
Introduction to FreeRTOS

We will use FreeRTOS as our example

Other popular RTOSes include Zephyr, NuttX, VxWorks. Varying
licensing argreements.

Like a programming language: once you learn one RTOS, concepts
transfer to others.
FreeRTOS licensed under MIT license - very permissive.

Can be used in commercial applications and users retain all ownership of
their IP.

&
-
| S—

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Code Structure of FreeRTOS

FreeRTOS
Source
—tasks.c FreeRTOS source file - always required
—list.c FreeRTOS source file - always required
—queue.cC FreeRTOS source file - nearly always required
—timers.c FreeRTOS source file - optional
—event groups.c FreeRTOS source file - optional
—croutine.c FreeRTOS source file - optional
Figure 2. Core FreeRTOS source files within the FreeRTOS directory tree
FreeRTOS
Source

portable Directory containing all port specific source files

L—[etc.]

—[compiler 1] Directory containing port
—[architecture 1] Contains files for
—[architecture 2] Contains files for
L—[architecture 3] Contains files for
'—[compiler 2] Directory containing port

—[architecture 1] Contains files for
—[architecture 2] Contains files for

—MemMang Directory containing the 5 alternative heap allocation source files

files specific to compiler 1
the compiler 1 architecture 1 port
the compiler 1 architecture 2 port
the compiler 1 architecture 3 port
files specific to compiler 2

the compiler 2 architecture 1 port
the compiler 2 architecture 2 port

Figure 3. Port specific source files within the FreeRTOS directory tree

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

16

Data Types and Naming Conventions

Port specific data types
TickType_t - holds tick count value

BaseTlype_t - Base type value which is most efficient data type on a
given system. Typically the word size.

Naming Conventions: Variable Names

Variable Names - prefixes tell their type

Prefix Type
C char
S int16_t (short)

int32_t (long)

X

BaseType t and other non-standard types
(structs, task handles, queue handles, etc.)

18

Naming Conventions: Function Names

Function Names - prefixed with return type and file they are defined
In.

Function Description
vTaskPrioritySet() returns a void and is defined within task.c.
XxQueueReceive() returns a variable of type BaselType_tandis

defined within queue.c.

pvTimerGetTimerlD() returns apointer to void and is defined within
timers.c.

19

Template Project

int main(void)
{

/* Perform any hardware setup necessary. */
prvSetupHardware () ;

/* —--- APPLICATION TASKS CAN BE CREATED HERE --- */

/* Start the created tasks running. */
vTaskStartScheduler() ;

/* Execution will only reach here if there was insufficient heap to
start the scheduler. */

for(;;)

return O;

Listing 1. The template for a new main() function

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016. 20

Creating Tasks

BaseType t xTaskCreate(TaskFunction t pvTaskCode,
const char * const pcName,
uintlé_t usStackDepth,
void *pvParameters,
UBaseType t uxPriority,
TaskHandle t *pxCreatedTask) ;

Listing 13. The xTaskCreate() APl function prototype
Parameters
« pvTlaskCode - pointer to C function that implements that task
« pcName - Descriptive name for the task
« usStackDepth - size of stack to be allocated by the kernel when creating the stack (in words)
 pvParameters - pointer to void to pass in parameters. Need to cast void pointer to correct type
inside the function to use it.
» uxPriority - Defines the priority of the task
 pxCreatedTask - handle to created task

Return
 pdPass or pdFail -indicates if task was successfully created.

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016. 21

Printing to Terminal

void vTask2(void *pvParameters)
{
{ const char *pcTaskName = "Task 2 is running\r\n";

const char *pcTaskName = "Task 1 is running\r\n"; . . . % . . L. .
volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */ volatile uint32 t ul; /* volatile to ensure ul is not optimized away. */

void vTaskl(void *pvParameters)

* As per most tasks, this task is implemented in an infinite loop. *
/* As per most tasks, this task is implemented in an infinite loop. */ éor(_?) ! P P /

for(;;) {
{ % . . . /* Print out the name of this task. */
/* Print out the name of this task. */ vPrintString(pcTaskName) ;

vPrintString(pcTaskName) ;
/* Delay for a period. */

/* Delay for a perioé. */ for(ul = 0; ul < mainDELAY LOOP COUNT; ul++)

for(ul = 0; ul < mainDELAY LOOP_COUNT; ul++) { - -

{) . .))) /* This loop is just a very crude delay implementation. There is
/* This loop is just a very crude delay implementation. There is nothing to do in here. Later examples will replace this crude
nothing to do in here. Later examples will replace this crude loop with a proper delay/sleep function. */
loop with a proper delay/sleep function. */ }

int main(void) {
xTaskCreate (vTaskl, “Task 1”7, 1000, NULL, 1, NULL)
xTaskCreate (vTask2, “Task 2”7, 1000, NULL, 1, NULL)
vTaskStartScheduler () ;

Ne

Ne

for(;;)

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016. 22

Printing to Terminal Example Output

int main (void) {
xTaskCreate (vTaskl, “Task 1”7, 1000, NULL, 1, NULL)
xTaskCreate (vTask2, “Task 2”7, 1000, NULL, 1, NULL)
vTaskStartScheduler () ;

e

e

for(;;)

¢t C:\WINDOWS\system32\cmd.exe - rtosdemo]

} C:\Temp>rtosdemo
Task 1 is r»unning
Task 2 is running
- - - Task 1 is running
Attime t1, Task 1 Attime t2 Task 2 enters the Running [\ Task 2 is running
. oo Task 1 is r»unning
enters the Running state and executes until time t3 - at Task 2 is »unning
: : Task 1 is running
state gnd executes whlch_ point Task1 re-enters the 2 is running
until time t2 Running state Task 1 is running
o 7 Task 2 is running
k / Task 1 is »unning

Task 2 is running
Task 1 is r»unning

: ' p ' 2 is running

-rEiSL(1 ?—-—-—j f;--- ---*

Task2 = & -

’ t1 t2 t3 Tlme Figure 10. The output produced when Example 1 is executed’

Figure 11. The actual execution pattern of the two Example 1 tasks

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

Example: Priorities

/* Define the strings that will be passed in as the task parameters. These are The scheduler runs in the tick interrupt

defined const and not on the stack to ensure they remain valid when the tasks are Tick but selects the same task. Task 2 is

executing. */ ; . .) .
interrupt

static const char *pcTextForTaskl = "Task 1 is running\r\n"; occursp always in the Runn'ng state and Task 1 is

static const char *pcTextForTask2 "Task 2 is running\r\n";

?nt main(void) Kernel

/* Create the first task at priority 1. The priority is the second to last
parameter. */
xTaskCreate (vTaskFunction, "Task 1", 1000, (void*)pcTextForTaskl, 1, NULL); Task 1

always in the Not Running state

/* Create the second task at priority 2, which is higher than a priority of 1.
The priority is the second to last parameter. */
xTaskCreate (vTaskFunction, "Task 2", 1000, (void*)pcTextForTask2, 2, NULL); TaSk 2

/* Start the scheduler so the tasks start executing. */
vTaskStartScheduler () ;

/* Will not reach here. */
return 0;

} Figure 14. The execution pattern when one task has a higher priority than the other

Listing 21. Creating two tasks at different priorities

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016. 24

Three Options

Revisiting Not Running State

Suspended
Ready
Blocked

Not Running
(super state)

called

Suspended

o

vTaskSuspend()
called

vTaskResume()

Event

vTaskSuspend()

called

N\

vTaskSuspend()
called

Running

Blocking API
function called

rd

/

Figure 15. Full task state machine

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016. “~

Example: Printing with better delay using blocked
state

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

const TickType_ t xDelay250ms = pdMS_TO_TICKS(250);

/* The string to print out is passed in via the parameter. Cast this to a
character pointer. */
pcTaskName = (char *) pvParameters;

/* As per most tasks, this task is implemented in an infinite loop. */
for(;;)
{

/* Print out the name of this task. */

vPrintString(pcTaskName) ;

/* Delay for a period. This time a call to vTaskDelay() is used which places
the task into the Blocked state until the delay period has expired. The
parameter takes a time specified in ‘ticks’, and the pdMS _TO TICKS() macro

is used (where the xDelay250ms constant is declared) to convert 250
milliseconds into an equivalent time in ticks. */

vTaskDelay(xDelay250ms) ;

Listing 23. The source code for the example task after the null loop delay has been
replaced by a call to vTaskDelay()

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

26

Example: Sending tasks to blocked state

¢\ C:\WINDOWS\system32\cmd.exe - rtosdemo p

R——— 4 - When the delay expires the scheduler moves the
sk, 19 suAhing 2 - Task 1 prints out its string, then it toob tasks back into the ready state, where both execute

Task 1‘. »unn ing . . .) .
Task 2 is running enters the Blocked state by calling again before once again calling vTaskDelay() causing

is running

38 sumnSig vTaskDelay(). them to re-enter the Blocked state. Task 2 executes

is r»unning

is running . ‘ first as it has the higher priority.

is running
is running

is running
is running
is running

is running TaSk 2 (’ : J

1
2
1
2
1
2
1
-
1
2
1
2
1
2
1

is running P
is »unning T k 1 :
is running aS : Tﬁ

dle

Figure 16. The output produced when Example 4 is executed

R Tme

1 - Task 2 has the highesf priority so runs first. It [\
prints out its string then calls vTaskDelay() - and in so 3 - At this point both application tasks are in
doing enters the Blocked state, permitting the lower the Blocked state - so the Idle task runs.

priority Task 1 to execute.

Figure 17. The execution sequence when the tasks use vTaskDelay() in place of the
NULL loop

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide. 2016.

FreeRTOSConfig.h

- Configuration file used to set some of the common options for the

kernel
. _ /* Defines needed by FreeRTOS to implement CMSIS RTO0S2

// <o>Minimal stack size [words] <@-65535> API. Do not change! %/
// <i> Stack for idle task and default task stack in #define configCPU_CLOCK_HZ (SystemCoreClock)
words. _ #define configSUPPORT_STATIC_ALLOCATION 1
// <1> Default: 128 | #define configSUPPORT DYNAMIC ALLOCATION 1
#define configMINIMAL_STACK_SIZE ((uintl16_t)(128)) #define configUSE_PREEMPTION 1

_ #define configUSE_TIMERS 1
// <o>Total heap size [bytes] <0-0xFFFFFFFF> #define configUSE_MUTEXES 1
// <1> Heap memory size in bytes. #define configUSE_RECURSIVE_MUTEXES 1
// <1> Detault; 8192 | #define configUSE_COUNTING_SEMAPHORES 1
#define configTOTAL_HEAP_SIZE ((size_t)8192) #tdefine configUSE_TASK_NOTIFICATIONS 1

| #define configUSE_TRACE_FACILITY 1

// <o>Kernel tick frequency [Hz] <@-0xFFFFFFFF> #define configUSE_16_BIT_TICKS 0
// <i> Kernel tick rate in Hz. #define configUSE_PORT_OPTIMISED TASK_SELECTION 0
// <1> Default: 1000 | #define configMAX_PRIORITIES 56
#define configTICK_RATE_HZ ((TickType_t)1000) #define configKERNEL_INTERRUPT_PRIORITY 255

Ex.1: Task creation with LED blink

Basic task creation workflow
Set up and initialization as usual
Write tasks according to specified prototype

In main
Call initialization functions
Create tasks
Start scheduler

Ex.1: Task creation with LED blink

// Task to toggle LED
static void toggleledTask (void *pvParameters)

{
const TickType t xDelay = pdMS TO TICKS(500);

while (1)
{
/* Simply toggle the LED every xDelay ms,
blocking between each toggle. */
toggleLED (LED PIN);
vTaskDelay(nglay);

Ex.1: Task creation with LED blink

// Main function where initialization is performed and tasks are created.
int main ()

{

// Call initialization functions

init flash(); // Set up flash

init clock(); // Configure 84 MHz clock rate
init gpio(); // Initialize GPIO for LED

// Create tasks

const size t xRegTestStackSize = 250U; // Set value for stack for each task.

xTaskCreate (toggleLedTask, // Task function
"Blink 1", // Optional name for task
xRegTestStackSize, // Task stack size
(void*) &led 1, // void pointer to optional parameters
1, // Task priority

NULL) ;

// Start the scheduler
vTaskStartScheduler () ;

// Infinite while loop.

while (1) ;

// Handle to created task

Should never get here unless the scheduler fails to start.

Ex. 2: Passing parameters into task using
pvParameters

02 passing parameters blink led.c

// New type to hold information about LED
typedef struct param led ({

uint32 t delay ms;

uint8 t led pin;
} param led;

// Create param led struct to hold delay and pin number for LED.

param led led 1 = {200, 5}; // delay ms = 200, led pin = 5

// Task to toggle LED
static void togglelLedTask (void *pvParameters)

{

const param led * led info = (param led *) pvParameters;
const TickType t xDelay = pdMS TO TICKS (led info->delay ms);

while (1)

{
/* Simply toggle the LED every xDelay ms, blocking between each toggle. */

togglelED (led info->led pin);
vTaskDelay (xDelay) ;

Ex. 3: Multiple tasks with two serial prints

// Initialize and configure USART

void init uart()
RCC->AHB1ENR |= RCC_AHBlENR_GPIOAEN;
RCC->APB1ENR |= RCC_APBIENR_USARTZEN;

// Configure PA2 and PA3 as alternate functions USART2

GPIOA->MODER &= ~(GPIO MODER MODE2 | GPIO MODER MODE3) ;

GPIOA->MODER |= (0bl0 << GPIO MODER MODER2 Pos | 0bl0 << GPIO MODER MODER3 Pos) ;
GPIOA->AFR[0] |= (0b0111l << GPIO AFRL AFSEL2 Pos | 0b011l << GPIO AFRL AFSEL3 Pos);
USART->CR1l |= (USART CR1 UE);

USART->CR1l &= ~(USART CR1 M | USART CR1 OVERS);

USART->CR2 &= ~ (USART CR2_STOP);

// Set baud rate to 115200
USART->BRR |= (22 << USART BRR DIV Mantissa Pos | 13 << USART BRR DIV Fraction Pos);
USART->CR1 |= (USART CR1 TE | USART CR1 RE);

// Simple function to send characters over USART.
void sendChar (uint8 t data) {
USART->DR = (data & USART_DR_DR);
while (! ((USART->SR >> USART SR TC Pos) & 1));

Ex. 3: Multiple tasks with two serial prints

#define USART USART?2
#define UART DELAY MS 2000

// Task to print string over USART
static void printStringTask (void *pvParameters) {

// Strings to print from tasks. , .
uint8 t * str = (uint8 t *) pvParameters;

const uint8 t strl[64] = "Hello from Task 1.\n"; 71 okT Del B
const uint8 t str2[64] = "Hello from Task 2.\n"; const Iicklype t xbelay =
— deS_TO_TICKS (UART_DELAY_MS) ;
int i = 0;
while (1) {
do {
sendChar (str[i]);
i++;
}
while (str[1] != 0);
i =0;

vTaskDelay (xDelay) ;

Ex. 3: Multiple tasks with two serial prints

Which task prints first? How could you change this?

Change duty cycle so that Task 1 prints once a second, Task 2 prints
every other second.

How do you expect the tasks to execute now?

Preemptive scheduling

Tasks are assigned priorities

lower priority tasks . oriority

A

Task 3

Task 2

Q: How are tasks and their priorities A
iff tthanint ts?
different than interrupts Task 1

Most common scheduling algorithm in real-time systems

Task 2

Task 1

Higher priority tasks can preempt lower priority tasks to take the CPU
Need to be careful to assign priorities appropriately or you can starve

>

Ibrahim, Dogan. ARM-Based Microcontroller Multitasking Projects: Using the FreeRTOS Multitasking Kernel.

Time

Ex. 4: Simple preemption example: poll button and
blink LED and single print

// Task to poll button
static void pollButtonTask (void *pvParameters) {
const TickType t xDelay = pdMS TO TICKS(100); // Schedule every 100 ms

volatile int 1i;

while (1) {
volatile int pin val = 1;

// Loop to check if the button is pressed (button is pulled low when pressed)
// and blink LED rapidly while the button is pressed using a dummy loop.
while (pin val) {
pin val = ! ((GPIOC->IDR >> BUTTON PIN) & 1);
1f(pin val) {
toggleLED (LED PIN);
for(i=0; 1 < 400000; i++); // Dummy loop to do a delay.

}
vTaskDelay (xDelay) ;

Ex. 4: Simple preemption example: poll button and
blink LED and single print

// Main function where initialization is performed and tasks are created.
int main ()

{

// Call initialization functions

init flash(); // Set up flash

init:clock(); // Configure 84 MHz clock rate
init gpio(); // Initialize GPIO for LED
init uart(); // Initialize UART

// Create tasks
const size t xRegTestStackSize = 250U; // Set value for stack for each task.

xTaskCreate (toggleLedTask, // Task function
"Blink 1", // Optional name for task
xRegTestStackSize, // Task stack size
(void*) &led 1, // void pointer to optional parameters
1, B // Task priority
NULL) ; // Handle to created task

xTaskCreate (printStringTask, "Print Testl", xRegTestStackSize, (void*)é&strl, 2, NULL);
xTaskCreate (pollButtonTask, "Poll Button", xRegTestStackSize, NULL, 3, NULL);

// Start the scheduler
vTaskStartScheduler () ;

// Infinite while loop. Should never get here unless the scheduler fails to start.
while (1);

Ex. 4: Questions

What will execution look like?
Will the other tasks get any CPU time?

What behavior do you expect to see if we change the priority of the
print task such that it is higher than that of the poll button task?

Task states

What happens if you press and release the button quickly? When does
the print occur?

What happens if you hold the button for several seconds and then
release it? When does the print occur then?

Why are these two cases different?
How can we make this example more efficient?

Summary

To understand the following key concepts of Real-time Operating
Systems through examples in FreeRTOS

Task creation - tasks are like wrappers for C functions. They should
never return and yield to the scheduler once they are done doing their
work.

Basic scheduling - The scheduler decides what task should be running at
any given time.

Task priorities and preemption - Task priorities help the scheduler
decide between the importance of different tasks. Can be useful to
distinguish between hard and soft deadlines and make sure they are met
appropriately.

References

Ibrahim, Dogan. ARM-Based Microcontroller Multitasking Projects:
Using the FreeRTOS Multitasking Kernel. Netherlands, Elsevier
Science, 2020.

Barry, Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-
On Tutorial Guide. 2016.

