Non-Bayesian Methods

lecturer: Jiří Matas, matas@cmp.felk.cvut.cz

authors: Ondřej Drbohlav, Jiří Matas, Václav Hlaváč

Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

http://cmp.felk.cvut.cz

Oct 2024

Lecture Outline

- 1. Limitations of Bayesian Decision Theory
- 2. Neyman Pearson Task
- 3. Minimax Task
- 4. Wald Task

Bayesian Decision Theory

Recall:

X set of observations

K set of hidden states

D set of decisions

 $p_{XK}: X \times K \to \mathbb{R}$: joint probability

 $W: K \times D \to \mathbb{R}: loss function,$

 $q: X \to D$: strategy

R(q): risk:

$$R(q) = \sum_{x \in X} \sum_{k \in K} p_{XK}(x, k) \ W(k, q(x))$$
 (1)

Bayesian strategy q^* :

$$q^* = \underset{q \in X \to D}{\operatorname{argmin}} R(q) \tag{2}$$

The limitations follow from the very ingredients of the Bayesian Decision Theory — the necessity to know all the probabilities and the loss function.

- The loss function W must make sense, but in many tasks it wouldn't
 - ullet medical diagnosis task (W: price of medicines, staff labor, etc. but what penalty in case of patient's death?) Uncomparable penalties on different axes of X.
 - nuclear plant
 - judicial error
- lacktriangle The prior probabilities $p_K(k)$: must exist and be known. But in some cases it does not make sense to talk about probabilities because the events are not random.
 - $K = \{1, 2\} \equiv \{\text{own army plane}, \text{enemy plane}\};$ p(x|1), p(x|2) do exist and can be estimated, but p(1) and p(2) don't.
- The conditionals may be subject to non-random intervention; p(x | k, z) where $z \in Z = \{1, 2, 3\}$ are different interventions.
 - a system for handwriting recognition: The training set has been prepared by 3 different persons. But the test set has been constructed by one of the 3 persons only. This **cannot** be done:

(!)
$$p(x | k) = \sum p(z)p(x | k, z)$$
 (3)

Neyman Pearson Task

- $K = \{1, 2\}$ (two classes, sometimes called 1='dangerous', 2='normal')
- ◆ X set of observations
- Conditionals p(x | 1), p(x | 2) are given
- lacktriangle The priors p(1) and p(2) are unknown or do not exist
- \bullet $q: X \to K$ strategy

The Neyman Pearson Task looks for the optimal strategy q^* for which

- i) the error of classification for class 1 is lower than a predefined threshold $\bar{\epsilon}_1$ ($0 < \bar{\epsilon}_1 < 1$), while
- ii) the classification error for class 2 is as low as possible.

This is formulated as an optimization task with an inequality constraint:

$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \sum_{x:q(x) \neq 2} p(x \,|\, 2) \tag{4}$$

subject to:
$$\sum_{x: a(x) \neq 1} p(x \mid 1) \leq \bar{\epsilon}_1.$$
 (5)

(copied from the previous slide:)

$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \sum_{x:q(x) \neq 2} p(x \,|\, 2) \tag{4}$$

subject to:
$$\sum_{x:q(x)\neq 1} p(x\,|\,1) \leq \bar{\epsilon}_1. \tag{5}$$

A strategy is characterized by the classification error values ϵ_2 and ϵ_1 :

$$\epsilon_1 = \sum_{x:q(x)\neq 1} p(x \mid 1) \tag{6}$$

$$\epsilon_2 = \sum_{x:q(x)\neq 2} p(x \mid 2) \tag{7}$$

(8)

Example: Male/Female Recognition (Neyman Pearson) (1)

A hotel has an advertising screen in an elevator. Based on recognition of gender, it wants to display a relevant advert for a shopping mall located at the ground floor. The shopping mall is primarily designed to be interesting for female customers. For this reason, the female classification error threshold is set to $\bar{\epsilon}_1 = 0.2$. At the same time, the objective is to

• $K = \{1, 2\} \equiv \{F, M\}$ (female, male)

minimize mis-classification of male customers.

- lacktriangle measurements X= height imes weight (height sensor = simple optical sensor, weight sensor = standard component of elevators)
- $lack height \in \{h_1,h_2,h_3\}$, weight $\in \{w_1,w_2,w_3,w_4\}$ $(h_1 < h_2 < h_3)$, $(w_1 < w_2 < w_3 < w_4)$
- Prior probabilities do not exist.
- Conditionals are given as follows:

p(x F)						
h_1	.197	.145	.094	.017		
h_2	.077	.299	.145	.017		
h_3	.001	.008	.000	.000		
	w_1	w_2	w_3	w_4		

p(x IVI)					
h_1	.011	.005	.011	.011	
h_2	.005	.071	.408	.038	
h_3	.002	.014	.255	.169	
	w_1	w_2	w_3	w_4	

 $\infty(\infty|\Lambda\Lambda)$

The optimal strategy q^* for a given $x \in X$ is constructed using the likelihood ratio $\frac{p(x \mid 2)}{p(x \mid 1)}$.

Let there be a constant $\mu \geq 0$. Given this μ , a strategy q is constructed as follows:

$$\frac{p(x \mid 2)}{p(x \mid 1)} > \mu \quad \Rightarrow \quad q(x) = 2,$$

$$\frac{p(x \mid 2)}{p(x \mid 1)} \le \mu \quad \Rightarrow \quad q(x) = 1.$$
(9)

$$\frac{p(x \mid 2)}{p(x \mid 1)} \le \mu \quad \Rightarrow \quad q(x) = 1. \tag{10}$$

The optimal strategy q^* is obtained by selecting the minimal μ for which there still holds that $\epsilon_1 \leq \bar{\epsilon}_1$.

Let us show this on an example.

Example: Male/Female Recognition (Neyman Pearson) (2)

p(x 1)						
h_1	.197	.145	.094	.017		
h_2	.077	.299	.145	.017		
h_3	.001	.008	.000	.000		
	$ w_1 $	w_2	w_3	w_{4}		

p(x z)					
h_1	.011	.005	.011	.011	
h_2	.005	.071	.408	.038	
h_3	.002	.014	.255	.169	
	$ w_1 $	w_2	w_3	w_4	

m(m|2)

r(x) = p(x 2)/p(x 1)					
h_1	0.056	0.034	0.117	0.647	
h_2	0.065	0.237	2.814	2.235	
h_3	2.000	1.750	∞	∞	
	w_1	w_2	w_3	w_4	

rank order of $p(x z)/p(x 1)$					
h_1	2	1	4	6	
h_2	3	5	10	9	
h_3	8	7	11	12	
	$ w_1 $	w_2	w_3	w_4	

rank order of m(m|2)/m(m|1)

Here, different μ 's can produce 11 different strategies.

First, let us take $2.814 < \mu < \infty$, e.g. $\mu = 3$. This produces a strategy $q^*(x) = 1$ everywhere except where p(x|1) = 0. Obviously, classification error $\epsilon_1 = 0$, and $\epsilon_2 = 1 - .255 - .169 = .576$.

Exa

kample:	Male/Female	Recognition	(Neyman	Pearson) (3)	
-	•		,	, , ,	

p(x 1)						
h_1	.197	.145	.094	.017		
h_2	.077	.299	.145	.017		
h_3	.001	.008	.000	.000		
	w_1	w_2	w_3	w_4		

p(x 2)						
h_1	.011	.005	.011	.011		
h_2	.005	.071	.408	.038		
h_3	.002	.014	.255	.169		
	w_1	w_2	w_3	w_4		

$$r(x) = p(x|2)/p(x|1)$$
 $\begin{vmatrix} h_1 & 0.056 & 0.034 & 0.117 & 0.647 \\ h_2 & 0.065 & 0.237 & 2.814 & 2.235 \\ h_3 & 2.000 & 1.750 & \infty & \infty \end{vmatrix}$
 $\begin{vmatrix} w_1 & w_2 & w_3 & w_4 \\ w_4 & w_4 & w_4 & w_4 \end{vmatrix}$

rank	rank, and $q^*(x)=\{1,2\}$ for $\mu=2.5$					
h_1	2	1	4	6		
h_2	3	5	10	9		
h_3	8	7	11	12		
	w_1	w_2	w_3	w_4		

Next, take μ which satisfies

$$r_9 < \mu < r_{10} \quad \text{(e.g. } \mu = 2.5)$$
 (11)

(where r_i is the likelihood ratios indexed by its rank.)

Here,
$$\epsilon_1 = .145$$
, and $\epsilon_2 = 1 - .255 - .169 - .408 = .168$.

Example: Male/Female Recognition (Neyman Pearson) (4)

p(x 1)						
h_1	.197	.145	.094	.017		
h_2	.077	.299	.145	.017		
h_3	.001	.008	.000	.000		
	$ w_1 $	w_2	w_3	w_{4}		

p(x 2)					
h_1	.011	.005	.011	.011	
h_2	.005	.071	.408	.038	
h_3	.002	.014	.255	.169	
	w_1	w_2	w_3	w_4	

$$r(x) = p(x|2)/p(x|1)$$
 $\begin{vmatrix} h_1 & 0.056 & 0.034 & 0.117 & 0.647 \\ h_2 & 0.065 & 0.237 & 2.814 & 2.235 \\ h_3 & 2.000 & 1.750 & \infty & \infty \end{vmatrix}$
 $\begin{vmatrix} w_1 & w_2 & w_3 & w_4 \\ w_4 & w_4 & w_4 \end{vmatrix}$

rank	rank, and $q^*(x)=\{ extbf{1}, extbf{2}\}$ for $\mu=2.1$					
h_1 2 1 4				6		
h_2	3	5	10	9		
h_3	8	7	11	12		
	w_1	w_2	w_3	w_4		

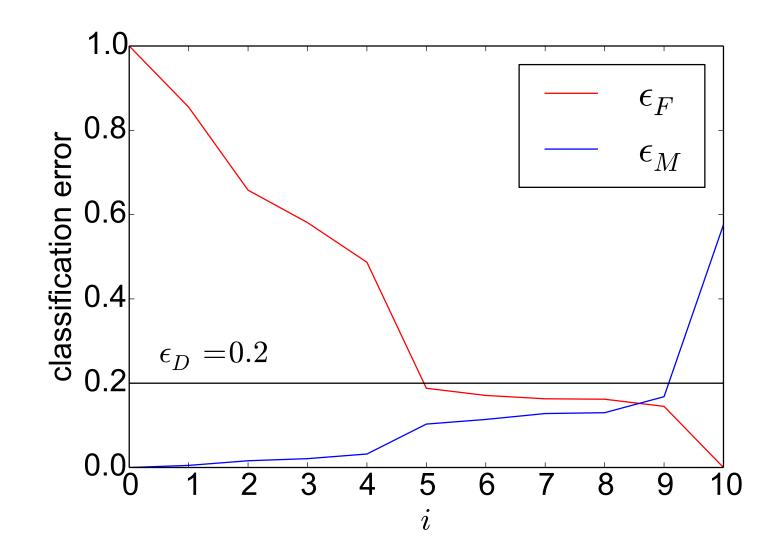
Do the same for μ satisfying

$$r_8 < \mu < r_9$$
 (e.g. $\mu = 2.1$) (12)

$$\Rightarrow \epsilon_1 = .162$$
, and $\epsilon_2 = 0.13$.

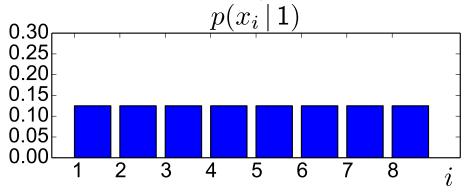
Example: Male/Female Recognition (Neyman Pearson) (5)

Classification errors for 1 and 2, for $\mu_i = \frac{r_i + r_{i+1}}{2}$ and $\mu_0 = 0$.



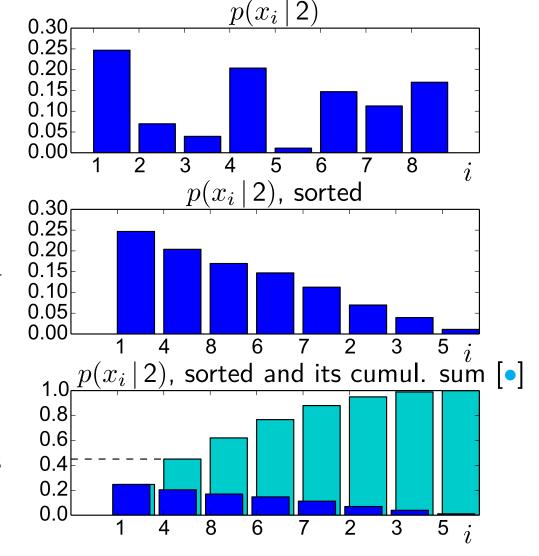
The optimum is reached for $r_5 < \mu < r_6$; $\epsilon_1 = .188$, $\epsilon_2 = .103$

Neyman Pearson: Simple Case (1)



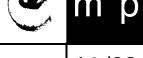
Consider a simple case when $p(x_i | 1) = \text{const.}$ Possible values for ϵ_1 are $0, \frac{1}{8}, \frac{2}{8}, ..., 1$. If a strategy q classifies P observations as normal then $\epsilon_1 = \frac{P}{8}$.

If P=1 then $\epsilon_1=\frac{1}{8}$ and it is clear that ϵ_2 will attain minimum if the (one) observation which is classified as normal is the one with the highest $p(x_i\,|\,2)$. Similarly, if P=2 then the two observations to be classified as normal are the one with the first two highest $p(x_i\,|\,2)$. Etc.



 \uparrow cumulative sum of sorted $p(x_i \mid 2)$ shows the classification success rate for 2, that is, $1 - \epsilon_2$, for $\epsilon_1 = \frac{1}{8}, \frac{2}{8}, ..., 1$. For example, for $\epsilon_1 = \frac{2}{8}$ (P = 2), $\epsilon_2 = 1 - 0.45 = 0.55$ (as shown, dashed.)

Neyman Pearson: Towards General Case (2)



In general, $p(x_i | 1) \neq \text{const.}$ Consider the following example:

$p(x_i 1)$				
x_1 x_2 x_3				
0.5	0.25	0.25		

$p(x_i \mid 2)$				
x_1	x_2	x_3		
0.6	0.35	0.05		

But this can easily be converted to the previous special case by (only formally) splitting x_1 to two observations x'_1 and x''_1 :

$p(x_i \mid 1)$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
0.25	0.25	0.25	0.25		

$p(x_i \mid 2)$				
x_1'	x_1''	x_2	x_3	
0.3	0.3	0.35	0.05	

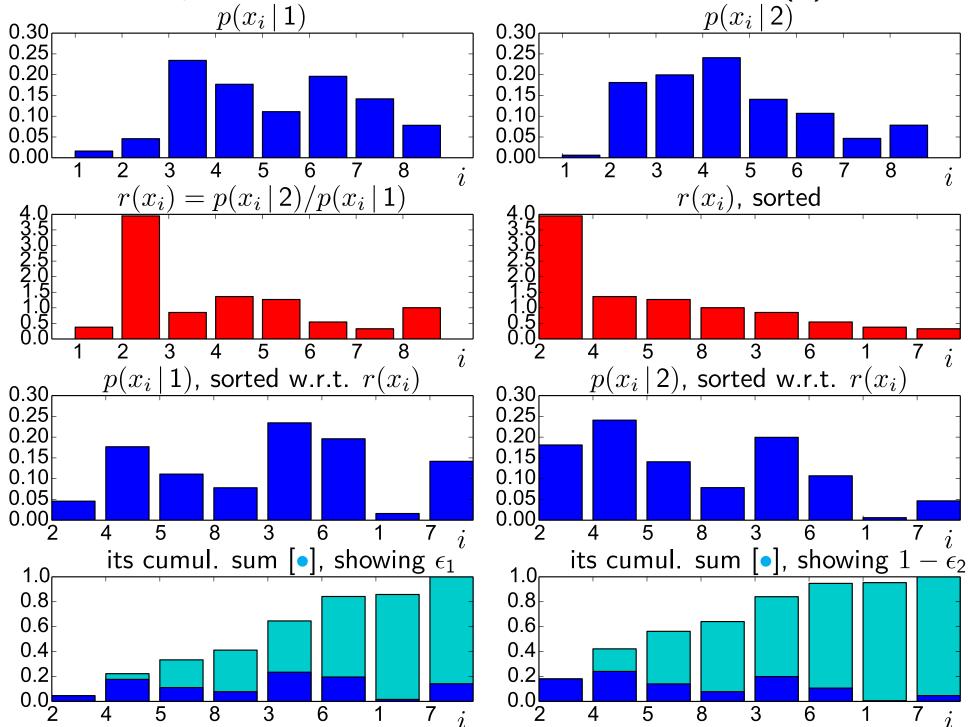
which would result in ordering the observations by decreasing $p(x_i | 2)$ as: x_2, x_1, x_3 .

Obviously, the same ordering is obtained when $p(x_i \mid 2)$ is 'normalized' by $p(x_i \mid 1)$, that is, using the likelihood ratio

$$r(x_i) = \frac{p(x_i \mid 2)}{p(x_i \mid 1)}.$$
 (13)

15/28

Neyman Pearson: General Case Example (3)



16/28

Lagrangian of the Neyman Pearson Task is

$$L(q) = \sum_{x: q(x)=1} p(x \mid 2) + \mu \left(\sum_{x: q(x)=2} p(x \mid 1) - \bar{\epsilon}_1 \right)$$
 (14)

$$= \underbrace{1 - \sum_{x:q(x)=2}^{\infty} p(x \mid 2)}_{p(x \mid 2)} + \mu \left(\sum_{x:q(x)=2}^{\infty} p(x \mid 1) \right) - \mu \bar{\epsilon}_{1}$$
 (15)

$$=1 - \mu \bar{\epsilon}_1 + \sum_{x: q(x)=2} \underbrace{\{\mu \, p(x \, | \, 1) - p(x \, | \, 2)\}}_{T(x)} \tag{16}$$

If T(x) is negative for an x then it will decrease the objective function and the optimal strategy q^* will decide $q^*(x)=2$. This illustrates why the solution to the Neyman Pearson Task has the form

$$\frac{p(x\mid 2)}{p(x\mid 1)} > \mu \quad \Rightarrow \quad q(x) = 2, \tag{9}$$

$$\frac{p(x\mid 2)}{p(x\mid 1)} \le \mu \quad \Rightarrow \quad q(x) = 1. \tag{10}$$

Neyman Pearson: Derivation (1)

$$q^* = \min_{q:X \to K} \sum_{x:q(x) \neq 2} p(x \,|\, 2) \qquad \text{subject to: } \sum_{x:q(x) \neq 1} p(x \,|\, 1) \leq \bar{\epsilon}_1 \,. \tag{17}$$

Let us rewrite this as

$$q^* = \min_{q:X \to K} \sum_{x \in X} \alpha(x) p(x \mid 2) \qquad \text{subject to:} \qquad \sum_{x \in X} [1 - \alpha(x)] p(x \mid 1) \le \bar{\epsilon}_1. \tag{18}$$

and:
$$\alpha(x) \in \{0,1\} \ \forall x \in X$$
 (19)

This is a combinatorial optimization problem. If the relaxation is done from $\alpha(x) \in \{0,1\}$ to $0 \le \alpha(x) \le 1$, this can be solved by **linear programming** (LP). The Lagrangian of this problem with inequality constraints is:

$$L(\alpha(x_1), \alpha(x_2), ..., \alpha(x_N)) = \sum_{x \in X} \alpha(x) p(x \mid 2) + \mu \left(\sum_{x \in X} [1 - \alpha(x)] p(x \mid 1) - \bar{\epsilon}_1 \right)$$
 (20)

$$-\sum_{x \in X} \mu_0(x)\alpha(x) + \sum_{x \in X} \mu_1(x)(\alpha(x) - 1)$$
 (21)

🍘 m p

Neyman Pearson: Derivation (2)

$$L(\alpha(x_1), \alpha(x_2), ..., \alpha(x_N)) = \sum_{x \in X} \alpha(x) p(x \mid 2) + \mu \left(\sum_{x \in X} [1 - \alpha(x)] p(x \mid 1) - \bar{\epsilon}_1 \right)$$
 (20)

$$-\sum_{x \in X} \mu_0(x)\alpha(x) + \sum_{x \in X} \mu_1(x)(\alpha(x) - 1)$$
 (21)

The conditions for optimality are $(\forall x \in X)$:

$$\frac{\partial L}{\partial \alpha(x)} = p(x \mid 2) - \mu p(x \mid 1) - \mu_0(x) + \mu_1(x) = 0, \qquad (22)$$

$$\mu \ge 0, \, \mu_0(x) \ge 0, \, \mu_1(x) \ge 0, \quad 0 \le \alpha(x) \le 1,$$
 (23)

$$\mu_0(x)\alpha(x) = 0, \ \mu_1(x)(\alpha(x) - 1) = 0, \ \mu\left(\sum_{x \in X} [1 - \alpha(x)]p(x \mid 1) - \bar{\epsilon}_1\right) = 0.$$
 (24)

Case-by-case analysis:

case	implications
$\mu = 0$	L minimized by $\alpha(x) = 0 \forall x$
$\mu \neq 0, \alpha(x) = 0$	$\mu_1(x) = 0 \Rightarrow \mu_0(x) = p(x \mid 2) - \mu p(x \mid 1) \Rightarrow p(x \mid 2)/p(x \mid 1) \le \mu$
$\mu \neq 0, \alpha(x) = 1$	$\mu_0(x) = 0 \Rightarrow \mu_1(x) = -[p(x \mid 2) - \mu p(x \mid 1)] \Rightarrow p(x \mid 2)/p(x \mid 1) \ge \mu$
$\mu \neq 0,$ $0 < \alpha(x) < 1$	$\mu_0(x) = \mu_1(x) = 0 \Rightarrow p(x \mid 2)/p(x \mid 1) = \mu$

Neyman Pearson: Derivation (3)

19/28

Case-by-case analysis:

case	implications
$\mu = 0$	L minimized by $\alpha(x) = 0 \forall x$
$\mu \neq 0, \alpha(x) = 0$	$\mu_1(x) = 0 \Rightarrow \mu_0(x) = p(x \mid 2) - \mu p(x \mid 1) \Rightarrow p(x \mid 2)/p(x \mid 1) \le \mu$
$\mu \neq 0, \alpha(x) = 1$	$\mu_0(x) = 0 \Rightarrow \mu_1(x) = -[p(x \mid 2) - \mu p(x \mid 1)] \Rightarrow p(x \mid 2)/p(x \mid 1) \ge \mu$
$\mu \neq 0,$ $0 < \alpha(x) < 1$	$\mu_0(x) = \mu_1(x) = 0 \Rightarrow p(x \mid 2)/p(x \mid 1) = \mu$

Optimal Strategy for a given $\mu \geq 0$ and particular $x \in X$:

$$\frac{p(x \mid 2)}{p(x \mid 1)} \begin{cases} < \mu & \Rightarrow q(x) = 1 \text{ (as } \alpha(x) = 0) \\ > \mu & \Rightarrow q(x) = 2 \text{ (as } \alpha(x) = 1) \\ = \mu & \Rightarrow \text{LP relaxation does not give the desired solution, as } \alpha \notin \{0, 1\} \end{cases}$$
 (25)

Neyman Pearson: Note on Randomized Strategies (1)

20/28

Consider:

p(x 1)				
$x_1 \mid x_2 \mid x_3$				
0.9	0.09	0.01		

p(x 2)			
x_1 x_2 x_3			
0.09	0.9	0.01	

r(x) = p(x 2)/p(x 1)			
x_1	x_2	x_3	
0.1	10	1	

and $\bar{\epsilon}_1 = 0.03$.

- $q_2:(x_1,x_2,x_3)\to (1,1,2)$ \Rightarrow $\epsilon_1=0.01,\ \epsilon_2=0.99$
- ullet no other deterministic strategy q is feasible, that is all other ones have $\epsilon_1 > \bar{\epsilon}_1$
- q_2 is the best deterministic strategy but it does not comply with the previous basic result of constructing the optimal strategy because it decides for 2 for likelihood ratio 1 but decides for 1 for likelihood ratios 0.01 and 10. Why is that?
- ullet we can construct a randomized strategy which attains $\overline{\epsilon}_1$ and reaches lower ϵ_2 :

$$q(x_1) = q(x_3) = 1, \quad q(x_2) = \begin{cases} 2 & 1/3 \text{ of the time} \\ 1 & 2/3 \text{ of the time} \end{cases}$$
 (26)

For such strategy, $\epsilon_1 = 0.03$, $\epsilon_2 = 0.7$.

21/28

- lacktriangle This is not a problem but a feature which is caused by discrete nature of X (does not happen when X is continuous).
- This is exactly what the case of $\mu = p(x \mid 2)/p(x \mid 1)$ is on slide 18.

- The task can be generalized to 3 hidden states, of which 2 are dangerous, $K = \{2, D_1, D_2\}$. It is formulated as an analogous problem with two inequality constraints and minimization of classification error for 2.
- Neyman's and Pearson's work dates to 1928 and 1933.
- A particular strength of the approach lies in that the likelihood ratio r(x) or even $p(x \mid 2)$ need not be known. For the task to be solved, it is enough to know the $p(x \mid 1)$ and the **rank order** of the likelihood ratio.

- \bullet $K = \{1, 2, ..., N\}$
- X set of observations
- lacktriangle Conditionals $p(x \mid k)$ are known $\forall k \in K$
- lacktriangle The priors p(k) are unknown or do not exist
- $lack q \colon X \to K$ strategy

The Minimax Task looks for the optimum strategy q^* which minimizes the classification error of the worst classified class:

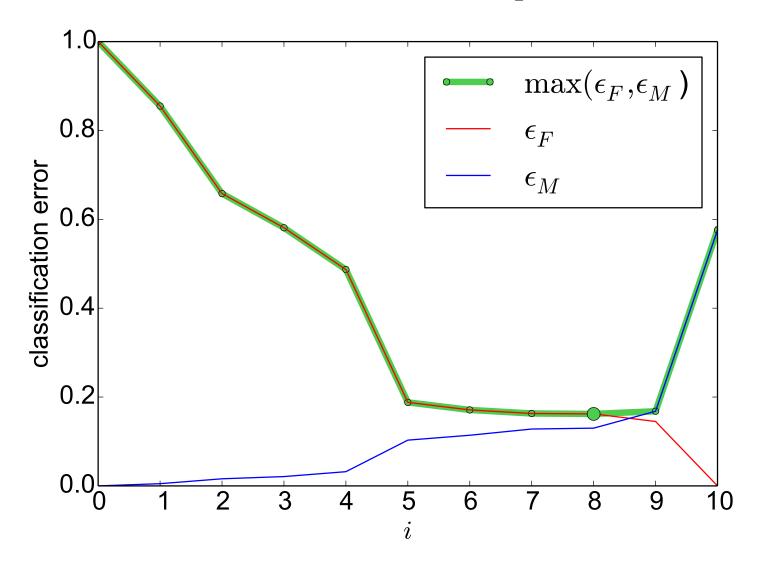
$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \max_{k \in K} \epsilon(k), \quad \text{where}$$
(27)

$$\epsilon(k) = \sum_{x: \, q(x) \neq k} p(x \mid k) \tag{28}$$

- Example: A recognition algorithm qualifies for a competition using preliminary tests.
 During the final competition, only objects from the hardest-to-classify class are used.
- For a 2-class problem, the strategy is again constructed using the likelihood ratio.
- In the case of continuous observations space X, equality of classification errors is attained: $\epsilon_1=\epsilon_2$
- The derivation can again be done using Linear Programming.

Example: Male/Female Recognition (Minimax)

Classification errors for 1 and 2, for $\mu_i = \frac{r_i + r_{i+1}}{2}$ and $\mu_0 = 0$.



The optimum is attained for i=8, $\epsilon_1=.162$, $\epsilon_2=.13$. The corresponding strategy is as shown on slide 11.

Minimax: Comparison with Bayesian Decision with Unknown Priors

- lacktriangle Consider the same setting as in the Minimax task, but let the priors p(k) exist but be unknown.
- lacktriangle The Bayesian error ϵ for strategy q is

$$\epsilon = \sum_{k} \sum_{x: q(x) \neq k} p(x, k) = \sum_{k} p(k) \underbrace{\sum_{x: q(x) \neq k} p(x \mid k)}_{\epsilon(k)}$$
(29)

- We want to minimize ϵ but we do not know p(k)'s. What is the maximum it can attain? Obviously, the p(k)'s do the convex combination of the class errors $\epsilon(k)$; the maximum Bayesian error will be attained when p(k)=1 for the class k with the highest class error $\epsilon(k)$.
- ullet Thus, to minimize the Bayesian error ϵ under this setting, the solution is to minimize the error of the hardest-to-classify class.
- Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors lead to the same solution.

- Let us consider classification with two states, $K = \{1, 2\}$.
- We want to set a threshold ϵ on the classification error of both of the classes: $\epsilon_1 \leq \epsilon$, $\epsilon_2 \leq \epsilon$.
- \bullet It is clear that there may be **no** feasible solution if ϵ is set too low.
- That is why the possibility of decision "do not know" is introduced. Thus $D = K \cup \{?\}$
- lack A strategy $q:X\to D$ is characterized by:

$$\epsilon_1 = \sum_{x: q(x)=2} p(x \mid 1)$$
 (classification error for 1) (30)

$$\epsilon_2 = \sum_{x: q(x)=1} p(x \mid 2)$$
 (classification error for 2) (31)

$$\kappa_1 = \sum_{x: q(x)=?} p(x \mid 1) \quad \text{(undecided rate for 1)} \tag{32}$$

$$\kappa_2 = \sum_{x: q(x)=?} p(x \mid 2) \quad \text{(undecided rate for 2)} \tag{33}$$

Wald Task (2)

lacktriangle The optimal strategy q^* :

$$q^* = \underset{q:X \to D}{\operatorname{argmin}} \max_{i=\{1,2\}} \kappa_i \tag{34}$$

subject to:
$$\epsilon_1 \le \epsilon, \ \epsilon_2 \le \epsilon$$
 (35)

- The task is again solvable using LP (even for more than 2 classes)
- The optimal solution is again based on the likelihood ratio

$$r(x) = \frac{p(x \mid 1)}{p(x \mid 2)} \tag{36}$$

• The optimal strategy is constructed using suitably chosen thresholds μ_l and μ_h such that:

$$q(x) = \begin{cases} 2 & \text{for } r(x) < \mu_l \\ 1 & \text{for } r(x) > \mu_h \\ ? & \text{for } \mu_l \le r(x) \le \mu_h \end{cases}$$

$$(37)$$

Example: Male/Female Recognition (Wald)

Solve the Wald task for $\epsilon=0.05$.

p(x F)					
h_1	.197	.145	.094	.017	
h_2	.077	.299	.145	.017	
h_3	.001	.008	.000	.000	
	w_1	w_2	w_3	$w_{\scriptscriptstyle A}$	

p(x M)				
h_1	.011	.005	.011	.011
h_2	.005	.071	.408	.038
h_3	.002	.014	.255	.169
	w_1	w_2	w_3	w_4

$$r(x) = p(x|2)/p(x|1)$$
 $\begin{vmatrix} h_1 & 0.056 & 0.034 & 0.117 & 0.647 \\ h_2 & 0.065 & 0.237 & 2.814 & 2.235 \\ h_3 & 2.000 & 1.750 & \infty & \infty \end{vmatrix}$
 $\begin{vmatrix} w_1 & w_2 & w_3 & w_4 \\ w_4 & w_4 & w_4 \end{vmatrix}$

Talik, and $q_{-}(x) = \{1, 2, 1\}$				
h_1	2	1	4	6
h_2	3	5	10	9
h_3	8	7	11	12
	w_1	w_2	w_3	w_4

rank and $a^*(x) = \{1, 2, 2\}$

Result:
$$\epsilon_2 = 0.032$$
, $\epsilon_1 = 0$, $\kappa_2 = 0.544$, $\kappa_1 = 0.487$

$$(r_4 < \mu_l < r_5, r_{10} < \mu_h < \infty)$$