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Lecture Outline

1. Limitations of Bayesian Decision Theory

2. Neyman Pearson Task

3. Minimax Task

4. Wald Task
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Bayesian Decision Theory

Recall:

X set of observations

K set of hidden states

D set of decisions

pXK : X ×K → R: joint probability

W : K ×D → R: loss function,

q : X → D: strategy

R(q) : risk:
R(q) =

∑
x∈X

∑
k∈K

pXK(x, k) W (k, q(x)) (1)

Bayesian strategy q∗:
q∗ = argmin

q∈X→D
R(q) (2)
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Limitations of the Bayesian Decision Theory

The limitations follow from the very ingredients of the Bayesian Decision Theory — the
necessity to know all the probabilities and the loss function.

� The loss function W must make sense, but in many tasks it wouldn’t
• medical diagnosis task (W : price of medicines, staff labor, etc. but what penalty in

case of patient’s death?) Uncomparable penalties on different axes of X.
• nuclear plant
• judicial error

� The prior probabilities pK(k): must exist and be known. But in some cases it does not
make sense to talk about probabilities because the events are not random.
• K = {1, 2} ≡ {own army plane, enemy plane};
p(x|1), p(x|2) do exist and can be estimated, but p(1) and p(2) don’t.

� The conditionals may be subject to non-random intervention; p(x | k, z) where
z ∈ Z = {1, 2, 3} are different interventions.
• a system for handwriting recognition: The training set has been prepared by 3

different persons. But the test set has been constructed by one of the 3 persons
only. This cannot be done:

(!) p(x | k) =
∑

z

p(z)p(x | k, z) (3)
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Neyman Pearson Task

� K = {1, 2} (two classes, sometimes called 1=’dangerous’, 2=’normal’)
� X set of observations
� Conditionals p(x | 1), p(x | 2) are given
� The priors p(1) and p(2) are unknown or do not exist
� q : X → K strategy

The Neyman Pearson Task looks for the optimal strategy q∗ for which
i) the error of classification for class 1 is lower than a predefined threshold ε̄1 (0 < ε̄1 < 1),

while
ii) the classification error for class 2 is as low as possible.

This is formulated as an optimization task with an inequality constraint:

q∗ = argmin
q:X→K

∑
x:q(x) 6=2

p(x | 2) (4)

subject to:
∑

x:q(x) 6=1

p(x | 1) ≤ ε̄1 . (5)
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Neyman Pearson Task

(copied from the previous slide:)

q∗ = argmin
q:X→K

∑
x:q(x) 6=2

p(x | 2) (4)

subject to:
∑

x:q(x) 6=1

p(x | 1) ≤ ε̄1 . (5)

A strategy is characterized by the classification error values ε2 and ε1:

ε1 =
∑

x:q(x) 6=1

p(x | 1) (6)

ε2 =
∑

x:q(x) 6=2

p(x | 2) (7)
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Example: Male/Female Recognition (Neyman Pearson) (1)

A hotel has an advertising screen in an elevator. Based on recognition of gender, it wants to
display a relevant advert for a shopping mall located at the ground floor. The shopping mall
is primarily designed to be interesting for female customers. For this reason, the female
classification error threshold is set to ε̄1 = 0.2. At the same time, the objective is to
minimize mis-classification of male customers.

� K = {1, 2} ≡ {F,M} (female, male)
� measurements X = height× weight (height sensor = simple optical sensor, weight
sensor = standard component of elevators)

� height ∈ {h1, h2, h3}, weight ∈ {w1, w2, w3, w4} (h1 < h2 < h3), (w1 < w2 < w3 < w4)

� Prior probabilities do not exist.
� Conditionals are given as follows:

p(x|F)
h1 .197 .145 .094 .017
h2 .077 .299 .145 .017
h3 .001 .008 .000 .000

w1 w2 w3 w4

p(x|M)
h1 .011 .005 .011 .011
h2 .005 .071 .408 .038
h3 .002 .014 .255 .169

w1 w2 w3 w4

(8)
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Neyman Pearson : Solution

The optimal strategy q∗ for a given x ∈ X is constructed using the likelihood ratio p(x | 2)
p(x | 1).

Let there be a constant µ ≥ 0. Given this µ, a strategy q is constructed as follows:

p(x | 2)

p(x | 1)
> µ ⇒ q(x) = 2 , (9)

p(x | 2)

p(x | 1)
≤ µ ⇒ q(x) = 1 . (10)

The optimal strategy q∗ is obtained by selecting the minimal µ for which there still holds
that ε1 ≤ ε̄1.

Let us show this on an example.
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Example: Male/Female Recognition (Neyman Pearson) (2)

p(x|1)
h1 .197 .145 .094 .017
h2 .077 .299 .145 .017
h3 .001 .008 .000 .000

w1 w2 w3 w4

p(x|2)
h1 .011 .005 .011 .011
h2 .005 .071 .408 .038
h3 .002 .014 .255 .169

w1 w2 w3 w4

r(x) = p(x|2)/p(x|1)
h1 0.056 0.034 0.117 0.647
h2 0.065 0.237 2.814 2.235
h3 2.000 1.750 ∞ ∞

w1 w2 w3 w4

rank order of p(x|2)/p(x|1)
h1 2 1 4 6
h2 3 5 10 9
h3 8 7 11 12

w1 w2 w3 w4

Here, different µ’s can produce 11 different strategies.

First, let us take 2.814 < µ <∞, e.g. µ = 3. This produces a strategy q∗(x) = 1
everywhere except where p(x|1) = 0. Obviously, classification error ε1 = 0, and
ε2 = 1− .255− .169 = .576.
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Example: Male/Female Recognition (Neyman Pearson) (3)

p(x|1)
h1 .197 .145 .094 .017
h2 .077 .299 .145 .017
h3 .001 .008 .000 .000

w1 w2 w3 w4

p(x|2)
h1 .011 .005 .011 .011
h2 .005 .071 .408 .038
h3 .002 .014 .255 .169

w1 w2 w3 w4

r(x) = p(x|2)/p(x|1)
h1 0.056 0.034 0.117 0.647
h2 0.065 0.237 2.814 2.235
h3 2.000 1.750 ∞ ∞

w1 w2 w3 w4

rank, and q∗(x) = {1, 2} for µ = 2.5
h1 2 1 4 6
h2 3 5 10 9
h3 8 7 11 12

w1 w2 w3 w4

Next, take µ which satisfies

r9 < µ < r10 (e.g. µ = 2.5) (11)

(where ri is the likelihood ratios indexed by its rank.)

Here, ε1 = .145, and ε2 = 1− .255− .169− .408 = .168.
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Example: Male/Female Recognition (Neyman Pearson) (4)

p(x|1)
h1 .197 .145 .094 .017
h2 .077 .299 .145 .017
h3 .001 .008 .000 .000

w1 w2 w3 w4

p(x|2)
h1 .011 .005 .011 .011
h2 .005 .071 .408 .038
h3 .002 .014 .255 .169

w1 w2 w3 w4

r(x) = p(x|2)/p(x|1)
h1 0.056 0.034 0.117 0.647
h2 0.065 0.237 2.814 2.235
h3 2.000 1.750 ∞ ∞

w1 w2 w3 w4

rank, and q∗(x) = {1, 2} for µ = 2.1
h1 2 1 4 6
h2 3 5 10 9
h3 8 7 11 12

w1 w2 w3 w4

Do the same for µ satisfying

r8 < µ < r9 (e.g. µ = 2.1) (12)

⇒ ε1 = .162, and ε2 = 0.13.
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Example: Male/Female Recognition (Neyman Pearson) (5)

Classification errors for 1 and 2, for µi =
ri+ri+1

2 and µ0 = 0.
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The optimum is reached for r5 < µ < r6; ε1 = .188, ε2 = .103
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Neyman Pearson : Simple Case (1)

p(xi | 2)

i

p(xi | 1)

i
p(xi | 2), sorted

i
p(xi | 2), sorted and its cumul. sum [•]

i

Consider a simple case when
p(xi | 1) = const. Possible values for ε1
are 0, 18,

2
8, ..., 1. If a strategy q

classifies P observations as normal
then ε1 = P

8 .
If P = 1 then ε1 = 1

8 and it is clear
that ε2 will attain minimum if the
(one) observation which is classified as
normal is the one with the highest
p(xi | 2). Similarly, if P = 2 then the
two observations to be classified as
normal are the one with the first two
highest p(xi | 2). Etc.

↑ cumulative sum of sorted p(xi | 2) shows
the classification success rate for 2, that
is, 1− ε2, for ε1 = 1

8,
2
8, ..., 1. For example,

for ε1 = 2
8 (P = 2), ε2 = 1− 0.45 = 0.55

(as shown, dashed.)

1 2 3 4 5 6 7 80.00
0.05
0.10
0.15
0.20
0.25
0.30

1 2 3 4 5 6 7 80.00
0.05
0.10
0.15
0.20
0.25
0.30

1 4 8 6 7 2 3 50.00
0.05
0.10
0.15
0.20
0.25
0.30

1 4 8 6 7 2 3 50.0
0.2
0.4
0.6
0.8
1.0
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Neyman Pearson : Towards General Case (2)

In general, p(xi | 1) 6= const. Consider the following example:

p(xi | 1) p(xi | 2)
x1 x2 x3
0.5 0.25 0.25

x1 x2 x3
0.6 0.35 0.05

But this can easily be converted to the previous special case by (only formally) splitting x1
to two observations x′1 and x′′1 :

p(xi | 1) p(xi | 2)
x′1 x′′1 x2 x3
0.25 0.25 0.25 0.25

x′1 x′′1 x2 x3
0.3 0.3 0.35 0.05

which would result in ordering the observations by decreasing p(xi | 2) as: x2, x1, x3.

Obviously, the same ordering is obtained when p(xi | 2) is ’normalized’ by p(xi | 1), that is,
using the likelihood ratio

r(xi) =
p(xi | 2)

p(xi | 1)
. (13)

http://cmp.felk.cvut.cz


15/28
Neyman Pearson : General Case Example (3)

p(xi | 2)

i

p(xi | 1)

i

p(xi | 2), sorted w.r.t. r(xi)p(xi | 1), sorted w.r.t. r(xi)

i

r(xi), sorted

i

r(xi) = p(xi | 2)/p(xi | 1)

i

i
its cumul. sum [•], showing 1− ε2

i

its cumul. sum [•], showing ε1

i

1 2 3 4 5 6 7 80.00
0.05
0.10
0.15
0.20
0.25
0.30

1 2 3 4 5 6 7 80.00
0.05
0.10
0.15
0.20
0.25
0.30

1 2 3 4 5 6 7 80.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

2 4 5 8 3 6 1 70.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

2 4 5 8 3 6 1 70.00
0.05
0.10
0.15
0.20
0.25
0.30

2 4 5 8 3 6 1 70.00
0.05
0.10
0.15
0.20
0.25
0.30

2 4 5 8 3 6 1 70.0
0.2
0.4
0.6
0.8
1.0

2 4 5 8 3 6 1 70.0
0.2
0.4
0.6
0.8
1.0
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Neyman Pearson Solution : Illustration of Principle

Lagrangian of the Neyman Pearson Task is

L(q) =
∑

x: q(x)=1

p(x | 2)︸ ︷︷ ︸+µ

 ∑
x: q(x)=2

p(x | 1)− ε̄1

 (14)

=

=︷ ︸︸ ︷
1−

∑
x:q(x)=2

p(x | 2) +µ

 ∑
x: q(x)=2

p(x | 1)

− µε̄1 (15)

=1− µε̄1 +
∑

x: q(x)=2

{µ p(x | 1)− p(x | 2)}︸ ︷︷ ︸
T (x)

(16)

If T (x) is negative for an x then it will decrease the objective function and the optimal
strategy q∗ will decide q∗(x) = 2. This illustrates why the solution to the Neyman Pearson
Task has the form

p(x | 2)

p(x | 1)
> µ ⇒ q(x) = 2 , (9)

p(x | 2)

p(x | 1)
≤ µ ⇒ q(x) = 1 . (10)
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Neyman Pearson : Derivation (1)

q∗ = min
q:X→K

∑
x:q(x) 6=2

p(x | 2) subject to:
∑

x:q(x) 6=1

p(x | 1) ≤ ε̄1 . (17)

Let us rewrite this as

q∗ = min
q:X→K

∑
x∈X

α(x)p(x | 2) subject to:
∑
x∈X

[1− α(x)]p(x | 1) ≤ ε̄1 . (18)

and: α(x) ∈ {0, 1} ∀x ∈ X (19)

This is a combinatorial optimization problem. If the relaxation is done from α(x) ∈ {0, 1} to
0 ≤ α(x) ≤ 1, this can be solved by linear programming (LP). The Lagrangian of this
problem with inequality constraints is:

L(α(x1), α(x2), ..., α(xN)) =
∑
x∈X

α(x)p(x | 2) + µ

(∑
x∈X

[1− α(x)]p(x | 1)− ε̄1

)
(20)

−
∑
x∈X

µ0(x)α(x) +
∑
x∈X

µ1(x)(α(x)− 1) (21)

http://cmp.felk.cvut.cz
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Neyman Pearson : Derivation (2)

L(α(x1), α(x2), ..., α(xN)) =
∑
x∈X

α(x)p(x | 2) + µ

(∑
x∈X

[1− α(x)]p(x | 1)− ε̄1

)
(20)

−
∑
x∈X

µ0(x)α(x) +
∑
x∈X

µ1(x)(α(x)− 1) (21)

The conditions for optimality are (∀x ∈ X):

∂L

∂α(x)
= p(x | 2)− µp(x | 1)− µ0(x) + µ1(x) = 0, (22)

µ ≥ 0, µ0(x) ≥ 0, µ1(x) ≥ 0, 0 ≤ α(x) ≤ 1, (23)

µ0(x)α(x) = 0, µ1(x)(α(x)− 1) = 0, µ

(∑
x∈X

[1− α(x)]p(x | 1)− ε̄1

)
= 0. (24)

Case-by-case analysis:
case implications
µ = 0 L minimized by α(x) = 0 ∀x
µ 6= 0, α(x) = 0 µ1(x) = 0⇒ µ0(x) = p(x | 2)− µp(x | 1)⇒ p(x | 2)/p(x | 1) ≤ µ
µ 6= 0, α(x) = 1 µ0(x) = 0⇒ µ1(x) = −[p(x | 2)− µp(x | 1)]⇒ p(x | 2)/p(x | 1) ≥ µ
µ 6= 0,
0 < α(x) < 1

µ0(x) = µ1(x) = 0⇒ p(x | 2)/p(x | 1) = µ
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Neyman Pearson : Derivation (3)

Case-by-case analysis:
case implications
µ = 0 L minimized by α(x) = 0 ∀x
µ 6= 0, α(x) = 0 µ1(x) = 0⇒ µ0(x) = p(x | 2)− µp(x | 1)⇒ p(x | 2)/p(x | 1) ≤ µ
µ 6= 0, α(x) = 1 µ0(x) = 0⇒ µ1(x) = −[p(x | 2)− µp(x | 1)]⇒ p(x | 2)/p(x | 1) ≥ µ
µ 6= 0,
0 < α(x) < 1

µ0(x) = µ1(x) = 0⇒ p(x | 2)/p(x | 1) = µ

Optimal Strategy for a given µ ≥ 0 and particular x ∈ X:

p(x | 2)

p(x | 1)


< µ ⇒ q(x) = 1 (as α(x) = 0)
> µ ⇒ q(x) = 2 (as α(x) = 1)
= µ ⇒ LP relaxation does not give the desired solution, as α /∈ {0, 1}

(25)
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Neyman Pearson : Note on Randomized Strategies (1)

Consider:

p(x|1)
x1 x2 x3
0.9 0.09 0.01

p(x|2)
x1 x2 x3
0.09 0.9 0.01

r(x) = p(x|2)/p(x|1)
x1 x2 x3
0.1 10 1

and ε̄1 =0.03.
� q1 : (x1, x2, x3)→ (1, 1, 1) ⇒ ε1 = 0.00, ε2 = 1.00

� q2 : (x1, x2, x3)→ (1, 1, 2) ⇒ ε1 = 0.01, ε2 = 0.99

� no other deterministic strategy q is feasible, that is all other ones have ε1 > ε̄1

� q2 is the best deterministic strategy but it does not comply with the previous basic
result of constructing the optimal strategy because it decides for 2 for likelihood ratio 1
but decides for 1 for likelihood ratios 0.01 and 10. Why is that?

� we can construct a randomized strategy which attains ε̄1 and reaches lower ε2:

q(x1) = q(x3) = 1, q(x2) =

{
2 1/3 of the time
1 2/3 of the time

(26)

For such strategy, ε1 = 0.03 , ε2 = 0.7.
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Neyman Pearson : Note on Randomized Strategies (2)

� This is not a problem but a feature which is caused by discrete nature of X (does not
happen when X is continuous).

� This is exactly what the case of µ = p(x | 2)/p(x | 1) is on slide 18.
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Neyman Pearson : Notes (1)

� The task can be generalized to 3 hidden states, of which 2 are dangerous,
K = {2,D1,D2}. It is formulated as an analogous problem with two inequality
constraints and minimization of classification error for 2.

� Neyman’s and Pearson’s work dates to 1928 and 1933.

� A particular strength of the approach lies in that the likelihood ratio r(x) or even
p(x | 2) need not be known. For the task to be solved, it is enough to know the p(x | 1)
and the rank order of the likelihood ratio.
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Minimax Task

� K = {1, 2, .., N}
� X set of observations
� Conditionals p(x | k) are known ∀k ∈ K
� The priors p(k) are unknown or do not exist
� q : X → K strategy

The Minimax Task looks for the optimum strategy q∗ which minimizes the classification
error of the worst classified class:

q∗ = argmin
q:X→K

max
k∈K

ε(k), where (27)

ε(k) =
∑

x: q(x) 6=k

p(x | k) (28)

� Example: A recognition algorithm qualifies for a competition using preliminary tests.
During the final competition, only objects from the hardest-to-classify class are used.

� For a 2-class problem, the strategy is again constructed using the likelihood ratio.
� In the case of continuous observations space X, equality of classification errors is
attained: ε1 = ε2

� The derivation can again be done using Linear Programming.
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Example: Male/Female Recognition (Minimax)

Classification errors for 1 and 2, for µi =
ri+ri+1

2 and µ0 = 0.
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max(εF ,εM )
εF

εM

The optimum is attained for i = 8, ε1 = .162, ε2 = .13. The corresponding strategy is as
shown on slide 11.
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Minimax: Comparison with Bayesian Decision with
Unknown Priors

� Consider the same setting as in the Minimax task, but let the priors p(k) exist but be
unknown.

� The Bayesian error ε for strategy q is

ε =
∑

k

∑
x: q(x) 6=k

p(x, k) =
∑

k

p(k)
∑

x: q(x) 6=k

p(x | k)︸ ︷︷ ︸
ε(k)

(29)

� We want to minimize ε but we do not know p(k)’s. What is the maximum it can
attain? Obviously, the p(k)’s do the convex combination of the class errors ε(k); the
maximum Bayesian error will be attained when p(k) = 1 for the class k with the highest
class error ε(k).

� Thus, to minimize the Bayesian error ε under this setting, the solution is to minimize
the error of the hardest-to-classify class.

� Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors
lead to the same solution.

http://cmp.felk.cvut.cz


26/28
Wald Task (1)

� Let us consider classification with two states, K = {1, 2}.

� We want to set a threshold ε on the classification error of both of the classes: ε1 ≤ ε,
ε2 ≤ ε.

� It is clear that there may be no feasible solution if ε is set too low.

� That is why the possibility of decision “do not know” is introduced. Thus D = K ∪ {?}

� A strategy q : X → D is characterized by:

ε1 =
∑

x: q(x)=2

p(x | 1) (classification error for 1) (30)

ε2 =
∑

x: q(x)=1

p(x | 2) (classification error for 2) (31)

κ1 =
∑

x: q(x)=?

p(x | 1) (undecided rate for 1) (32)

κ2 =
∑

x: q(x)=?

p(x | 2) (undecided rate for 2) (33)
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Wald Task (2)

� The optimal strategy q∗:

q∗ = argmin
q:X→D

max
i={1,2}

κi (34)

subject to: ε1 ≤ ε, ε2 ≤ ε (35)

� The task is again solvable using LP (even for more than 2 classes)

� The optimal solution is again based on the likelihood ratio

r(x) =
p(x | 1)

p(x | 2)
(36)

� The optimal strategy is constructed using suitably chosen thresholds µl and µh such
that:

q(x) =


2 for r(x) < µl

1 for r(x) > µh

? for µl ≤ r(x) ≤ µh

(37)
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Example: Male/Female Recognition (Wald)

Solve the Wald task for ε = 0.05.

p(x|F)
h1 .197 .145 .094 .017
h2 .077 .299 .145 .017
h3 .001 .008 .000 .000

w1 w2 w3 w4

p(x|M)
h1 .011 .005 .011 .011
h2 .005 .071 .408 .038
h3 .002 .014 .255 .169

w1 w2 w3 w4

r(x) = p(x|2)/p(x|1)
h1 0.056 0.034 0.117 0.647
h2 0.065 0.237 2.814 2.235
h3 2.000 1.750 ∞ ∞

w1 w2 w3 w4

rank, and q∗(x) = {1, 2, ?}
h1 2 1 4 6
h2 3 5 10 9
h3 8 7 11 12

w1 w2 w3 w4

Result: ε2 = 0.032, ε1 = 0, κ2 = 0.544, κ1 = 0.487

(r4 < µl < r5, r10 < µh <∞)

http://cmp.felk.cvut.cz

	First page
	Lecture Outline
	Bayesian Decision Theory
	Limitations of the Bayesian Decision Theory
	Neyman Pearson Task
	Neyman Pearson Task
	Example: Male/Female Recognition (Neyman Pearson) (1)
	Neyman Pearson : Solution
	Example: Male/Female Recognition (Neyman Pearson) (2)
	Example: Male/Female Recognition (Neyman Pearson) (3)
	Example: Male/Female Recognition (Neyman Pearson) (4)
	Example: Male/Female Recognition (Neyman Pearson) (5)
	Neyman Pearson : Simple Case (1)
	Neyman Pearson : Towards General Case (2)
	Neyman Pearson : General Case Example (3)
	Neyman Pearson Solution : Illustration of Principle
	Neyman Pearson : Derivation (1)
	Neyman Pearson : Derivation (2)
	Neyman Pearson : Derivation (3)
	Neyman Pearson : Note on Randomized Strategies (1)
	Neyman Pearson : Note on Randomized Strategies (2)
	Neyman Pearson : Notes (1)
	Minimax Task
	Example: Male/Female Recognition (Minimax)
	Minimax: Comparison with Bayesian Decision with Unknown Priors
	Wald Task (1)
	Wald Task (2)
	Example: Male/Female Recognition (Wald)
	Last page

