% FAKULTA ELEKTROTECHNICKA
Ceské vysoké uéeni technické v Praze
B4M36DS2 — Database Systems 2

Practical Class 4

Perform MapReduce and Analytics with PySpark

Yuliia Prokop
prokoyul@fel.cvut.cz, Telegram @Yulia_Prokop

@ AVEICRWTA https://cw.fel.cvut.cz/b241/courses/b4m36ds2/start

mailto:prokoyul@fel.cvut.cz
https://cw.fel.cvut.cz/b241/courses/b4m36ds2/start

Run all tasks in Google Colab or Jupyter.

Add short explanations as text cells.

B4M36DS2 - Database Systems2 | Lab4-PySpark | 13.10.2025

Exercise O - Install PySpark

What must be installed on your computer

If you use Google Colab:

* Python, Jupyter, and Pandas are already available. Just run:
pip install pyspark

(Mount Google Drive if your CSVs are there.)
* Access to the CSV datasets (movies.csv, reviews.csy, users.csv) and correct file paths.

* (Optional) Google Drive integration if running on Colab (to mount your Drive).

If you run locally (Python already installed):
* Java Runtime Environment (JRE) or JDK 8+ (PySpark runs on the JVM)
pip install pyspark

(Install Pandas only if your environment doesn’t have it.)

B4M36DS2 - Database Systems2 | Lab4-PySpark | 13.10.2025

Exercise 1 - Start a SparkSession

Import the necessary libraries and start a SparkSession.

from pyspark.sgl import SparkSession
from pyspark.sgl.functions import desc, avg

spark =
SparkSession.builder.appName ("DBS2 PySpark") .getOrCreate ()

Connect Google Drive if needed.

Connect Google Drive (if needed)
from google.colab import drive
drive.mount ('/content/drive')

B4M36DS2 - Database Systems2 | Lab4 - PySpark | 13.10.2025

Exercise 1 - Start a SparkSession

Update the paths to your files and load movies.csv, reviews.csv, and
users.csv into Spark DataFrames.

movies =

spark.read.csv ('/content/drive/MyDrive/CTU/DS22025/Dataset/movies.csv’
, header=True, inferSchema=True)

reviews =

spark.read.csv ('/content/drive/MyDrive/CTU/DS22025/Dataset/reviews.csv
', header=True, inferSchema=True)

users =

spark.read.csv ('/content/drive/MyDrive/CTU/DS22025/Dataset/users.csv’',
header=True, inferSchema=True)

B4M36DS2 - Database Systems2 | Lab4—PySpark | 13.10. 2025

Exercise 2 - Preview the Data Structure

Display the first 5 rows of each DataFrame (movies, reviews, users).

movies.show (5)
reviews.show (5)

users.show (5)

B4M36DS2 - Database Systems2 | Lab4 - PySpark | 13.10.2025

Exercise 3 - Analyze via DataFrame API

1. Show the Top 10 movies by number of reviews (DataFrame API).

Task 1. Top-10 movies by number of reviews

cnt = reviews.groupBy ("movie id") .count ()
top movies = cnt.join (movies, cnt.movie id == movies.id)\
.select ("title", "count") \

.orderBy (desc ("count"))

top movies.show (10)

B4M36DS2 - Database Systems2 | Lab4 - PySpark | 13.10.2025

Exercise 3 - Analyze via DataFrame API

2. Compute the average movie rating by year (DataFrame API).

Task 2. Average movie rating by year
reviews with movie = reviews.joln(movies, reviews.movie id

== movies.id)

avg rating by year = reviews with movie.groupBy ("year") \
.agg (avg ("rating") .alias ("avg rating")) \
.orderBy ("year")

avg rating by year.show /()

B4M36DS2 - Database Systems2 | Lab4 - PySpark | 13.10.2025

Exercise 4 - MapReduce via RDD APl (WordCount)

WordCount: Most Frequent Words in Reviews
Count how many times each word appears in all reviews.

Show the top 10 most frequent words.

Implement an explicit MapReduce pattern with RDDs:
- flatMap/map (map),
- reduceByKey (combiner + reduce),

- take top-N.

B4M36DS2 - Database Systems2 | Lab4 - PySpark | 13.10.2025

Exercise 4 - Solution

Extract a single text column and convert DF -> RDD[Row];
emit exactly one string per row
(empty string for missing/nulls to keep downstream logic simple)

review text rdd = reviews.select ("review text").rdd.flatMap (lambda
row: [row.review text if row.review text else ""])

Split each line into tokens; flatMap flattens lists of words into a single RDD stream
words = review text rdd.flatMap (lambda line: line.split())

Normalize tokens: lowercase + trim leading/trailing punctuation (strip affects
only edges)
words = words.map (lambda w: w.lower ().strip(",.!?2;:=\"""))

MAP: Emit (word, 1) pairs
word pailrs = words.map (lambda word: (word, 1))

Sum counts by key;
reduceByKey performs local combining on each partition before the shuffle

word counts = word pailrs.reduceByKey (lambda a, b: a + Db)

Take Top-20 by frequency without a full global sort
for word, count in word counts.takeOrdered (20, key=lambda x: -x[1]):
print (word, count)

cvut
@ B4M36DS2 - Database Systems2 | Lab4 - PySpark | 13.10.2025

Exercise 5

Review Count per Movie
For each movie, count the total number of reviews.

Show the top 10 movies by number of reviews (display movie titles).

evur|
@M B4M36DS2 - Database Systems2 | Lab4 - PySpark | 13.10.2025

Exercise 5 - Solution

MAP: For each review, create a pair (movie id, 1)
movie pairs = reviews.rdd.map (lambda row: (row['movie id'], 1))

REDUCE: Sum the counts for each movie id
movie review counts = movie pailrs.reduceByKey(lambda a, b: a + b)

Convert to DataFrame and join with movies for movie titles (optional)
movie review counts df = movie review counts.toDF(["movie 1d",
"review count"])

result = movie review counts df.join (movies,

movie review counts df.movie id == movies.id) \
.select (movies.title, "review count") \
.orderBy ("review count", ascending=False)

result.show (10)

B4M36DS2 - Database Systems2 | Lab4-PySpark | 13.10.2025

Exercise 6

Review Count per User
For each user, count the total number of reviews they have written.

Show the top 10 most active users (display user names).

evur|
@M B4M36DS2 - Database Systems2 | Lab4-PySpark | 13.10.2025

Exercise 6 - Solution

MAP: For each review, create a pair (user id, 1)
user palrs = reviews.rdd.map (lambda row: (row['user id'], 1))

REDUCE: Sum the counts for each user id
user review counts = user pairs.reduceByKey(lambda a, b: a + b)

Convert to DataFrame and join with users for user names (optional)

user review counts df = user review counts.toDF(["user id",
"review count"]) N N N
result = user review counts df.join (users,

user review counts df.user Id == users.id) \

.select (users.name, "review count") \

.orderBy ("review count", ascending=False)

result.show (10)

B4M36DS2 - Database Systems2 | Lab4-PySpark | 13.10.2025

Exercise 7/

Compute Average Rating per Movie (RDD)

For each movie, calculate the average rating from all its reviews.

Show the top 10 highest-rated movies (with titles)

evur|
@M B4M36DS2 - Database Systems2 | Lab4-PySpark | 13.10.2025

Exercise 7/

MAP: For each review, create a pair (movie id, (rating, 1))
movie rating palrs = reviews.rdd.map (lambda row: (row['movie id'],
(row['rating'], 1)))

REDUCE: Aggregate sum of ratings and count for each movie id
rating totals = movie rating pairs.reduceByKey(lambda a, b: (a[0] +

b[0], all] + b[1l]))

MAP: Compute average = sum / count for each movie id
avg rating = rating totals.mapValues (lambda x: x[0] / x[1])

Convert to DataFrame and join with movies for movie titles (optional)

avg rating df = avg rating.toDF(["movie 1d", "avg rating"])

avg rating df.join (movies, avg rating df.movie id == movies.id) \
.select (movies.title, "avg rating") \

.orderBy ("avg rating", ascending=False) \

.show (10)

cvut
@Q B4M36DS2 - Database Systems2 | Lab4-PySpark | 13.10.2025

Tasks 1-6 — Self-study

1.

cvut

Average Rating per User: For each user, calculate their average review rating. Show
the top 10 users with the highest average rating (display user names).

Most Popular Genre by Review Count: For each genre (split the genres field if
there are multiple), count the total number of reviews for movies in that genre.
Show the most reviewed genre.

Movie with the Most Positive Reviews: For each movie, count the number of
reviews where sentiment is "positive". Show the film with the most positive
reviews.

User Who Reviewed the Widest Variety of Genres: For each user, count how many
different genres they have reviewed across all their reviews. Show the user who
reviewed the most unique genres.

Most Controversial Movie: For each movie, calculate the standard deviation of all
its ratings. Show the top 5 movies with the highest rating standard deviation (i.e.,
most controversial).

Friend Pairs: Most Reviews of the Same Movies: For each pair of users who are
friends (use the friends field in users), count how many movies both have
reviewed. Show the friend pair(s) with the most shared reviewed movies.

B4M36DS2 - Database Systems2 | Lab4-PySpark | 13.10.2025

Submission Instructions

* Submit a single PDF exported from Google Colab that includes all code cells and their
outputs.

* Run every cell in order before exporting. No empty outputs.
* If randomness is involved, set a seed so results are reproducible.
* Long outputs: show the top 20 / head unless the task explicitly requires full output.

* |In Colab: File - Print = in the browser print dialog, choose Save as PDF.
(This preserves code + outputs exactly as seen.)

* Share the source notebook (.ipynb) with “Anyone with the link can view.”
* Include the view link on the first page of your PDF.

e Submit the PDF to the BRUTE system (PR4)

B4M36DS2 - Database Systems2 | Lab4-PySpark | 13.10.2025

