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Bayesian Decision Theory C

Recall:

X set of observations

K set of hidden states

D set of decisions

pxr: X X K — R: joint probability
W: K x D — R: loss function,

q: X — D: strategy

R(q): risk:
R(g) =) > pxx(zk) Wik q(x)) (1)

Bayesian strategy g*:

¢* = argmin R(q) (2)
qe X —D
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Limitations of the Bayesian Decision Theory

The limitations follow from the very ingredients of the Bayesian Decision Theory — the
necessity to know all the probabilities and the loss function.

The loss function W must make sense, but in many tasks it wouldn't

e medical diagnosis task (W: price of medicines, staff labor, etc. but what penalty in
case of patient’s death?) Uncomparable penalties on different axes of X.

e nuclear plant
e judicial error

The prior probabilities px (k): must exist and be known. But in some cases it does not
make sense to talk about probabilities because the events are not random.
o K ={1,2} = {own army plane, enemy plane};
p(x|1), p(x|2) do exist and can be estimated, but p(1) and p(2) don't.
The conditionals may be subject to non-random intervention; p(x | k, z) where
z € Z =41,2,3} are different interventions.

e a system for handwriting recognition: The training set has been prepared by 3
different persons. But the test set has been constructed by one of the 3 persons
only. This cannot be done:

() p(z|k) = Zp p(z |k, 2) (3)
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Neyman Pearson Task

K = {1, 2} (two classes, sometimes called 1="dangerous’, 2="normal’)
X set of observations

Conditionals p(x | 1), p(z|2) are given

The priors p(1) and p(2) are unknown or do not exist

q: X — K strategy

The Neyman Pearson Task looks for the optimal strategy ¢* for which

i) the error of classification for class 1 is lower than a predefined threshold & (0 < € < 1),
while

ii) the classification error for class 2 is as low as possible.

This is formulated as an optimization task with an inequality constraint:

q¢" = argmin Z p(x|2) (4)
qg:X—K
z:q(x)7#2
subject to: Z plx|l) <e€ (5)
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Neyman Pearson Task

(copied from the previous slide:)

¢ = argmin g p(x|2)
q:X—K
z:q(x)7#2

subject to: Z plx|l) <eé.
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Example: Male/Female Recognition (Neyman Pearson) (1) C

7/28
A hotel has an advertising screen in an elevator. Based on recognition of gender, it wants to
display a relevant advert for a shopping mall located at the ground floor. The shopping mall
is primarily designed to be interesting for female customers. For this reason, the female
classification error threshold is set to €; = 0.2. At the same time, the objective is to

minimize mis-classification of male customers.

K ={1,2} = {F,M} (female, male)
measurements X = height x weight (height sensor = simple optical sensor, weight
sensor = standard component of elevators)

height c {hl, ho, hg}, Weight S {’wl,wg,wg,w4} (hl < hy < hg), (21)1 < wo < wsg < ’UJ4)
Prior probabilities do not exist.

Conditionals are given as follows:

p(x|F) p(x|M)
f || 197 | 145 [ .094 [ 017 | [y || .011 | .005 | .011 [ .011
ho || .077 | 299 | 145 | 017 | [ h, || .005 | .071 [ 408 .038 (8)

hs || .001 | .008 | .000 | .000 hs || .002 | .014 | .255 | .169

w1 w2 Wws Wy w1 w9 Wws Wy
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Neyman Pearson : Solution

The optimal strategy g* for a given x € X is constructed using the likelihood ratio ggzﬁ).

N—

Let there be a constant i > 0. Given this 1, a strategy ¢ is constructed as follows:

p(z|2) _
I q(z) =2, (9)
ig i; <u = qz)=1. (10)

The optimal strategy g* is obtained by selecting the minimal x for which there still holds
that ¢; < €.

Let us show this on an example.
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Example: Male/Female Recognition (Neyman Pearson) (2) C
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p(z[1) p(z|2)

hi || .197 | .145 | .094 | .017 hy || .011 | .005 | .011 | .011
ho || .077 | .299 | .145 | .017 ho || .005 | .071 | .408 | .038
hs || .001 | .008 | .000 | .000 hs || .002 | .014 | .255 | .169

w1 wo ws Wy w1 W9 ws W4y

r(x) = p(x|2)/p(x|1) rank order of p(x|2)/p(zx|1)
hqy || 0.056 | 0.034 | 0.117 | 0.647 h1 2 1 4 6
ho || 0.065 | 0.237 | 2.814 | 2.235 ho 3 5 | 10 9
hs || 2.000 | 1.750 00 00 hs 8 7 | 11 12

w1 W9 Ws Wy w1 w9 Ws Wy

Here, different ©'s can produce 11 different strategies.

First, let us take 2.814 < u < o0, e.g. = 3. This produces a strategy ¢*(x) = 1
everywhere except where p(x|1) = 0. Obviously, classification error ¢; = 0, and
€s =1 —.255 — .169 = .576.
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Example: Male/Female Recognition (Neyman Pearson) (3) C
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p(z]1) p(z]2)
hy || .197 | .145 | .094 | .017 hy || .011 | .005 | .011 | .011
ho || .077 | .299 | .145 | .017 hs || .005 | .071 | .408 | .038
hs || .001 | .008 | .000 | .000 hs || .002 | .014 | .255 | .169
w1 wo ws Wy w1 W9 ws W4y
r(x) = p(x|2)/p(x|1) rank, and ¢*(x) = {1,2} for u = 2.5
hy || 0.056 | 0.034 | 0.117 | 0.647 hi || 2 1 4 6
ho || 0.065 | 0.237 | 2.814 | 2.235 ho || 3 | 5 | 10 9
hs || 2.000 | 1.750 00 00 hs 8 7 | 11 12
w1 W9 Ws Wy w1 w9 Ws Wy
Next, take 1 which satisfies
ro < pu<ryp (eg p=2.5) (11)

(where 7; is the likelihood ratios indexed by its rank.)

Here, ¢ = .145, and ¢ = 1 — .255 — .169 — .408 = .168.
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Example: Male/Female Recognition (Neyman Pearson) (4)
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p(a]1) p(2]2)

hi || .197 | .145 | .094 | .017 hi || .011 | .005 | .011 | .011
ho || .O77 | .299 | .145 | .017 ho || .005 | .071 | .408 | .038
hs || .001 | .008 | .000 | .000 hs || .002 | .014 | .255 | .169

w1 wo ws Wy w1 W9 ws W4y

r(x) = p(x|2)/p(x|1) rank, and ¢*(x) = {1,2} for u = 2.1
hi || 0.056 | 0.034 | 0.117 | 0.647 h1 2 1 4 6
ho || 0.065 | 0.237 | 2.814 | 2.235 ho 3 5 | 10 9
hs || 2.000 | 1.750 00 00 hs 8 7 | 11 12

w1 W9 Ws Wy w1 w9 Ws Wy

Do the same for u satisfying
re < pu<rg (eg pu=21) (12)

= ¢1 = .162, and €, = 0.13.
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Example: Male/Female Recognition (Neyman Pearson) (5)

Classification errors for 1 and 2, for y1; = "L and pig = 0.

1.0

O
S

O
Sk

o
=

classification error

GD :0.2

o
N

O
=

0 1 2 3 4 5 6 7 8 9 10

(4

The optimum is reached for 5 < u < rg; €1 = .188, €5 = .103

12/28
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Neyman Pearson :

g0 plxil)
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Consider a simple case when
p(x;|1) = const. Possible values for ¢;
1 2
are 0, 35,%,..., 1. If astrategy ¢
classifies P observations as normal
P

then ¢; = 3.
If P =1 then ¢; = % and it is clear
that e, will attain minimum if the
(one) observation which is classified as
normal is the one with the highest
p(x;]2). Similarly, if P = 2 then the
two observations to be classified as
normal are the one with the first two

highest p(z; | 2). Etc.

& o
Simple Case (1) C
0.30— Y ‘ P($§|2) | | 13/28

0.25¢
0.20}
0.15¢
0.10}

1 2 3 4 5 6 7 8
p(x;|2), sorted

ofefolololoo)
OO 2NN W
Saououno

1 4 8 6 7 2 3 5i
p(x;|2), sorted and its cumul. sum [e]

2 3 5i

1 cumulative sum of sorted p(x;|2) shows
the classification success rate for 2, that

is, 1 — €y, for €1 = %, %, ..., 1. For example,

forep =2 (P=2), e,=1-—0.45=0.55

(as shown, dashed.)


http://cmp.felk.cvut.cz

& N
Neyman Pearson : Towards General Case (2) C
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In general, p(x; | 1) # const. Consider the following example:

P(wi \ 1) P(iﬁi | 2)
L1 X2 X3 X1 X2 X3

0.5 1025 | 0.25 0.6 | 0.35 | 0.05

But this can easily be converted to the previous special case by (only formally) splitting 1
to two observations x} and z7:

p(xi|1) p(xi|2)
T} x! To T3 I I v A I T3

025 | 0.25 | 0.25 | 0.25 0.3 1031 035 | 0.05

which would result in ordering the observations by decreasing p(x;|2) as: x2,x1, x3.

Obviously, the same ordering is obtained when p(x;|2) is 'normalized’ by p(z;| 1), that is,
using the likelihood ratio
p(zi|2)

") = 1) )
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Neyman Pearson :
p(xi|1)

General Case Example (3)

SO =2=NNW
QU110 U10

2 3 4 5 6 7 8
p(x;|1), sorted w.r.t. r(x;)

7

CO=2=2DNNW
QU100 U1I0U10

N

4 5 8 3 6 1 7
its cumul. sum [e], showing ¢;

p(xi]2) 15/28

0.30—
0.25}

0.20}
0.15}
0.10}
0.05-
0.00

1 2 3 4 &5 6 7 8
r(x;), sorted

OO NN
OOIOUIOUIO

I\)O

4 3) 8 3 6 1 7

p(x;|2), sorted w.r.t. r(x;) !

OO0
0O 2NN W
WO U0 NSO

4 5 8 3 6 1 7,
its cumul. sum [e], showing 1 — ¢,
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Neyman Pearson Solution : lllustration of Principle C
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Lagrangian of the Neyman Pearson Task is
Ligg= Y p|2+p| Y opll)-a (14)
:\BZQ(%):]. J x:q(x)=2
“1- Y, s Y peln] - (15)
x:q(x)=2 x:q(x)=2
=1 —pa+ Yy {ppl]l)—p]2)} (16)
x:q(x)=2 TZZC)

If T'(x) is negative for an x then it will decrease the objective function and the optimal

strategy ¢* will decide ¢*(z) = 2. This illustrates why the solution to the Neyman Pearson
Task has the form

p(z|2) _
I q(x) =2, (9)
gg f; <p = q@)=1. (10)
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Neyman Pearson : Derivation (1) C
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— qr)?gl Z p(x|2) subject to: Z plx|l) <é. (17)
x:q(x)#£2 x:q(x)#1
Let us rewrite this as
0= min a(z)p(z]2) subject to: Y [1— a(a)lp(z|1) <. (18)
zeX xeX
and:  «afz) € {0,1} Vx € X (19)

This is a combinatorial optimization problem. If the relaxation is done from a(x) € {0,1} to
0 < a(x) <1, this can be solved by linear programming (LP). The Lagrangian of this
problem with inequality constraints is:

L(a(z1), a(z2), ..., =) a(z)p(z|2) + p (Z 1 — a(z)]p(z]1) — 61> (20)

reX reX

=3 mo@ae) + 3 mle)a@) 1) (1)

rxeX rxeX
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Neyman Pearson : Derivation (2) C 2
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L(a(z1), ox2), ..., =) a(x)px]2) +p (Z 1 —a(z)p(z|1) - 61> (20)
=Y po(@)a(z) + Y () (a(z) — 1) (21)

The conditions for optimality are (Vz € X):

s = P12 = e | D) = (o) + () =0, (@22
>0, puo(x) >0 > 0<a(x)<l1, (23)
po(z)o(x) =0, pi1 () (Z 11— oz —€1> =0.  (24)
Case-by-case analysis:
case implications
p=20 L minimized by a(x) =0 Vx
p7#0,a(x) =0 | mr) =0= po(x) = p=|2) — pp(z|1) = p(z]2)/p(z|1) < p
p 7;0,004(96) =1 | po(r) =0= m(x) = —[p=|2) — pp(z|1)] = p(z|2)/p(z|1) = p
T ,

0<a(x) <1 po(x) = pa(z) = 0= p(x|2)/p(z|1) = p
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Neyman Pearson : Derivation (3)
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Case-by-case analysis:
case implications
= L minimized by a(x) =0 Vx
p7#0, () =0 | p(x) =0= po(r) =p(x|2) — pp(r|l) = p(z|2)/p(z|1) < p
b 0,004(96) =1 | po(x) =0= () =—[p(x|2) —pp(x|1)] = pz|2)/p(z]1) = p
b Lty e1 | Hol@) = m(@) =0 pl2)/p] D) =

Optimal Strategy for a given 1 > 0 and particular z € X:

(< = q(z) =1 (as a(z) = 0)
§>p = q(x) =2 (as a(x) =1) (25)
| =41 = LP relaxation does not give the desired solution, as a ¢ {0, 1}
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Neyman Pearson : Note on Randomized Strategies (1) C
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Consider:
p(z]1) p(z]2) r(z) = p(z|2)/p(z|1)
I i) I3 I i) I3 I i) I3
0.9 | 0.09 | 0.01 0.09 | 0.9 | 0.01 0.1 | 10 1
and €; =0.03.

q1: (r1,20,23) — (1,1,1) = € =0.00, ¢, =1.00
qo - (:1:1,:1:2,903) — (]., 1, 2) = €1 = 0.01, e, = 0.99
no other deterministic strategy q is feasible, that is all other ones have ¢; > ¢

g2 is the best deterministic strategy but it does not comply with the previous basic
result of constructing the optimal strategy because it decides for 2 for likelihood ratio 1
but decides for 1 for likelihood ratios 0.01 and 10. Why is that?

we can construct a randomized strategy which attains €; and reaches lower ¢5:

(26)

g(z1) =q(z3) =1, qlzs) = {2 1/3 of the time

1 2/3 of the time

For such strategy, €1 = 0.03,¢, = 0.7.
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Neyman Pearson : Note on Randomized Strategies (2)
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This is not a problem but a feature which is caused by discrete nature of X (does not

happen when X is continuous).

This is exactly what the case of = p(x|2)/p(x|1) is on slide 18.
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Neyman Pearson : Notes (1)

The task can be generalized to 3 hidden states, of which 2 are dangerous,
K ={2,D1,D5}. It is formulated as an analogous problem with two inequality
constraints and minimization of classification error for 2.

Neyman’'s and Pearson’s work dates to 1928 and 1933.

A particular strength of the approach lies in that the likelihood ratio r(x) or even
p(x|2) need not be known. For the task to be solved, it is enough to know the p(z |1)
and the rank order of the likelihood ratio.
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Minimax Task

23/28
K ={1,2,..,N}
X set of observations
Conditionals p(x | k) are known Vk € K
The priors p(k) are unknown or do not exist
q: X — K strategy
The Minimax Task looks for the optimum strategy ¢* which minimizes the classification
error of the worst classified class:
¢* =argminmaxe(k), where (27)

¢:X—K kEK

k)= > x|k (28)

x: q(x)Fk

Example: A recognition algorithm qualifies for a competition using preliminary tests.
During the final competition, only objects from the hardest-to-classify class are used.

For a 2-class problem, the strategy is again constructed using the likelihood ratio.
In the case of continuous observations space X, equality of classification errors is
attained: €; = €9

The derivation can again be done using Linear Programming.
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Example: Male/Female Recognition (Minimax) C
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Classification errors for 1 and 2, for y1; = "7 and pig = 0.
1.0
e===  max(€p,€xs )
0.8‘ - EF
o ‘M
o
S 0.6/
9
©
O
< 0.4
7))
©
G
0.2
0.0

The optimum is attained for i = 8, €1 = .162, e = .13. The corresponding strategy is as
shown on slide 11.
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Minimax: Comparison with Bayesian Decision with
Unknown Priors 25 /28

Consider the same setting as in the Minimax task, but let the priors p(k) exist but be
unknown.

The Bayesian error € for strategy q is

e=> > pxk)=> pk) > plx|k) (29)

k x:q(x)#k k :\cq(m);ék:

We want to minimize € but we do not know p(k)'s. What is the maximum it can
attain? Obviously, the p(k)'s do the convex combination of the class errors €(k); the
maximum Bayesian error will be attained when p(k) = 1 for the class k£ with the highest
class error e(k).

Thus, to minimize the Bayesian error € under this setting, the solution is to minimize
the error of the hardest-to-classify class.

Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors
lead to the same solution.
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Wald Task (1)

Let us consider classification with two states, K = {1, 2}.

We want to set a threshold € on the classification error of both of the classes: ¢; < ¢,
€r < €.

It is clear that there may be no feasible solution if € is set too low.
That is why the possibility of decision “do not know” is introduced. Thus D = K U{?}

A strategy q : X — D is characterized by:

€ = Z p(x|1) (classification error for 1) (30)
2 q(2)=2

€g = Z p(x|2) (classification error for 2) (31)
z: g(z)=1

K1 = Z p(x|1) (undecided rate for 1) (32)
2 q(1)=7

Ko = Z p(x|2) (undecided rate for 2) (33)

x:q(x)="
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Wald Task (2)
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The optimal strategy ¢*:
* = argmin max k; 34
4 q:)%'—>D i={1,2} ( )
subject to: €1 <€, €3 <€ (35)
The task is again solvable using LP (even for more than 2 classes)
The optimal solution is again based on the likelihood ratio
p(z|1)
r(x) = (36)
D= a2

The optimal strategy is constructed using suitably chosen thresholds p; and pup such
that:

i

2 forr(x) <y
q(x) =491 forr(x) > up (37)
7 for w < r(x) < pp

\
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Example: Male/Female Recognition (Wald)

Solve the Wald task for e = 0.05.

p(z|F)

h1 197 | .145 | .094 | .017
ho || .O77 | .299 | .145 | .017
hs || .001 | .008 | .000 | .000

w1 w2 w3 Wy

r(z) = p(x]2)/p(=[1)
hi || 0.056 | 0.034 | 0.117 | 0.647
ho || 0.065 | 0.237 | 2.814 | 2.235
hs || 2.000 | 1.750 o0 00

w1 W9 Ws Wy

p(z{M)

hq .011 | .005 | .011 | .011
ho || .005 | .071 | .408 | .038
hs || .002 | .014 | .255 | .169
w1y w2 w3 Wy
rank, and ¢*(x) = {1,2,7}

h1 2 1 4 6

ho 3 5 | 10 9

hs 3 { 11 12

w1 W9 Ws Wy

Result: e; = 0.032, €; =0, kg = 0.544, k1 = 0.487

(7“4<,LL[<’I“5, 7“10<,Lbh<OO)

28/28
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