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Graph Matrices Network Matrices

[New10, EK10]

Adjacency Matrix

@ The adjacency matrix A of a simple graph is the N x N matrix
with element A;; such that

A 1 if there is an edge between vertices j and ¢,
Y1 0 otherwise

@ The adjacency matrix of a directed network has matrix elements

Az‘j =

1 if there is an edge from j to 1,
0 otherwise
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Graph Matrices Network Matrices

[New10]

Cocitation Matrix

@ Convenient to turn a directed network into an undirected one for the
purposes of analysis

@ The cocitation of two vertices ¢ and j in a directed network is the
number of vertices that have outgoing edges pointing to both 7 and j.

e The cocitation of two papers is the number of other papers that cite
both.
o AjAji, =1if i and j are both cited by k and zero otherwise.

@ The cocitations C;; of i and j is

N N
Cij =Y AwAje = > _ AipAf;
k=1 k=1
@ The cocitation matrix C is the N x N matrix with elements Cj;, i.e.
C=AA"
e C is a symmetric matrix: CT = (AAT)T = AAT =C
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Graph Matrices Network Matrices

[New10]

Bibliographic Coupling

@ The bibliographic coupling of two vertices in a directed networkis
the number of other vertices to which both point.

e For instance in a citation network: the bibliographic coupling of two
papers i and j is the number of other papers that are cited by both 4
and j.

o Ap;Ar; =1if i and j both cite k and zero otherwise.

@ The bibliographic coupling B;; of i and j is

N N
Bij = ZAkiAkj = ZAﬁAkj
k=1 k=1

o The bibliographic coupling matrix B is the n X n matrix with
elements B;;, i.e.
B=ATA

e B is a symmetric matrix: BT = (ATA)T = ATA =B
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Bi-adjacency Matrix

Graph Matrices Network Matrices

[New10, BJP17]

Bipartite networks

also called two-mode networks in SNA N°]

o

o V=VTuUVly, VlﬂVQ:(Z)

@ movies X actors

@ articles x authors

@ timestamps x active Wifi access points (AP)

@ people x groups

o Let Ny = |V1’ and Ny = ‘VQ‘,
then the bi-adjacency matrix B ®" is N; x Ny matrix having
elements
B — 1 if there is an edge between vertices n; € V1 and n; € Vs,

K 0 otherwise
@ Also called incidence matrix ™", bipartite adjacency matrix [EMOSESS
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Graph Matrices Network Matrices

Utednici 5. dynastie a jejich tituly

@ bipartitni sit:
Ufednici a jejich tituly

@ modré malé tecky ... muZi

@ Cervené malé tecky ...Zeny

@ zelené malé tecky ... vezifi

@ Zluté malé tecky ... kréalovsti

@ azurové krouzky ...soudci

o fialové krouzky ... kn&zi

@ Cervené krouzky ... pokladnice

@ svétle zelené krouzky . ..sypka

@ tmavé zelené krouzky ... vezifi

° .

@ Cervené elipsy .. .vysoci hodnostaFi Fruchtermanovo-Reingoldovo rozvrzen{
(pruziny)
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Graph Matrices Network Matrices
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Graph Matrices Network Matrices

[New10, BJP17]

Adjacency and Bi-adjacency Matrix

_ ®\V1| B
A= < B” ®|V2| )

Bipartite network and its bi-adjacency Matrix
TODO
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Graph Matrices Network Matrices

[Die05, New10]

Incidence Matrix

@ The incidence matrix B by ! of a simple undirected graph

G(V, E) with N vertices V = {v1,...,un} and M edges
E ={ei,...,en} over the 2-element field F» = {0,1} is defined as
the N x M matrix with elements B;; such that

_ 1 ifo; € €
Bij = { 0 otherwise

e The edge incidence matrix by Newman % of a simple undirected

graph G(V, E) with N vertices and M edges is an M x N matrix B
with elements B;;

+1 if end 1 of edge ¢ is attached to vertex 7,
B;j =< —1 ifend 2 of edge i is attached to vertex j,
0  otherwise

e Each edge has two arbitrarily designated ends, end 1 and end 2.
e Each row of the matrix has exactly one +1 and one —1 element.
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Graph Matrices Network Matrices

[New10, BJP17]

Projection

@ A possible way how to analyze bipartite graphs using simple graph
methods.
@ Significant information on the given network might be lost.

Definition 1 (Based on Definition 3 [BJP17], p.3)

Let G(V1, Va, E) be a bipartite graph. The one-mode projection of the
bipartite graph G for the vertex V; with respect to the vertex set V;,

i,j € {1,2}, i # j is the unipartite (one-mode) network G'(V;, E’) where
V(G') =U and wv € E(G") if N(u) N N(v) # 0.

Projection of a bipartite network - items and groups
TODO
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Graph Matrices Network Matrices

Projection Properties | "

@ Let B be a bi-adjacency matrix of G(V1, Vo, E), then the total
(1)

number Pij of vertexes v € V5 to which both i, j € V; belong is

[Va [Val
1
CAE WA

o The product B;,Bji, will be 1 if and only if 4 and j are both linked to
the same vertex k from the other vertex set

@ Example: relations of items and their groups

@ In matrix form
P = BB”
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Graph Matrices Network Matrices

I [New10]

Projection Properties |

° Pi(il) is the number of vertexes j € V5 to which ¢ € V7 is linked

[Va| [Val

P = 232 S By
k=1

e assuming By, € {0,1}

@ The other one-mode projection onto Vo

P® —BTB
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Graph Matrices Network Matrices

Undirected Graph - Node Degree ™

@ The degree of a vertex in a undirected graph

N
k; = Z Aij
j=1

@ The number of ends of edges

N
2M = ki
i=1
@ The number of edges
1 1
M= 2;1% = 2%:,413
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Graph Matrices Network Matrices

Undirected Graph - Density ™

@ The mean degree c of a vertex in a undirected graph

N
1 2M
c=§ k=T
=1
@ The maximum possible number of edges in a simple graph

(g) - %N(N— 1)

@ The connectance or density p of a graph is the fraction of edges
that are actually present (0 < p <1).

M 2M c

T TNWN-1) N-1
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Graph Matrices Network Matrices

[New10]

Directed Graph - Vertex Degree

@ The in-degree k:;" and out-degree k;?”t of a vertex in a directed

graph
) N N
I WOREE oY
j=1 i=1

@ The number of edges
N N
M=D kM=) k"= Ay
i=1 j=1 ij

@ The mean in-degree c;, and the mean out-degree ¢, of a vertex
in a directed graph are equal:

1L 1
DY
]:

=5

=1
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Graph Matrices Network Matrices

Paths in Simple Graph ™

@ The element A;; is 1 if there is an edge from ¢ to j, and 0 otherwise
in simple graphs.

@ The product A;;Ay;j is 1 if there is a path of length 2 from j to i via
k, and 0 otherwise.

@ The total number Ni(f) of paths of length two from j to i via any
other vertex is

N
2 = ZAikAkj = [A%];
=1

@ Paths of length three from j to i via [ and k in that order

N(3) ZAzkAkﬁAKJ [A%];
=1

o Paths of an arbitrary length r
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Graph Matrices Network Matrices

Cycles in Simple Graph ™

@ The number of paths of length r that start and end at the same
vertex i is [A"];.

@ The total number L, of cycles (“loops”) of length r anywhere in a
network is (the sum over all possible starting vertexes 7)

N
Ly =) [A]; = TrA".
=1

@ The loop 1 — 2 — 3 — 1 is considered different from the loop
2—=-3—=>1—=2.

@ Theloops1 -2 —=3—1and 1 — 3 — 2 — 1 traversed in opposite
directions are distinct, too.
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Graph Matrices Network Matrices

[New10]

Cycles in Simple Graph and Eigenvalues

e Undirected graph
o The adjacency matrix A is symmetric, i.e. A = QKQT,
where Q is the orthogonal matrix of eigenvectors and
K is the diagonal matrix of eigenvalues k; of A.
o A" = (QKQT)T — QKT‘QT
o L, =TrA" =Tr(QK"QT) = Tr(QTQK") = TTK" = Y, kT
o Directed networks
o Every real matrix can be written in the form A = QTQ7,
where Q is an orthogonal matrix and
T is an upper triangular matrix using the Schur decomposition.
e Since T is triangular, its diagonal elements are its eigenvalues.
o The eigenvalues are the same as the eigenvalues of A.

Ax = QTQ7x = kx ox QT (1)
TQ x = kQ'x )

o L, =TrA" = Tr(QT"Q") = TH(QTQT") = T'T" = 3, k!
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Centrality Measures Path Based Centralities

[BEO6, Weh13]

Centrality Measures / Ranking

Measuring the importance/prominence of a node within the network
o Degree Centrality (Node Activity)
o Betweenness Centrality (Intermediate Position)
@ Closeness Centrality (Distance to other nodes)
e Eigenvector Centrality (Important nodes have important friends)
e Power Centrality (Close to hubs)
o Page Rank
Evaluation of the location actors in the network
@ Insight into various roles and groupings in a network
Connectors, mavens, leaders, bridges, isolates, broker, hubs

°
@ Where are the clusters and who is in them,

@ Who is in the core of the network? Who is on the periphery?
°

What is a single point of failure?
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Centrality Measures Path Based Centralities

[Fre79, BEO6, Weh13]

Degree Centrality

What is the degree of an actor? How active is an actor?

v
™ = = — oyt
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Centrality Measures Path Based Centralities

[Fre79, BEO6, Weh13]

Degree Centrality

What is the degree of an actor? How active is an actor?

Degree centrality

is a count of the number of edges incident upon a given vertex.
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Centrality Measures Path Based Centralities

[Fre79, BEO6, Weh13]

Degree Centrality

What is the degree of an actor? How active is an actor?

Degree centrality

is a count of the number of edges incident upon a given vertex.

Degree centrality for actor ¢

cszaij =Al
J

@ where A is the adjacency matrix

@ 1 is a vector of 1 with size V.
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Centrality Measures Path Based Centralities

[Fre79, BEO6, Weh13]

Degree Centrality

What is the degree of an actor? How active is an actor?

Degree centrality

is a count of the number of edges incident upon a given vertex.

Degree centrality for actor ¢

cg:Zaij = Al
J

@ where A is the adjacency matrix

@ 1 is a vector of 1 with size V.

Normalized degree centrality for actor ¢

d Ejaij Al

CiT N1 N-1 :
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Centrality Measures Path Based Centralities

[Weh13]

Examples of degree centrality

Examples for degree centrality ¢; and normalized degree centrality ¢/;:
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Centrality Measures Path Based Centralities

[Weh13]

Examples of degree centrality

Examples for degree centrality c; and normalized degree centrality ¢/;:

& = c’ilzl

=1 02—025

& =l c3_025 ‘ J
& =1 04—025

& c5—025
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Centrality Measures Path Based Centralities

[Weh13]

Examples of degree centrality

Examples for degree centrality c; and normalized degree centrality ¢/;:

d=1 5=025 | d=1 ¢4 =0.25

=1 c3_025 cf = c5—025 ) )
d=1 ¢1=025

cg =0.25
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Centrality Measures Path Based Centralities

[Weh13]

Examples of degree centrality

Examples for degree centrality ¢; and normalized degree centrality ¢/;:

= =0.5

d c?l C/<21 f =2 C,?ZO'E’
ol — Jd—1 c2=2 J5=05 d
1 1 ?l 3 CgZQ 0,2:0.5
od=1 02—025 cg=1 04—025 d=2 ¢1=05
g=1 c 5=0.25 =1 5 = 025 ) c%=2 Jd9=05
=1 c4—025 d—2 /05
d
G c5—025 ) (all actors identical) ko

Y i
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Centrality Measures Path Based Centralities

[Fre79, Dod09]

Closeness centrality

Idea: Nodes are more central if they can reach other nodes ‘easily.’

Measures average shortest path from a node to all other nodes.
Closeness Centrality for node ¢ as

N -1
> ji(distance from i to j)

c_
c; =

Range is 0 (no friends) to 1 (a single hub).

~ fiiae 3
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Centrality Measures Path Based Centralities

[Fre79, Dod09]

Closeness centrality

@ |dea: Nodes are more central if they can reach other nodes ‘easily.’
@ Measures average shortest path from a node to all other nodes.
@ Closeness Centrality for node i as

o N -1

* >j jxi(distance from i to 7)

@ Range is 0 (no friends) to 1 (a single hub).

Meaning
@ Unclear what the exact values of this measure tells us because of its
ad-hocness.
@ General problem with simple centrality measures: what do they
exactly mean?
@ Perhaps, at least, we obtain an ordering of nodes in terms of
‘importance.’ ).

October 16, 2025 24 /44
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Centrality Measures Path Based Centralities

[Dod09]

Betweenness centrality

@ Betweenness centrality is based on shortest paths in a network.

o ldea: If the quickest way between any two nodes on a network
disproportionately involves certain nodes, then they are ‘important’ in
terms of global cohesion.

@ For each node ¢, count, over all pairs of nodes = and y, how
many shortest paths pass through :.

o Call frequency of shortest paths passing through node i the
betweenness of i, B; .

@ Note: Exclude shortest paths between ¢ and other nodes.
o Note: works for weighted and unweighted networks.

@ Role played by shortest paths justified by small-world phenomenon
(Milgram’s experiment).
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Centrality Measures Path Based Centralities

[Dod09]

Betweenness Centrality - Complexity

Consider a network with N nodes and M edges (possibly weighted).
Computational goal: Find (g) shortest paths between all pairs of
nodes.
Traditionally Floyd-Warshall algorithm used.
Computation time grows as O(N3).
See also:
@ Dijkstra’s algorithm for finding the shortest path between two specific
nodes, and
@ Johnson’s algorithm which outperforms Floyd-Warshall for sparse
networks:

O(MN + NZ?logN)

Newman (2001) and Brandes (2001) independently derived much
faster algorithms.
Computation times grow as:

@ O(MN) for unweighted graphs, and

@ O(MN + NZ2logN) for weighted graphs.
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Centrality Measures Path Based Centralities

[Dod09]

Shortest path between node i and all others

@ Consider unweighted networks.
@ Use breadth-first search:

@ Start at node ¢, giving it a distance d = 0 from itself.
@ Create a list of all of i's neighbors and label them being at a distance

d=1.
© Go through list of most recently visited nodes and find all of their
neighbors.
@ Exclude any nodes already assigned a distance.
© Increment distance d by 1.
@ Label newly reached nodes as being at distance d.
@ Repeat steps 3 through 6 until all nodes are visited.
@ Record which nodes link to which nodes moving out from i (former
are ‘predecessors’ with respect to i's shortest path structure).
@ Runs in O(M) time and gives N shortest paths.
e Find all shortest paths in O(MN) time

@ Much, much better than naive estimate of O(M N?).

Radek Maf¥ik (radek.marik@fel.cvut.cz) Network Properties October 16, 2025 27 /44



Centrality Measures Path Based Centralities

[New01, Dod09]

Newman's Betweenness algorithm

© Set all nodes to have a value ¢;; = 0,5 =1,..., N (c for count).
@ Select one node 1.

© Find shortest paths to all other N — 1 nodes using breadth-first
search.

@ Record # equal shortest paths reaching each node.

© Move through nodes according to their distance from 4, starting with
the furthest.

O Travel back towards i from each starting node j, along shortest
path(s), adding 1 to every value of ¢;; at each node k along the way.

@ Whenever more than one possibility exists, a portion according to
total number of short paths coming through predecessors.

© Exclude starting node j and i from increment.

© Repeat steps 2-8 for every node ¢ and obtain betweenness as
Bj =YL, i
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Centrality Measures Path Based Centralities

[New01, Dod09]

Newman's Betweenness - notes

@ For a pure tree network, ¢;; is the number of nodes beyond j from i's
vantage point.
o For edge betweenness, use exact same algorithm but now
© j indexes edges, and
@ we add one to each edge as we traverse it.
e For both algorithms, computation time grows as O(M N) and space
for O(N + M) integers (N nodes, M arcs).
@ Both bounds infeasible for large networks,
where typically N ~ 10° and M ~ 10'!.
@ For sparse networks with relatively small average degree, we have a
fairly digestible time growth of O(N?).
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Centrality Measures Path Based Centralities

[New01, Dod09]

Newman's Betweenness - examples

leaves
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Centrality Measures ~ Spectral Centralities

[Dod09, New10]

Important nodes have important friends

@ Define x; as the "importance” of node 1.
o Idea: x; depends (somehow) on z; if j is a neighbor of 1.
@ Recursive: importance is transmitted through a network.
@ Simplest possibility is a linear combination:

Tr; X Z Aijx]‘

J

@ Assume further that constant of proportionality, ¢, is independent of 4.
o Above gives % = cA% or | A% = ¢ % = A%/ .
@ Eigenvalue equation based on adjacency matrix:

o The greatest eigenvalue and its related eigenvector fulfills only the
additional requirement that all the entries in the eigenvector be positive
(Perron-Frobenius theorem).

o Eigenvalue centrality of the vertex v in the network
... The v*" component of the related eigenvector
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Centrality Measures ~ Spectral Centralities

Eigenvalue Centrality - Iterative Approach ™

@ An initial guess about the centrality x; of each vertex i.
e eg x;=1foralli

@ One step to calculate a better estimate

/ —_— .. . H /_
T = g Aijx; ie. X = Ax
J

@ Repeat t times: x(t) = A'x(0)
@ Express x(0) as a linear combination of the eigenvectors v; of A:

x(0) =", ;.
py
x(t) = A Z Civi = Z ciAlvi = Z CiR{Vi = K] Z Ci[é]tvz'
(2 (2 (2 (2

e k; are the eigenvalues of A, k1 is the largest of them.

e Since r;/k1 < 1 for all i # 1, all terms in the sum other then the first
decay exponentially as ¢ becomes large: x(t) — cijk1vy ast — oo,

Radek Maf¥ik (radek.marik@fel.cvut.cz) Network Properties October 16, 2025 33 /44



Centrality Measures ~ Spectral Centralities

[New10]

Eigenvalue Centrality - Properties

e Eigenvalue centrality by Bonacich in 1987 "

-1 § :
Ax = R1X T = Kq Aijl'j
J

@ The centrality x; of vertex 7 is proportional to the sum of the
centralities of i's neighbors:
e a vertex has many neighbors,
e a vertex has important neighbors.
@ The eigenvector centralities of all vertices are non-negative.
o If z;(0) > 0 and A;; > 0 then z;(t) > 0.
o Eigenvector centrality works well for undirected networks.
@ Issues with directed networks
e Asymmetric adjacency matrix has two sets of eigenvectors,
left and right, i.e hence two leading eigenvectors.
e In most cases the right eigenvector should be used
@ to prefer the case in which centralities are driven by vertices pointing to
a given vertex (and not to which vertices the given vertex points to)
e Zero x; are propagated as zero = strong components taken only.
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Centrality Measures ~ Spectral Centralities

Katz Centrality "

@ To resolve the issue with zero eigenvalue centralities x;

Katz Centrality
@ Proposed by Katz in 1953

Ckatz = 0A + o®A% + -+ o"AF 4 (4)
oo N

Ckatz(i) = Y > a*[AM); (5)
k=1 j=1

Ckatz(7) denotes Katz centrality of a node i.
The attenuation factor « . .. discounted paths (walks)
A link in the distance k is attenuated by o*.

If « < 1/|k1]|, where k1 is the largest eigenvalue of A, then

Ckatz = (I —aAT)" —T)1 E

- = = = SR
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Centrality Measures ~ Spectral Centralities

Alpha Centrality "

1 [BLo1]

@ Proposed by Bonacich in 200
@ A generalization of Katz centrality

l‘i:aZAij:Ej—i-ﬁ x =aAx + (1
J

where o and 3 are positive constants.
@ Each vertex has a non-zero positive centrality because of small 8 > 0
@ Rearranging for x

x=FI-aA) !t 1=1T-aA)! 1

e using 8 =1 to care about relative values of centralities only.
o Capha = @AY + Ckar, = I+ Ckarz
@ Choice of a value of «
o Ifa—0,thenallz; > 8=1
o If @ — 1/k1, then a divergence ...det(A — a~!I) =0
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Centrality Measures = Spectral Centralities

[Roc12]

Centrality Measures - Importance of Nodes

@ Low — middle — high values
@ A Degree centrality,

o Node Activity
B Closeness centrality,

e Distance to other nodes

C Betweenness centrality,
o Intermediate Position
D Eigenvector centrality,

e Important nodes have important
friends

o E Katz centrality,
o The relative influence of a node
within a network
F Alpha centrality

e Important nodes have important
friends for asymmetric relations

dek Mafik (radek.marik@fel.cvut.cz) Network Properties October 16, 2025



Centrality Measures ~ Spectral Centralities

k [BP98, BP12, New10]

PageRan

@ In some case, a high-centrality vertex should not distribute its
centrality to other vertexes fully,
e e.g. Yahoo! referencing a personal page.
@ The centrality of a given vertex is distributed to its neighbors as an
amount proportional to its centrality divided by its out-degree.

xl—aZAUkout x:aAD_1x+ﬁ1

o If k}?“t =0, then A;; = 0 for all 7.
e In such cases, we set artificially k;?“t =1 to avoid the problem with the
term when zero is divided by zero. The result is a zero centrality

contribution.
o D is the diagonal matrix with elements D;; = max(k;?”t, 1)

e By rearranging and setting 5 =1, and o < 1/|k1], K1 = Amax(A)
x=BI-aAD )™ 1. 1=D(D -aA)"
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Outline

© Centrality Measures

@ Example
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Centrality Measures Example

[DM15]

Egypt Data - Family Formation

Ny-wsr-R< (0.647
H-mrr-nbty |0.424
Nwb-ib-nbty|0.351
Snh-wi-Pth 0.290
R<-hw.f7T (0.180
Renfrf 0.139 10
shty-hip TIT [0.139
Pth-$pss 10.082 0
Ph-r-nfr 111 0.048 :
Srt-nbty 1 (0.048 0

People with w ‘l"l"ll ||I| II 1 I 1
5 10 15 20 e 25 30 35

the top 10 highest betweenness ;

10

Extended family size distribution
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Centrality Measures Example

Summary

@ Linear algebra remainder
@ Network matrices

@ Centrality Measures

o Path based centralities
o Spectral centralities
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Centrality Measures Example

Competencies

Define adjacency matrix, cocitation matrix, and bibliographic coupling

Define bi-adjacency matrix, incidence matrxi, edge incidence matrix

Define one-mode projection and its relation to bi-adjacency matrix.

Show how to compute degree of vertex, the number of edges, the

mean degree, and graph density based on the adjacency matrix for

undirected and directed graphs.

@ Show how to compute number of paths and cycles based on the
adjacency matrix.

o Define degree centrality.

@ Define closenes centrality.

@ Define betweenness centrality.

@ Describe an algorithm for betweenness centrality computation.

@ Define eigenvalue centrality.

o Define Katz centrality.

@ Define PageRank index.
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