example 2 - 2

12B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 12

2. Timeline of actions for one user (last 7 days)

Alternatives:

MongoDB
• How it would work: Store events as documents with user ID and timestamp

fields; filter by user and by the last 7 days, then sort.
• When to choose it: When volumes are moderate and you also need richer

attribute-based filters within the same timeline (for example, “only ratings and
tags,” or “only actions on documentaries”). MongoDB’s flexible filtering is
valuable in that case.

• Trade-off: At very high write rates or with many concurrent timeline reads,
Cassandra’s time-clustered layout typically remains more predictable.

Why are others weaker?
Neo4j is for paths; this is a linear time series.
Redis has no filtering and is not a reliable historical store for a period.

13

Example 2 - 3

13B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 13

Expected Output Format

timestamp | action_type | target_kind (movie/person/playlist/review) | target_id |

optional details

Freshness / Latency Goal

On-demand; sub-second to a few hundred milliseconds for typical recent windows.

Access Pattern

• Filter by user_id = selected_user

• Restrict by timestamp ∈ [now−7d, now]

• Read a contiguous range within the user’s time-ordered events; return newest first

14

Example 3

14B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 14

4. Top movies by new tags (past 7 days)

Primary DBMS: Redis (in-memory key–value)

• Continuously changing, small ordered list
The output is a short ranking (e.g., top 20) that must reflect each new tag event
almost immediately. Keeping tiny per-movie counters in memory allows instant
updates and fast retrieval from a maintained ZSET window.

• Short, sliding time window
The seven-day window is relatively small and must be refreshed frequently. In-
memory management of rolling windows (for example, by incrementing today’s
bucket and decrementing the bucket that just fell out) avoids heavy recomputation.

• Interactive latency requirement
Product teams often surface this ranking in dashboards or modules that expect sub-
second responses. An in-memory system is well-suited to this kind of usage.

15

Example 3 - 2

15B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 15

Alternative:

MongoDB
• How it would work: Store raw tag events with timestamps and compute the 7-day

counts in a scheduled job (e.g., hourly or daily), persisting only the aggregated results
for retrieval.

• When to choose it: When “live” freshness is not needed and a scheduled
recomputation is acceptable; when you also need flexible retrospective analysis on the
same tag events (by genre, by country, etc.).

• Trade-off: Scheduled recomputation introduces lag; you will not see each new tag
immediately reflected in the top list.

Why are others weaker?
Cassandra

Can maintain per-movie, per-day counts and then assemble a 7-day sum, but
achieving “always up-to-date” top-N requires additional sorting infrastructure or an
external compute step. This is heavier operationally than an in-memory ranking for
such a small result.

Neo4j not relevant—no traversal.

16

Example 3 - 3

16B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 16

Expected Output Format

A short ranking for the past 7 days:

rank | movie_id | title | new_tag_count_last_7_days

Freshness / Latency Goal

Near real-time; sub-second reads. The counts should reflect new tag events within

moments of ingestion.

Access Pattern

• Global top over many movies within a fixed, short window

• Single read returns a tiny result set (e.g., 20 rows)

17

Example 4

17B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 17

5. Users who applied the same tag to the same movie
(last 30 days)
Primary DBMS: Neo4j (graph)

• The problem is inherently relational
You are looking for groups of users who are connected to the same movie through the
same tag. In a graph, users and movies are nodes, and each “tag added” action is a
relationship labeled with the tag text. Finding “everyone connected to this movie via this
tag” is a direct neighborhood query rather than a large table scan.

• Group construction is local to the graph neighborhood
Once you anchor on a specific pair (tag text, movie), the group is simply the set of
adjacent users connected by relationships carrying that tag label. Counting group size and
collecting member lists is done without joining unrelated data.

18

Example 4 - 2

18B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 18

Alternative:

MongoDB
• How it would work: Treat each tag event as a document carrying user, movie, tag,

and timestamp. For the last 30 days, group documents by (tag, movie) and collect
the set of users per group. Filter groups by size (2–20), then format output.

• When to choose it: When you only need periodic batch results (monthly) and you
do not plan to explore overlaps between groups, cross-group connections, or
further community structure.

• Trade-off: As data grows, grouping by (tag, movie) across a month can be heavy. It
remains feasible for batch, but less convenient if you later need graph-style
explorations (e.g., users co-occurring across many tags and movies).

Why are others weaker?
Redis lacks filtering and set logic over large historical windows.
Cassandra – there are no joins and only limited filtering within a partition.

19

Example 4 - 3

19B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 19

Expected Output Format

For each (tag_text, movie_id) with 2–20 distinct users during the last 30 days:

tag_text | movie_id | movie_title | [list_of_user_ids] | [list_of_usernames] | group_size

Ordered primarily by tag_text (alphabetical), and within each tag by group_size descending.

Freshness / Latency Goal

Monthly (on the last day of the month). Seconds are acceptable since this is an analytical

report, not a user-facing real-time feature.

Access Pattern
• Consider all tag events from the last 30 days
• Group by (tag_text, movie_id)
• For each group, gather users and apply size constraints (2–20)
• Sort as specified and emit the groups

20

Exercises

20B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 20

Task 4 – Top movies by new tags (top N)
• Identify which movies received the most new user tags during the past week to track

emerging interests.

Task 6 – Most active reviewers (top N)
• List the users who wrote the highest number of reviews in the previous week to

reward active contributors.

Task 7 – Average rating by genre (aggregate)
• Calculate the average user rating per genre during the last quarter to compare genre

performance and identify trending or declining genres.

Task 8 – Growth of playlists (trend)
• Monitor how many new playlists users created each day in the last ninety days to see

the growth of this feature.

21

Exercises

21B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 21

Task 9 – Subscriptions to persons (aggregate)
• Count how many users subscribed to a specific person (actor or director) during the

last month to measure the person's popularity and inform marketing decisions.

Task 10 – Search term popularity (top N)
• Identify the most frequent search queries entered by users in the last seven days to

improve search suggestions.

Task 11 – User similarity based on rating patterns (graph + aggregate)
• Find users with similar movie tastes to a given user based on their rating history to

improve friend recommendations.

Task 12 – Movies by shortest path to subscribed persons (graph)
• Recommend movies to a user based on the actors/directors they subscribe to,

prioritizing movies with multiple connections.

22

Exercises

22B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 22

Task 13 – Weekly retention cohort analysis (time series + aggregate)
• Track how many users from each registration week remain active in subsequent

weeks to measure retention.

Task 14 – Genre affinity by user country (aggregate + group by)
• Identify which genres are most popular in each country to tailor regional content

recommendations.

Task 15 – Playlist collaboration opportunities (graph)
• Identify pairs of users who have similar movie preferences in their playlists to

suggest potential collaboration or sharing.

Task 16 – Trending tags in real-time (time window + aggregate)
• Identify tags that are surging in popularity in the last 24 hours compared to the

previous week to highlight trending topics.

23

Exercises

23B4M36DS2 - Database Systems 2 | Lab 5 - Types of NoSQL DBS | 20. 10. 2025 23

Task 17 – User churn prediction features (aggregate)
• Calculate per-user activity metrics over rolling windows to feed into a churn

prediction model.

Task 18 – Cross-genre recommendation paths (graph)
• Find movies that bridge different genres based on users who rated movies from both

genres highly.

Task 19 – Review influence analysis (graph + aggregate)
• Measure how influential specific reviewers are by tracking subsequent user actions

after review publication.

