
Introduction to Databricks

October 8th, 2025Martin Oharek, Alisa Benešová

Outline

3

Outline

1. History context

– Challenges of traditional/legacy solutions

– What managed platforms (e.g. Databricks) bring to the table and why the companies want it

2. Databricks intro

– Lakehouse concept

– Databricks architecture

– Building blocks (cloud integration, Apache Spark, MLFlow, Delta Lake,…)

– Use cases

3. Core Databricks features

– Compute x Storage, Delta Lake

– Clusters

– Databricks workflows

– Data object types

4. Real world Databricks use cases

History context

6

7

Brief History of Big Data Technologies pt1

1. Structured Data & RDBMS (~1970s)

o Traditional relational databases (e.g., Oracle, PostgreSQL) designed for structured, tabular data.

o Effective for business applications but limited in scalability and flexibility.

2. Data Explosion (~1990s–present) + Internet era (~1991):

o Rapid growth of user-generated data.

o Mobile, IoT, sensors (~2010): real-time, high-volume data streams.

o Rise of semi-structured (JSON, XML) and unstructured data (logs, images, video).

3. Limits of Traditional Tools

o Classic databases couldn't handle the volume, variety, and velocity of modern data.

o Need for distributed processing and scalable storage.

4. Hadoop Ecosystem (2006)

o Open-source framework for distributed computing and storage.

o Core components: HDFS, MapReduce; later extended by Hive, Pig, HBase, Spark.

o Enabled cost-effective big data processing on commodity hardware.

8

Brief History of Big Data Technologies pt2

5. Data Lakes

o Centralized storage for structured, semi-structured, and unstructured data.

o Schema-on-read approach: flexible, scalable, cost-efficient.

6. Cloud & Managed Services

o Platforms like AWS (EMR, Kinesis), Azure (Data Factory, Synapse) enable scalable, on-demand data processing.

o No infrastructure maintenance, pay-as-you-go model.

7. Modern Data Platforms

o Unified, cloud-native environments like Databricks, Snowflake, BigQuery.

o Support batch & real-time processing, machine learning, collaborative workflows.

o Emphasis on scalability, simplicity, and integration across the data lifecycle.

o Popular Serveless solutions

9

Legacy technology challenges

Infrastructure Challenges

– On-premises infrastructure requires full management by the company → Hardware, networking, data

centers, monitoring, etc.

– Limited scalability → Scaling up is slow, costly, and often requires upfront investment.

– Over-provisioning is common

→ To handle peak loads, companies must provision more resources than needed most of the time →

wasteful and expensive.

– Responsibility for security, availability, reliability, and backups lies entirely with the organization

→ Requires large teams and significant effort.

– Manual updates and patching → Software stack must be constantly maintained, updated, and

secured.

– Key takeaway:

Many tasks consume time and resources but do not deliver direct business value — they’re necessary overhead.

10

Legacy technology challenges

Operational Challenges

– Fragmented technology stack

→ Data ingestion, ETL, analytics, dashboarding, and ML often rely on different, disconnected tools.

– Data silos

→ Teams store and manage their own data → limited access across the organization, duplication, and

inconsistent “truths.”

– High architectural complexity

→ Increases the cost of development, maintenance, and onboarding.

– Performance issues

→ Non-optimized, fragmented systems can lead to slow queries, failed pipelines, and frustrated users.

11

Databricks intro

13

Databricks

Founded in 2013

Unified, data analytics platform for building, deploying, sharing, and maintaining enterprise-grade data,

analytics, and AI solutions at scale

Integrated with cloud vendors – AWS, Azure, GCP

Cloud agnostic

Databricks Lakehouse platform

~ 15% of market share in big-data-analytics domain (https://6sense.com/tech/big-data-analytics/databricks-

market-share)

Databricks account -> Databricks workspaces associated with the account

https://6sense.com/tech/big-data-analytics/databricks-market-share
https://6sense.com/tech/big-data-analytics/databricks-market-share

14

How do Databricks solve the challenges?

Cloud-based (AWS, Azure, GCP)

– Infrastructure is managed by the cloud vendor, you just need to provision it.

Auto-scaling support (alleviate the over-provisioning issue)

Provide tools for handling all data-related processing demands (batch, streaming, ML, data sharing,…), all

unified under single platform

Software versions, libraries and runtimes are managed by Databricks, also come with handy libraries

preinstalled

On-demand cluster provisioning -> no need to run machines when idle

Lakehouse concept + centralized data governance solution – supports the „single source of truth“

15

Databricks

16

Databricks spaces

Databricks SQL

– Compute resources for SQL queries, visualizations and dashboards executed against data sources in

the lakehouse

– SQL warehouse, optimized for processing large-scale data, multi-tenancy

– Alerting

Data Science & Engineering

– Notebooks, Apache Spark, Spark Structured Streaming

– Databricks Jobs

– ETL – Delta Live Tables

Machine learning

– AutoML, MLFlow

– Scalable machine learning - Spark MLLib, HyperOpt, EDA with Spark

17

Databricks architecture

18

Databricks architecture

Control Plane (managed by Databricks)

– Runs in Databricks' own cloud account (not in customer’s).

– Manages:Workspace configurationUser permissions & access controlJob scheduling, notebooks, REST API, UI

– No data processing or storage happens here.

Classic Data Plane (customer-managed)

– Runs in the customer's own cloud account (e.g. AWS, Azure).

– Data is processed and stored within customer's VPC.

– Used for:Notebooks and JobsClassic / Pro SQL Warehouses

– Full control, better for regulated environments.

Serverless Data Plane (Databricks-managed)

– Compute runs in a shared, managed environment provided by Databricks.

– Databricks handles provisioning, scaling, and optimization.

– Used for:Serverless SQL WarehousesModel Serving

– Fast startup, lower ops overhead.

– ! Data processed outside customer’s VPC — consider data sensitivity.

19

Data Lakehouse

20

Databricks Lakehouse

https://docs.databricks.com/en/lakehouse/index.html

Combines best elements from

– Data warehouses

• ACID transactions, data governance

– Data lakes

• Flexibility, cost-efficiency

Built on top of open source technologies – Parquet, Apache Spark, Delta Lake, MLFlow – prevents vendor-

lock

Delta tables (stored with Delta Lake protocol)

– ACID, Data versioning, ETL, indexing

Unity Catalog

– Data governance, Data sharing, Data auditing, Data lineage

https://docs.databricks.com/en/lakehouse/index.html

21

Databricks Lakehouse

22

Data Lakehouse principles

Multi-hop (medallion) architecture

– Curate data and offer trusted data-as-products

– (Landing) → Ingest → Curated → Final

– (Raw) → Bronze→ Silver→ Gold

25

Data Lakehouse principles

Adopt an organization-wide data governance strategy

26

Data Lakehouse principles

Encourage open interfaces and open formats

27

Data Lakehouse principles

Build to scale and optimize for performance and cost

Databricks core features

29

Databricks core features

Decoupled compute from storage

– Storage provided by cloud object storage (e.g. AWS S3) or external locations

– Compute provided by compute clusters

• Clusters also have their own disk attached

Storage layer powered by Delta Lake

– Data versioning, historization

– Indexing, optimization

– ACID transactions

– Optimized for structured streaming

Databricks workflows (jobs)

– Running non-interactive workloads

– On schedule, on demand

– Notifications

30

Databricks clusters

Computation resources for data engineering, data science and analytics workloads

Created on classic data plane = your AWS account

Running Spark

All-purpose clusters

– For interactive workloads, usually used with notebooks

– Can be shared accross multiple users

Job clusters

– For non-interactive workloads, automated jobs

– Is terminated when job is finished

Controlled with UI, CLI, or REST API

Pools

– Keep warm instances as idle to reduce start and scale-up times, ! costs

31

Databricks clusters

32

Databricks clusters

1 driver node, 0-n worker nodes

Autoscaling

– Add or remove instances from the cluster

based on the workload

Init script for custom initializations

Arbitrary Spark configurations

Policy, access mode

Databricks runtime

– Scala, Spark preinstalled

Autotermination

Tags (Metadata)

Arbitrary log destinations

33

Delta Lake

Default data storage format

Data stored as Parquet files

ACID transactions

– Secured by transaction log, tracks all changes made to the table

Data are versioned

– Keep data files for every version (w.r. to retention period)

– Time travel

34

Databricks workflows

Using job clusters

– Job clusters are terminated immediately after job is finished

Consisting of tasks

– Python script

– Spark submit

– Notebook

– JAR, Python wheel

– SQL – Query, Dashboard, Alert

– Job

Compute can be shared or different cluster can be selected for different tasks

Run on demand/schedule/trigger

Databricks native alternative to open source orchestration tools (AirFlow, Dagster, etc.)

Can show nice DAG (graphical view)

35

Data objects

Kept and organized in cloud object storage (AWS S3, Azure Blob Storage,…)

36

Data objects

Metastore

– Contains metadata of data objects

– Configured with root storage in cloud object storage (e.g. S3 bucket in AWS)

– Can be assigned to multiple workspaces

– One workspace may have only a single metastore

Catalog

– The highest abstraction in DBX Lakehouse relational model

– Collection of schemas (databases)

– Default catalog is hive_metastore

Schema

– LOCATION on cloud object storage

– Collection of tables, views and functions

37

Data objects

Table

– Collection of structured data

– Default storage provider – Delta Lake (https://delta.io/)

• ACID transcations

• Optimized performance (OPTIMIZE, Z-ORDER,…)

• Driven by parquet

– Managed table

• In the same location as database

• Metadata and data is managed by Databricks

• DROP = delete data and metadata

– Unmanaged table, EXTERNAL

• Only metadata is managed by Databricks

• DROP = data is preserved

https://delta.io/

38

Data objects

View

– Query text is registered to the metastore (database)

– No actual data is written

Temporary view

– Limited scope and persistence

– Not registered to metastore

– Scopes:

• Notebooks and jobs

• Databricks SQL – query level

• Global temporary views – cluster level

39

Data objects

User-defined function

– Associate user-defined logic with a database

– In SQL or Python/Scala/Java

• Code in Python can have a negative impact on performance

• Outside of JVM – data serialization

• Databricks have code optimizers for SQL, not Python

– Usually not good for production workloads (instead use native Apache Spark methods if possible)

40

Data objects

Volume

– Represents logical volume of storage in cloud object storage location

– Accessing, storing, governing and organizing files

– Add governance over also to non-tabular datasets

– Only in Unity Catalog

– Managed

– External

41

Advanced Databricks features – to be continued

– Machine learning tooling

• MLFlow, Scalable ML with Spark, AutoML, Model serving

– Delta Live Tables

• ETL tool

• Declarative definitions

• A lot of „self optimization and maintanance“

• Development or production modes

– Photon

• New generation data processing engine

• Written in C++

• Compatible with Apache Spark APIs

– SQL warehouses

– Lakehouse federation

– LakehouseIQ

42

Real-world Databricks use cases

Gucci

• Use case: media budget allocation to maximize ROI

https://www.youtube.com/watch?v=mq3IxO_toDA

• MLOps

• Trying to adopt community-recommended best practices

• Speed-up time to market

• Benefit from managed ML services – distributed hyperparameter tuning with HyperOpt and Spark, MLFlow,

AutoML (kick-off stage)

CDQ

• Use case: migrate custom reporting ETL pipeline to Databricks

• Get scalable solution with usage of Delta Live Tables

• Exploit Lakehouse architecture

• Performance boost

Shell

• Use case: Databricks as key tool in Shell.ai platform https://www.databricks.com/customers/shell

• Democratize data access in organization, supported cross-team collaboration, develop over 100 AI models

https://www.youtube.com/watch?v=mq3IxO_toDA
https://www.databricks.com/customers/shell

Q&A

Apache Spark - basics

October 7th, 2025Martin Oharek, Alisa Benešová

Outline

46

Outline

1. Spark overview

2. How Spark works

3. Spark Dataframes

4. Spark architecture

5. Spark configuration

6. Spark vs Databricks

Spark overview

48

The What, Why and When of Apache Spark

What:

– Unified engine for big data and machine learning

– Distributed data processing engine -> up to petabytes of data up to thousands of physical or virtual machines

– Open Source with over 1000 contributors from 250+ organizations

– Founded by people who founded Databricks

Why:

– High speed data querying, analysis, and transformation with large data sets.

– Great for iterative algorithms (using a sequence of estimations based on the previous estimate).

– Supports multiple languages (Java, Scala, R, Python)

– Free of charge

When:

– When you’re using functional programming (output of functions only depends on their arguments, not global states)

– Performing ETL or SQL batch jobs with large data sets

– Processing streaming

– Machine Learning tasks

49

Spark - facts

In-memory Map-Reduce engine

Written in Scala

Fault-tolerant

Connected with all major big data technologies

Runs „Everywhere“

50

Apache Spark Evolution

Spark 1.x – 2014 :

– Spark CORE - Fault-tolerant in memory computation engine

– Spark RDD (Resilient Distributed Dataset) API

– API for Streaming and Mlib

– Spark SQL

Spark 2.x - 2016:

– Speedups the computation 5 to 20 times.

– API for structured Streaming

– API for graph data processing

– SQL 2003 support

– Datasets API over RDD

› Spark 3.x - 2020:

– adaptive query execution, dynamic partition pruning and other optimizations

– Significant improvements in pandas APIs, including Python type hints and additional pandas UDFs

– Up to 40x speedup for calling R user-defined functions

– SQL ANSI supports

51

When does Spark work best?

Enable collaboration between data engineers, data scientists, BI analysts, and more

Support both batch and streaming processing workflows

Common Use Cases:

– Client scoring: Risk scoring, fraud detection

– ETL and batch SQL jobs: Data processing and aggregation

– Streaming data triggers: Real-time event response (e.g., alerts, notifications)

– Machine Learning: Model training and inference at scale

– Graph algorithms: Social networks, recommendations, fraud network detection

52

When Spark is not so good / appropriate?

Low-latency, real-time applications

– Spark (even with Structured Streaming) has higher latencies (hundreds of ms+)

– Not suitable for use cases needing sub-second responses (e.g., real-time bidding, chat apps)

Small or simple datasetsSpark introduces overhead due to distributed execution

– For small data or lightweight ETL, pandas, SQL, or dbt may be more efficient

Highly interactive use (BI dashboards)

Complex stateful stream processing

– Spark Structured Streaming supports state, but with limits

– Kafka Streams, Flink, or other stream-first engines handle complex event time and state bette

Very tight resource constraints

– Spark is memory-intensive; not ideal for constrained environments (e.g. edge devices, IoT)

53

How to work with Spark?

Interactively

– Command line (shell for both Python and Scala)

– Databricks notebook

– Zeppelin/Jupyter notebook

– From IDE (Pycharm, IntelliJ, …)

Batch / application

– compiled .jar file

– *.py file

Learning path:

– http://spark.apache.org

– https://www.databricks.com/spark/getting-started-with-apache-spark

http://spark.apache.org/
https://www.databricks.com/spark/getting-started-with-apache-spark

How Spark works

55

Logical point of view

› RDD:

– resilient distributed dataset - the abstractions of Spark. It is used to handle distributed collection of data

elements (e.g.: rows in text file, data matrix, set of binary data) across all the nodes in a cluster.

– is immutable

› Transformation:

– are planned and optimized, but not evaluated

– planned as DAG – Direct acyclic graph

› Action – lazy evaluation:

– action is a trigger that started the whole process

RDD output

Transformation action

57

Components of Spark Architecture

Driver

– It is a master node.

– Translates user code into a specified job.

– Schedules the job execution and negotiates with the cluster manager.

– Stores the metadata about all RDDs as well as their partitions.

– The key component is a SparkContext, others are DAG Scheduler, Task scheduler, backend scheduler and block manager.

Executors - workers

– They are distributed agents those are responsible for the execution of tasks

– They perform all the data processing

› Cluster Manager

– Responsible for acquiring resources

Driver

SparkContext DAGScheduler TaskScheduler

Executor
Task Task

Executor
Task Task

Executor
Task Task

Cluster Manager

58

Example – word count

Task: count number of words in document

Source: text file splitted to lines

Approach:

– Load file from disk

– Transformation of lines: line  split to words  split to items (word, 1)

– Group items with the same word and sum up ones

Result of transformation: RDD with items (word, frequency)

59

Example – word count

Transformation:

lines = sc.textFile("bible.txt")

words = lines.flatMap(lambda line: line.split(" "))

items = words.map(lambda word: (word, 1))

counts = items.reduceByKey(lambda a, b: a + b)

Action:

counts.take(5)

Spark Dataframes

61

Spark SQL and DataFrames (DataSets)

New from spark 2.x  Enhances the classical RDD approach

Data structure DataFrame = „RDD with columns“

– like database relation table

– with metadata (field names, types)

– works with columns –> SQL syntax can be used

RDD

Dataframe

1;Andrea;35;64.3;Praha

2;Martin;43;87.1;Ostrava

3;Simona;18;57.8;Brno

id name age weight city

1 Andrea 35 64.3 Praha

2 Martin 42 87.1 Ostrava

3 Simona 18 57.8 Brno

62

WHY use DataFrames

Advantage over Spark RDD:

– Dataframe API - shorter and easier code

– Columns and Types

– SQL languague can be used

– Simplified work with databases

– Catalyst Optimizer can be applied  is faster

Optimized Code

Data Frames

SQL Queries

Data Sets

Catalyst Optimizer

Query Plan Optimized

Query Plan

Rules based

optimization

63

How to get a DataFrame?

transformation from existing RDD

– if convertable

– sqlContext.createDataFrame(RDD, schema)

direct input of file

– schema may be defined (Parquet, ORC) or inferred (CSV)

– sqlContext.read.format(format).load(path)

Hive query

– sqlContext.sql(sql_query)

64

How to work with a DataFrame?

1. registration of temporary table + SQL querying

– DF.registerTempTable("table")

– sqlContext.sql("select * from table")

2. SPARK API

– DF.operations; select, filter, join, groupBy, sort...

3. Convert to RDD -> RDD operation (map, flatMap, …) and then convert back -> Dataframe

65

Example – word count with Dataframes

Transformation

df_final = (

df.withColumn("word", explode(split(col("lines"), ' ')))

.groupBy("word")

.count()

)

Action

df_final.show()

66

Example – word count with Spark SQL

Transformation

df.registerTempTable("temp_df")

df_final = (

sqlContext.sql(“

 SELECT word, count(*) FROM

(SELECT explode(split(Description, ' ')) AS word FROM temp_df)

GROUP BY word

“)

Action

df_final.show()

Spark Actions

68

Spark Actions

Every action starts all steps of transformation from the beginning!

RDD Dataframe Description

take take,show Show first n rows

count count Count of rows

collect collect Show rdd/dataframe as list

of rows

saveAsTextFile saveAsTable, write Save file/create table

… …

DF output

Transformation

count()

collect()

69

Spark Actions

DF saveAsTable()DF DF DF DF

DF

DF

saveAsTable()

DF DF

Count()

1h 2h 1m 1m

1m

1m

1m

1m

1m1m

Duration cca 3 hours

Duration next 3

hours

Count()

Duration next 3 hours

70

Spark Caching

Methods:

– persist() (several options)

– cache() (use persist with MEMORY_ONLY option)

– unpersist() (release persisted data)

Persist options:

– MEMORY_ONLY – Default –> deserialized JVM memory

– MEMORY_AND_DISK –> excessed partitions into disk.

– MEMORY_ONLY_SER -> serialized JVM memory

– MEMORY_AND_DISK_SER -> etc.

Persist is not an action!

71

Spark Caching

Different from (proprietary) Databricks Disk Cache – optimized caching on SSDs

Cache consistency:

– Databricks disk caching – changes are automatically detected and cache is updated

– Spark caching – cache must be manually invalidated and refreshed

72

Spark data partitions

Partition

– part of data managed in one task

– default partition = 1 HDFS block = 1 task = 1 core

– partition is ideally managed on the node where is stored – data locality!

– More partitions  more tasks  higher parallelization

•  smaller data  lower efficiency  higher overhead

› Default for Joins:

– The default number of partitions to use when shuffling data for joins or aggregations.

– spark.sql.shuffle.partitions = 200

How to change number of partition?

– in load: sc.textFile(file, count_of_partitions)

– In the code (before/after specific transformation/action):

• coalesce (count_of_partitions)

• repartition(count_of_partitions)

• partitionBy (count_of_partitions)

73

Data locality & shuffling

Start and configuration

75

pyspark | spark-shell | spark-submit --param value

Useful parameters:

--name -> name of the application

--class -> The entry point for your application

--master -> The master URL for the cluster (local, Yarn, Mesos, ..)

--deploy_mode -> where the driver will be deployed (client/cluster)

--driver-memory -> memory for driver

--num-executors -> count of executors

--executor-cores -> count of cores for executor

--executor-memory -> memory for executor

NOTE: Spark is deployed in Databricks clusters by default and Spark Context (Spark session) is initialized,

you don‘t need to care about running Spark on your own

Deploy mode

77

Deploy mode (execution mode)

Deploy mode

› Determines where the resources used by Spark application are physically located

Deploy mode types:

– Local mode

– Client mode

– Cluster mode

Differences:

› Where the driver runs – client or cluster ?

› Where the executors run - client or cluster ?

› What is cluster manager – spark CM or 3rdParty (yarn, messos, ..)

78

Deploy mode: Local mode

Properties:

› The entire application is run on a single machine (paralelism through threads)

› The Spark driver runs on the client machine

› The Executor processes run on the client machine

› Spark CM is used

› Used on Databricks single node clusters

Purpose:

› Development

› Debugging

› Testing

79

Deploy mode: Client mode

Properties

› The Spark driver runs on the client machine that submitted the application (usually an edge node)

› The executor processes run on cluster

› Cluster manager is used

› On Databricks multi-node clusters in interactive environment (e.g. Notebook)

Purpose

› Spark-shell (interactive sessions)

› Easy debugging

› Input and output attached

› Can overload the edge node

80

Deploy mode: Client mode (example for YARN)

81

Deploy mode: Cluster mode

Properties

› The Spark driver runs on a worker node inside the cluster

› The executor processes run on cluster

› The cluster manager maintans the executor processes

› Databricks job clusters

Purpose

› The best deploy mode for stable applications

› Better resource utilization than in client mode

› More difficult debugging

82

Deploy mode: Cluster mode (example for YARN)

Spark configuration

84

Spark executor memory

Reserved - the memory is reserved for the system and is used to store Spark’s internal object. The size is hardcoded.

User Memory - It's used for storing your data structures and data needed for RDD conversion operations, such as lineage.

Unified memory:

• Execution memory - It’s mainly used to store temporary data in the calculation process of Shuffle, Join, Sort, Aggregation,

etc.

• Storage Memory - It’s mainly used to store Spark cache data, such as RDD cache, Unroll data, and so on.

• Size of an Execution and Storage memory can by dynamically changed by the Dynamic occupancy mechanism process.

Memory overhead - Off heap (no GC). Call stacks, shared libraries, constants defined in Code, the code itself, ….

85

Spark executor memory example

Spark.executor.memory = 4 GB

– Memory overhead = 10% of executor memory, max 384 MB

– Reserved memory = 300 MB

– User Memory = (Java Heap — Reserved Memory) * (1.0 — spark.memory.fraction) = (3640-300)* (1-

0,6)= 1336 MB

– Storage Memory = (Java Heap — Reserved Memory) * spark.memory.fraction *

spark.memory.storageFraction = (3640-300)*(0,6*0,5)= 1002 MB

– Execution Memory = (Java Heap — Reserved Memory) * spark.memory.fraction * (1.0 —

spark.memory.storageFraction) = (3640-300)*(0,6*0,5)=1002 MB

87

Resources configuration: Spark Driver

Considerations:

› Client or cluster mode

› With the client mode – beware of overloading Edge node

› Size of the result returned by executor (collect action)

88

Resources configuration: Spark Executor

Considerations

Resources available in the cluster, sizing of cluster nodes

Few large executors or many small executors?

– Small executors

• Higher parallelization but more shuffling

• One partition - one executor, risk of spilling the data to disk

• Total overhead grows (Reserved memory)

– Large executors

• Lower parallelization

• Issue with resources allocation

• Might be wasteful

• GC overhead

89

Resources configuration: Recommendations

• Allows Spark dynamically change the number of executors based on the workload

• Number of cores – deside based on the load. Usually 2 - 4 cores/executor

• Driver memory – keep default

• Executor memory – ((data size) *1,5)/0,6) / number of executors (max 16G)

• For start use spark.executor.memory = 2G.

• Number of executors - number of task / executor > 100

• For start use spark.dynamicAllocation.maxExecutors < 10.

• For long running processes set spark.sql.ui.retainedExecutions <= 100 (default 1000)

Spark vs Databricks

91

Spark vs Databricks

Databricks

– Tool/platform built on top of Apache Spark

– Add other functionality, e.g. Notebooks, production jobs and workflows, etc.

– Databricks runtime

• Built on Apache Spark and optimized for performance

• Photon engine

• Disk caching, dynamic file pruning, predictive I/O, cost-based optimizers, etc.

• Auto-scaling compute

• Pre-installed Java, Scala, Python and R libraries

• …

– Apache Spark is running on Databricks clusters

• Can set spark configuration on cluster level and change some configurations during runtime

• Managed Delta Lake

• You cannot set spark configuration for managed compute (SQL warehouse)

Q&A

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Thanks for attention!

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Thanks for attention!

	Slide 1: Introduction to Databricks
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: History context
	Slide 6
	Slide 7: Brief History of Big Data Technologies pt1
	Slide 8: Brief History of Big Data Technologies pt2
	Slide 9: Legacy technology challenges
	Slide 10: Legacy technology challenges
	Slide 11
	Slide 12: Databricks intro
	Slide 13: Databricks
	Slide 14: How do Databricks solve the challenges?
	Slide 15: Databricks
	Slide 16: Databricks spaces
	Slide 17: Databricks architecture
	Slide 18: Databricks architecture
	Slide 19: Data Lakehouse
	Slide 20: Databricks Lakehouse
	Slide 21: Databricks Lakehouse
	Slide 22: Data Lakehouse principles
	Slide 25: Data Lakehouse principles
	Slide 26: Data Lakehouse principles
	Slide 27: Data Lakehouse principles
	Slide 28: Databricks core features
	Slide 29: Databricks core features
	Slide 30: Databricks clusters
	Slide 31: Databricks clusters
	Slide 32: Databricks clusters
	Slide 33: Delta Lake
	Slide 34: Databricks workflows
	Slide 35: Data objects
	Slide 36: Data objects
	Slide 37: Data objects
	Slide 38: Data objects
	Slide 39: Data objects
	Slide 40: Data objects
	Slide 41: Advanced Databricks features – to be continued
	Slide 42: Real-world Databricks use cases
	Slide 43: Q&A
	Slide 44: Apache Spark - basics
	Slide 45: Outline
	Slide 46: Outline
	Slide 47: Spark overview
	Slide 48: The What, Why and When of Apache Spark
	Slide 49: Spark - facts
	Slide 50: Apache Spark Evolution
	Slide 51: When does Spark work best?
	Slide 52: When Spark is not so good / appropriate?
	Slide 53: How to work with Spark?
	Slide 54: How Spark works
	Slide 55: Logical point of view
	Slide 57: Components of Spark Architecture
	Slide 58: Example – word count
	Slide 59: Example – word count
	Slide 60: Spark Dataframes
	Slide 61: Spark SQL and DataFrames (DataSets)
	Slide 62: WHY use DataFrames
	Slide 63: How to get a DataFrame?
	Slide 64: How to work with a DataFrame?
	Slide 65: Example – word count with Dataframes
	Slide 66: Example – word count with Spark SQL
	Slide 67: Spark Actions
	Slide 68: Spark Actions
	Slide 69: Spark Actions
	Slide 70: Spark Caching
	Slide 71: Spark Caching
	Slide 72: Spark data partitions
	Slide 73: Data locality & shuffling
	Slide 74: Start and configuration
	Slide 75
	Slide 76: Deploy mode
	Slide 77: Deploy mode (execution mode)
	Slide 78: Deploy mode: Local mode
	Slide 79: Deploy mode: Client mode
	Slide 80: Deploy mode: Client mode (example for YARN)
	Slide 81: Deploy mode: Cluster mode
	Slide 82: Deploy mode: Cluster mode (example for YARN)
	Slide 83: Spark configuration
	Slide 84: Spark executor memory
	Slide 85: Spark executor memory example
	Slide 87: Resources configuration: Spark Driver
	Slide 88: Resources configuration: Spark Executor
	Slide 89: Resources configuration: Recommendations
	Slide 90: Spark vs Databricks
	Slide 91: Spark vs Databricks
	Slide 92: Q&A
	Slide 93: Thanks for attention!
	Slide 94: Thanks for attention!

