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1. History context
— Challenges of traditional/legacy solutions
— What managed platforms (e.g. Databricks) bring to the table and why the companies want it

2. Databricks intro
— Lakehouse concept
— Databricks architecture
— Building blocks (cloud integration, Apache Spark, MLFlow, Delta Lake,...)
— Use cases

3. Core Databricks features
— Compute x Storage, Delta Lake
—  Clusters
— Databricks workflows

— Data object types

4. Real world Databricks use cases
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Big Data Technology Timeline

Structured Data & RDBMS Hadoop Ecosystem Cloud & Managed Services
(Relational databases like Oracle, DB2) (Distributed processing with HDFS, MapReduce) (AWS EMR, Azure Synapse, GCP BigQuery)
1970s 1990s 2006 2010s 2015+ 2020s
o @ @ @ @ o
Internet Boom Mobile, |oT, Sensor Data Unified Data Platforms

(Rapid data growth from web, email, documents) (Real-time, diverse data sources, 3Vs) (Databricks, Snowflake, Lakehouse model)
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7 1. Structured Data & RDBMS (~1970s)

o  Traditional relational databases (e.g., Oracle, PostgreSQL) designed for structured, tabular data.

o  Effective for business applications but limited in scalability and flexibility.

7 2. Data Explosion (~1990s—present) + Internet era (~1991):

@)

Rapid growth of user-generated data.
o  Mobile, 10T, sensors (~2010): real-time, high-volume data streams.

o  Rise of semi-structured (JSON, XML) and unstructured data (logs, images, video).
? 3. Limits of Traditional Tools
o Classic databases couldn't handle the volume, variety, and velocity of modern data.
o  Need for distributed processing and scalable storage.
7 4. Hadoop Ecosystem (2006)
o  Open-source framework for distributed computing and storage.

o  Core components: HDFS, MapReduce; later extended by Hive, Pig, HBase, Spark.

o  Enabled cost-effective big data processing on commodity hardware.




Brief History of Big Data Technologies pt2 { PROFINIT

7 5. Data Lakes
o  Centralized storage for structured, semi-structured, and unstructured data.
o  Schema-on-read approach: flexible, scalable, cost-efficient.
7 6. Cloud & Managed Services
o  Platforms like AWS (EMR, Kinesis), Azure (Data Factory, Synapse) enable scalable, on-demand data processing.
o  No infrastructure maintenance, pay-as-you-go model.
? 7. Modern Data Platforms

o  Unified, cloud-native environments like Databricks, Snowflake, BigQuery.
o  Support batch & real-time processing, machine learning, collaborative workflows.
o  Emphasis on scalability, simplicity, and integration across the data lifecycle.

o  Popular Serveless solutions
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Infrastructure Challenges

— On-premises infrastructure requires full management by the company — Hardware, networking, data
centers, monitoring, etc.

— Limited scalability — Scaling up is slow, costly, and often requires upfront investment.

—  Qver-provisioning is common
— To handle peak loads, companies must provision more resources than needed most of the time —
wasteful and expensive.

— Responsibility for security, availability, reliability, and backups lies entirely with the organization
— Requires large teams and significant effort.

— Manual updates and patching — Software stack must be constantly maintained, updated, and
secured.

- / Key takeaway:

Many tasks consume time and resources but do not deliver direct business value — they’re necessary overhead.
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Operational Challenges

Fragmented technology stack
— Data ingestion, ETL, analytics, dashboarding, and ML often rely on different, disconnected tools.

Data silos
— Teams store and manage their own data — limited access across the organization, duplication, and
inconsistent “truths.”

High architectural complexity
— Increases the cost of development, maintenance, and onboarding.

Performance issues
— Non-optimized, fragmented systems can lead to slow queries, failed pipelines, and frustrated users.




\ i { PROFINIT )
» R -

v’ . "_.:. /" o
\ r

I have one problem




Databricks intro



Databricks { PROFINIT

? Founded in 2013

7 Unified, data analytics platform for building, deploying, sharing, and maintaining enterprise-grade data,
analytics, and Al solutions at scale

7 Integrated with cloud vendors — AWS, Azure, GCP
7 Cloud agnostic
7 Databricks Lakehouse platform

? ~ 15% of market share in big-data-analytics domain (https://6sense.com/tech/big-data-analytics/databricks-
market-share)

Figure 1: Magic Quadrant for Data Science and Machine Learning Platforms

7 Databricks account -> Databricks workspaces associated with the account



https://6sense.com/tech/big-data-analytics/databricks-market-share
https://6sense.com/tech/big-data-analytics/databricks-market-share

How do Databricks solve the challenges? { PROFINIT 7

7 Cloud-based (AWS, Azure, GCP)

— Infrastructure is managed by the cloud vendor, you just need to provision it.
7 Auto-scaling support (alleviate the over-provisioning issue)

7 Provide tools for handling all data-related processing demands (batch, streaming, ML, data sharing,...), all
unified under single platform

7 Software versions, libraries and runtimes are managed by Databricks, also come with handy libraries
preinstalled

7 On-demand cluster provisioning -> no need to run machines when idle

7 Lakehouse concept + centralized data governance solution — supports the ,single source of truth*
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< databricks Lakehouse Platform
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7 Databricks SQL

— Compute resources for SQL queries, visualizations and dashboards executed against data sources in
the lakehouse

— SQL warehouse, optimized for processing large-scale data, multi-tenancy
— Alerting
7 Data Science & Engineering
— Notebooks, Apache Spark, Spark Structured Streaming
— Databricks Jobs
— ETL - Delta Live Tables
7 Machine learning

— AutoML, MLFlow
— Scalable machine learning - Spark MLLib, HyperOpt, EDA with Spark
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/ g Your Databricks account '
: s ~ '
. Control plane .
] ] S T TEE T -
: - b /! Your cloud account K
Web application i :
' ho " i i | Classic compute Workspace '
' i 1 W j
' Compute orchestration | \ plane storage bucket H
] M L}
' ' : Compute p) '
L] [] I
Use.rs a'nd i Unity Catalog ! i - i
applications 1 ) 1 . '
[} (] )
: i~ ] ' .
8%?1 ' Queries and code E N emesmasmesesssessgemessssmsmssmmm———— -
1 ]
' - _/ i
: 1 ;
1 ]
1 ]
: Y :
. Serverless compute plane | Your resources
: =% . T p) mafa Cq
1 1
: [ Compute ] [ Compute ] | .' ‘ @ i E_ﬂ] g
[

.............................




Databricks architecture { PROFINIT

7 Control Plane (managed by Databricks)
—  Runs in Databricks' own cloud account (not in customer’s).
—  Manages:Workspace configurationUser permissions & access controlJob scheduling, notebooks, REST API, Ul

— No data processing or storage happens here.

7 Classic Data Plane (customer-managed)
— Runs in the customer's own cloud account (e.g. AWS, Azure).
—  Data is processed and stored within customer's VPC.
—  Used for:Notebooks and JobsClassic / Pro SQL Warehouses

—  Full control, better for regulated environments.

7 Serverless Data Plane (Databricks-managed)
—  Compute runs in a shared, managed environment provided by Databricks.
—  Databricks handles provisioning, scaling, and optimization.
—  Used for:Serverless SQL WarehousesModel Serving
—  Fast startup, lower ops overhead.

— ! Data processed outside customer's VPC — consider data sensitivity.




Data Lakehouse { PROFINIT

Datalake
- W

2
Data Lakehouse ﬁ‘

Data Warehouse

nainge
‘ e 84

Whatsthethelllis this?




Databricks Lakehouse { PROFINIT

? https://docs.databricks.com/en/lakehouse/index.html

? Combines best elements from

— Data warehouses

« ACID transactions, data governance
— Data lakes

* Flexibility, cost-efficiency

7 Built on top of open source technologies — Parquet, Apache Spark, Delta Lake, MLFlow — prevents vendor-
lock

7 Delta tables (stored with Delta Lake protocol)

— ACID, Data versioning, ETL, indexing
7 Unity Catalog

— Data governance, Data sharing, Data auditing, Data lineage



https://docs.databricks.com/en/lakehouse/index.html

Databricks Lakehouse

Data Engineer

ML Engineer
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7 Multi-hop (medallion) architecture
— Curate data and offer trusted data-as-products
(Landing) = Ingest - Curated - Final
(Raw) - Bronze-> Silver-> Gold

Data Lakehouse
Ingest Layer Curated Layer Final Layer
s I Business
ource Il Source / Cleansed, filtered, Business User
Baseline data enriched data ready data

___— —increased [ Data Quahty,-’Trust
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7 Adopt an organization-wide data governance strategy
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?  Encourage open interfaces and open formats
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7 Build to scale and optimize for performance and cost

~
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7 Decoupled compute from storage
— Storage provided by cloud object storage (e.g. AWS S3) or external locations
— Compute provided by compute clusters
« Clusters also have their own disk attached
7 Storage layer powered by Delta Lake
— Data versioning, historization
— Indexing, optimization
— ACID transactions

— Optimized for structured streaming
7 Databricks workflows (jobs)
— Running non-interactive workloads

— On schedule, on demand

— Notifications
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7 Computation resources for data engineering, data science and analytics workloads
7 Created on classic data plane = your AWS account

? Running Spark

7 All-purpose clusters

— For interactive workloads, usually used with notebooks

— Can be shared accross multiple users

7 Job clusters
— For non-interactive workloads, automated jobs
— Is terminated when job is finished

7 Controlled with Ul, CLI, or REST API

? Pools

— Keep warm instances as idle to reduce start and scale-up times, ! costs
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Databricks clusters

Policy @
Unrestricted v
© Multinode () Single node

Access mode @ Single user access ©

Single user v

Performance

Databricks runtime version @

Runtime: 13.3 LTS (Scala 2.12, Spark 3.4.1) v

Use Photon Acceleration @

Worker type @ Min workers Max workers
i3xlarge 30.5 GB Memory, 4 Cores | s 2 8

Driver type
Same as worker 30.5 GB Memory, 4 Cores | s

Enable autoscaling @
Enable autoscaling local storage @
Terminate after | 120 minutes of inactivity @

{ PROFINIT 7

1 driver node, 0-n worker nodes

Autoscaling

— Add or remove instances from the cluster
based on the workload

Init script for custom initializations
Arbitrary Spark configurations
Policy, access mode

Databricks runtime

— Scala, Spark preinstalled
Autotermination
Tags (Metadata)

Arbitrary log destinations
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7 Default data storage format
7 Data stored as Parquet files

7 ACID transactions

— Secured by transaction log, tracks all changes made to the table

7 Data are versioned
— Keep data files for every version (w.r. to retention period)

— Time travel

my_table/
_delta log/
00000 . json

00001. json
date=2019-01-01/
file-1.parquet
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7 Using job clusters

— Job clusters are terminated immediately after job is finished
7 Consisting of tasks

—  Python script

—  Spark submit

— Notebook

— JAR, Python wheel

—  SQL — Query, Dashboard, Alert

— Job

7 Compute can be shared or different cluster can be selected for different tasks
7 Run on demand/schedule/trigger
7 Databricks native alternative to open source orchestration tools (AirFlow, Dagster, etc.)

7 Can show nice DAG (graphical view)




Data objects

7

Kept and organized in cloud object storage (AWS S3, Azure Blob Storage,...)

Storage
credential

Metastore
Sxtemnal Catalog Share Recipient
location

Schema
Table View Volume Function

including models

Provider

Connection

{ PROFINIT 7

i Clean Room
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7 Metastore
— Contains metadata of data objects
—  Configured with root storage in cloud object storage (e.g. S3 bucket in AWS)
— Can be assigned to multiple workspaces

— One workspace may have only a single metastore
7 Catalog
— The highest abstraction in DBX Lakehouse relational model
—  Collection of schemas (databases)
— Default catalog is hive_metastore
7 Schema

— LOCATION on cloud object storage

— Collection of tables, views and functions
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7 Table
— Collection of structured data

— Default storage provider — Delta Lake (https://delta.io/)

» ACID transcations
* Optimized performance (OPTIMIZE, Z-ORDER,...)
* Driven by parquet
— Managed table
* In the same location as database
* Metadata and data is managed by Databricks
* DROP = delete data and metadata

CREATE TABLE table_name AS SELECT * FROM another table

— Unmanaged table, EXTERNAL
* Only metadata is managed by Databricks
* DROP = data is preserved

CREATE TABLE table_name
(field namel INT, field name2 STRING)
LOCATION '/path/to/empty/directory’



https://delta.io/
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? View

CREATE VIEW main.default.experienced_employee
(id COMMENT 'Unique identification number', HName)

_ NO aCtua| data |S ertten COMMENT 'View for experienced employees'

AS SELECT id, name
FROM all employee
WHERE working_years > 5;

— Query text is registered to the metastore (database)

? Temporary view CREATE TEMPORARY VIEW subscribed movies

— Limited scope and persistence AS SELECT mo.member_id, mb.full name, mo.movie_title
FROM movies AS mo

INNER JOIN members AS mb

— Scopes: ON mo.member_id = mb.id;

— Not registered to metastore

* Notebooks and jobs
+ Databricks SQL — query level
* Global temporary views — cluster level
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7 User-defined function
— Associate user-defined logic with a database
— In SQL or Python/Scala/Java
* Code in Python can have a negative impact on performance
* Outside of JVM — data serialization
« Databricks have code optimizers for SQL, not Python
— Usually not good for production workloads (instead use native Apache Spark methods if possible)

CREATE FUNCTION convert_f_to_c(unit STRING, temp DOUBLE) def conver“tFtoC(uni‘tCol ‘tempCol) .
5 E
RETURNS DOUBLE

RETURN CASE from pyspark.sql.functions impert when

WHEN unit — "F" THEN (temp - 32) * (5/9) return when(unitCol == "F", (tempCol - 32) * (5/9)).otherwise(tempCol)
ELSE temp
END; from pyspark.sql.functions impert col

SELECT convert_f_to_c{unit, temp) AS c_temp

FROM tv_temp; df query = df.select(convertFtoC(col("unit"), col("temp"))).toDF("c_temp")

display(df_query)
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? Volume

— Represents logical volume of storage in cloud object storage location
— Accessing, storing, governing and organizing files

— Add governance over also to non-tabular datasets

—  Only in Unity Catalog

— Managed
CREATE VOLUME myManagedVolume

COMMENT 'This is my example managed volume';
SELECT * FROM csv. dbfs:/Volumes/mycatalog/myschema/mymanagedvolume/sample.csv”

— External

CREATE EXTERMAL VOLUME IF MOT EXISTS myCatalog.mySchema.myExternalVolume
COMMENT 'This is my example external wvolume'
LOCATION "s3://my-bucket/my-location/my-path’

SELECT * FROM csv. /Volumes/mycatalog/myschema/myexternalvolume/sample.csv’




Advanced Databricks features —to be continued { PROFINIT

— Machine learning tooling
* MLFlow, Scalable ML with Spark, AutoML, Model serving
— Delta Live Tables
* ETL tool
+ Declarative definitions
* Alot of ,self optimization and maintanance”
* Development or production modes
— Photon
* New generation data processing engine
*  Written in C++
« Compatible with Apache Spark APIs
— SQL warehouses
— Lakehouse federation

— LakehouselQ
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?

Shell

. GUCCI

Gucci

(€))

Use case: media budget allocation to maximize ROI
https://www.youtube.com/watch?v=mqg3IxO _toDA

MLOps
Trying to adopt community-recommended best practices

Speed-up time to market

Benefit from managed ML services — distributed hyperparameter tuning with HyperOpt and Spark, MLFlow,
AutoML (kick-off stage)

&

Use case: migrate custom reporting ETL pipeline to Databricks
Get scalable solution with usage of Delta Live Tables

Exploit Lakehouse architecture

Performance boost

@

Use case: Databricks as key tool in Shell.ai platform https://www.databricks.com/customers/shell

Democratize data access in organization, supported cross-team collaboration, develop over 100 Al models



https://www.youtube.com/watch?v=mq3IxO_toDA
https://www.databricks.com/customers/shell
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Q&A
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Spark overview
How Spark works

Spark Dataframes APACHE C%
Spark architecture Spo K

Spark configuration

o g kW PRE

Spark vs Databricks




Spark overview



The What, Why and When of Apache Spark { PROFINIT 7

7 What:
— Unified engine for big data and machine learning
— Distributed data processing engine -> up to petabytes of data up to thousands of physical or virtual machines
—  Open Source with over 1000 contributors from 250+ organizations

—  Founded by people who founded Databricks

— High speed data querying, analysis, and transformation with large data sets.
—  Great for iterative algorithms (using a sequence of estimations based on the previous estimate).
—  Supports multiple languages (Java, Scala, R, Python)
—  Free of charge
7 When:
—  When you're using functional programming (output of functions only depends on their arguments, not global states)
—  Performing ETL or SQL batch jobs with large data sets
—  Processing streaming

— Machine Learning tasks




Spark - facts

7 In-memory Map-Reduce engine
7 Written in Scala
7 Fault-tolerant

7 Connected with all major big data technologies

7 Runs ,Everywhere® 3

Google Cloud

dWsS

A

Microsoft Azure

{ PROFINIT 7

My 5‘5} %* elastic

HostESQL §‘D‘ kafka

56‘8,",’(\3 & redis
HEASE and more...

ZTE  Omongo

cassandra
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7 Spark 1.x — 2014 :
—  Spark CORE - Fault-tolerant in memory computation engine
—  Spark RDD (Resilient Distributed Dataset) API
— APl for Streaming and Mlib
—  Spark SQL

7 Spark 2.x - 2016: APACHE
—  Speedups the computation 5 to 20 times.
— APl for structured Streaming S Q r
— APl for graph data processing "

—  SQL 2003 support
—  Datasets APl over RDD

> Spark 3.x - 2020:
—  adaptive query execution, dynamic partition pruning and other optimizations
—  Significant improvements in pandas APIs, including Python type hints and additional pandas UDFs
— Upto 40x speedup for calling R user-defined functions
—  SQL ANSI supports




When does Spark work best?

7 Enable collaboration between data engineers, data scientists, Bl analysts, and more

7 Support both batch and streaming processing workflows

? Common Use Cases:

Client scoring: Risk scoring, fraud detection

ETL and batch SQL jobs: Data processing and aggregation

Streaming data triggers: Real-time event response (e.g., alerts, notifications)
Machine Learning: Model training and inference at scale

Graph algorithms: Social networks, recommendations, fraud network detection

{ PROFINIT 7




When Spark is not so good / appropriate? { PROFINIT )

7 Low-latency, real-time applications

— Spark (even with Structured Streaming) has higher latencies (hundreds of ms+)

— Not suitable for use cases needing sub-second responses (e.g., real-time bidding, chat apps)
7 Small or simple datasetsSpark introduces overhead due to distributed execution

— For small data or lightweight ETL, pandas, SQL, or dbt may be more efficient
7 Highly interactive use (Bl dashboards)
7 Complex stateful stream processing

—  Spark Structured Streaming supports state, but with limits

— Kafka Streams, Flink, or other stream-first engines handle complex event time and state bette

7 Very tight resource constraints

—  Spark is memory-intensive; not ideal for constrained environments (e.g. edge devices, I0T)




How to work with Spark? { PROFINIT 7

7 Interactively
— Command line (shell for both Python and Scala)
— Databricks notebook
—  Zeppelin/Jupyter notebook
—  From IDE (Pycharm, IntelliJ, ...)

7 Batch / application
— compiled .jar file
—  *.pyfile

7 Learning path:
— http://spark.apache.org

— https://www.databricks.com/spark/getting-started-with-apache-spark



http://spark.apache.org/
https://www.databricks.com/spark/getting-started-with-apache-spark

How Spark works
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Transformation action

) RDD:

— resilient distributed dataset - the abstractions of Spark. It is used to handle distributed collection of data
elements (e.g.: rows in text file, data matrix, set of binary data) across all the nodes in a cluster.

— is immutable

) Transformation:
— are planned and optimized, but not evaluated
— planned as DAG - Direct acyclic graph

> Action —lazy evaluation:

— action is a trigger that started the whole process




Components of Spark Architecture { PROFINIT 7

7 Driver
- Itis a master node.
- Translates user code into a specified job.
- Schedules the job execution and negotiates with the cluster manager.
- Stores the metadata about all RDDs as well as their partitions.

- The key componentis a SparkContext, others are DAG Scheduler, Task scheduler, backend scheduler and block manager.

7 Executors - workers

- They are distributed agents those are responsible for the execution of tasks

- They perform all the data processing

> Cluster Manager
- Responsible for acquiring resources

Cluster Manager




Example —word count { PROFINIT 7

7 Task: count number of words in document
7 Source: text file splitted to lines
7 Approach:

— Load file from disk

— Transformation of lines: line = split to words = split to items (word, 1)

—  Group items with the same word and sum up ones

7 Result of transformation: RDD with items (word, frequency)




Example —word count { PROFINIT 7

Transformation:
lines = sc.textFile("bible. txt")

words = lines.flatMap (lambda line: line.split(" "))

items = words.map (lambda word: (word, 1))

counts = items.reduceByKey (lambda a, b: a + b)

Action:

counts. take (5)




Spark Dataframes



Spark SQL and DataFrames (DataSets) { PROFINIT 7

7 New from spark 2.x = Enhances the classical RDD approach

7 Data structure DataFrame = ,RDD with columns®
— like database relation table
—  with metadata (field names, types)
— works with columns —> SQL syntax can be used

1:Andrea;35:64.3;Praha
> RDD 2:Martin:43:87.1:0Ostrava
3:Simona;18:57.8:Brno

“m

1 Andrea 64.3 Praha
2 Martin 42 87.1 Ostrava
3 Simona 18 57.8 Brno

7> Dataframe




WHY use DataFrames { PROFINIT

7 Advantage over Spark RDD:
— Dataframe API - shorter and easier code
— Columns and Types
— SQL languague can be used
—  Simplified work with databases
— Catalyst Optimizer can be applied = is faster

Catalyst Optimizer

é Query Plan Optimized Z
j>5 : :

0]

Rules based
optimization




How to get a DataFrame? { PROFINIT 7

7 transformation from existing RDD
— if convertable
— sqglContext.createDataFrame (RDD, schema)
7 direct input of file
— schema may be defined (Parquet, ORC) or inferred (CSV)
— sqglContext.read. format (format) .load (path)
7 Hive query
— sqlContext.sql (sql_query)




How to work with a DataFrame? { PROFINIT

1. registration of temporary table + SQL querying
— DF.registerTempTable (" table")
— sglContext.sql ("select * from table")

2. SPARK API
— DF.operations, select, filter, join, groupBY, sort...

3. Convert to RDD -> RDD operation (map, flatMap, ...) and then convert back -> Dataframe




Example —word count with Dataframes { PROFINIT 7

7 Transformation

7 df final = (

7 df.withColumn ("word", explode (split(col("lines"), ' ')))
7 .groupBy ("word")

7 .count ()

y )

7  Action

df final.show()




Example —word count with Spark SQL { PROFINIT 7

> Transformation
7 df .registerTempTable ("temp df")
>  df final = (

7 sqglContext.sql ("

4 SELECT word, count(*) FROM

4 (SELECT explode (split (Description, ' ')) AS word FROM temp df)
b4 GROUP BY word

7 \\)

7> Action

df final.show()




Spark Actions
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I I I T

take take,show Show first n rows

count count Count of rows

collect collect Show rdd/dataframe as list
of rows

saveAsTextFile saveAsTable, write Save file/create table

- ' collect()
DF > > > > 4 Output
, ——

Transformation

7 Every action starts all steps of transformation from the beginning!




Spark Actions { PROFINIT 7

Duration cca 3 hours

1h 2h 1m 1m 1m
— DF » DF » DF » DF » DF saveAsTable()
- B 0
4 ount
— DF — DF -~ DF ,
Duration next 3 hours
Im
DF
Im

SaVEASTable() Duration next 3

hours
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7 Methods:
— persist() (several options)
— cache () (use persist with MEMORY_ONLY option)

— unpersist() (release persisted data)

7 Persist options:
— MEMORY_ONLY — Default —> deserialized JVM memory
— MEMORY_AND_DISK —> excessed patrtitions into disk.
— MEMORY_ONLY_SER -> serialized JVM memory
— MEMORY_AND_DISK_SER -> etc.

? Persist is not an action!
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7 Different from (proprietary) Databricks Disk Cache — optimized caching on SSDs
Feature disk cache Apache Spark cache

In-memory blocks, but it depends

Stored as Local files on a worker node.
on storage level.

Any Parquet table stored on S3, ABFS, and other file

Applied to Any DataFrame or RDD.

systems.

Triggered Automatically, on the first read (if cache is enabled). Manually, requires code changes.

Evaluated Lazily. Lazily.

Force CACHE SELECT command .cache + any action t_o materialize

cache the cache and .parsist.

— Can be enabled or disabled with configuration flags, ‘

Avallability enabled by default on certain node types. Always available.

Evicted Automatically in LRU fashion or on any file change, Automatically in LRU fashion,
manually when restarting a cluster. manually with unpersist.

7 Cache consistency:

- Databricks disk caching — changes are automatically detected and cache is updated

- Spark caching — cache must be manually invalidated and refreshed
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? Partition
—  part of data managed in one task
—  default partition = 1 HDFS block = 1 task = 1 core
—  partition is ideally managed on the node where is stored — data locality!
—  More partitions = more tasks = higher parallelization
= smaller data = lower efficiency = higher overhead
) Default for Joins:

—  The default number of partitions to use when shuffling data for joins or aggregations.

- spark.sql.shuffle.partitions = 200

7 How to change number of partition?
— inload: sc.textFile(file, count of partitions)
— Inthe code (before/after specific transformation/action):
* coalesce (count of partitions)
* repartition(count_of_ partitions)

* partitionBy (count of partitions)




Data locality & shuffling { PROFINIT 7
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pyspark | spark-shell | spark-submit --param value

Useful parameters:

--name -> name of the application

--class -> The entry point for your application

--master -> The master URL for the cluster (local, Yarn, Mesos, ..)
--deploy_mode -> where the driver will be deployed (client/cluster)
--driver-memory -> memory for driver

--num-executors -> count of executors

--executor-cores -> count of cores for executor

--executor-memory -> memory for executor

NOTE: Spark is deployed in Databricks clusters by default and Spark Context (Spark session) is initialized,

you don‘t need to care about running Spark on your own
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Deploy mode (execution mode)

7 Deploy mode

7 Deploy mode types:
— Local mode
— Client mode
— Cluster mode

7 Differences:
> Where the driver runs — client or cluster ?
> Where the executors run - client or cluster ?

> Whatis cluster manager — spark CM or 3rdParty (yarn, messos, ..)

Driver
| SparkContext | DAGScheduler || Taskscheduler|

Determines where the resources used by Spark application are physically located

Executor
Task | Task

|

—

«— Cluster Manager|*—*

Executor

Task | Task
§

N

Executor

{ PROFINIT 7
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7 Properties:
> The entire application is run on a single machine (paralelism through threads)
»  The Spark driver runs on the client machine
»  The Executor processes run on the client machine
» Spark CM is used
> Used on Databricks single node clusters
7 Purpose:
»  Development
> Debugging
»  Testing
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7 Properties
»  The Spark driver runs on the client machine that submitted the application (usually an edge node)
»  The executor processes run on cluster
> Cluster manager is used
> On Databricks multi-node clusters in interactive environment (e.g. Notebook)
7 Purpose
> Spark-shell (interactive sessions)
»  Easy debugging
> Input and output attached

»  Can overload the edge node




Deploy mode: Client mode (example for YARN)

Client application

Application commands

YARM Container

Issue application commands
Launch Spark Executor

YARN NodeManager

YARN Contaier YARN Container

YARN Resource
Manager

il
-'/Wu«e
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7 Properties
»  The Spark driver runs on a worker node inside the cluster
»  The executor processes run on cluster
> The cluster manager maintans the executor processes
»  Databricks job clusters
7 Purpose
> The best deploy mode for stable applications
»  Better resource utilization than in client mode

> More difficult debugging




Deploy mode: Cluster mode (example for YARN)

Client

Launch application

YARN Container

Issue application commands
Launch Spark Executor

YARN NodeManager

YARN Contaier YARM Container

YARN Resource
Manager
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Yarn.nodemanager.resource.memory-mb

Executor container

spark.executor.meimory (heap space)

spark.yarn.executor. Reserved
MemoryOverhead memo
Max(384MB, 10% of (stmvzz sparlf.memory. spark.memory. Us.ezrsr:re;::rv
spark.executor.memory) il fraction storageFraction structures
BYTES) 7
| l
I \
300MB Default: 0.6 Default: 0.5 1 — spark.memory.fraction
7 Reserved - the memory is reserved for the system and is used to store Spark’s internal object. The size is hardcoded.
7 User Memory - It's used for storing your data structures and data needed for RDD conversion operations, such as lineage.

7 Unified memory:

+ Execution memory - It's mainly used to store temporary data in the calculation process of Shuffle, Join, Sort, Aggregation,
etc.

+ Storage Memory - It's mainly used to store Spark cache data, such as RDD cache, Unroll data, and so on.
» Size of an Execution and Storage memory can by dynamically changed by the Dynamic occupancy mechanism process.

7 Memory overhead - Off heap (no GC). Call stacks, shared libraries, constants defined in Code, the code itself, ....
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7 Spark.executor.memory = 4 GB

— Memory overhead = 10% of executor memory, max 384 MB
— Reserved memory = 300 MB

— User Memory = (Java Heap — Reserved Memory) * (1.0 — spark.memory.fraction) = (3640-300)* (1-
0,6)= 1336 MB

— Storage Memory = (Java Heap — Reserved Memory) * spark.memory.fraction *
spark.memory.storageFraction = (3640-300)*(0,6*0,5)= 1002 MB

— Execution Memory = (Java Heap — Reserved Memory) * spark.memory.fraction * (1.0 —
spark.memory.storageFraction) = (3640-300)*(0,6*0,5)=1002 MB
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Considerations:
> Client or cluster mode
) With the client mode — beware of overloading Edge node

) Size of the result returned by executor (collect action)
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Considerations
7 Resources available in the cluster, sizing of cluster nodes

? Few large executors or many small executors?

— Small executors
* Higher parallelization but more shuffling
* One partition - one executor, risk of spilling the data to disk
* Total overhead grows (Reserved memory)
— Large executors
* Lower parallelization
* Issue with resources allocation
* Might be wasteful
* GC overhead
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* Allows Spark dynamically change the number of executors based on the workload
* Number of cores — deside based on the load. Usually 2 - 4 cores/executor
» Driver memory — keep default

* Executor memory — ((data size) *1,5)/0,6) / number of executors (max 16G)

For start use spark.executor.memory = 2G.

* Number of executors - number of task / executor > 100

For start use spark.dynamicAllocation.maxExecutors <10.

* For long running processes set spark.sql.ui.retainedExecutions <= 100 (default 1000)




Spark vs Databricks
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?

Databricks

Tool/platform built on top of Apache Spark

Add other functionality, e.g. Notebooks, production jobs and workflows, etc.

Databricks runtime

« Built on Apache Spark and optimized for performance

Photon engine

Disk caching, dynamic file pruning, predictive 1/O, cost-based optimizers, etc.
Auto-scaling compute

Pre-installed Java, Scala, Python and R libraries

Apache Spark is running on Databricks clusters

« Can set spark configuration on cluster level and change some configurations during runtime
* Managed Delta Lake

* You cannot set spark configuration for managed compute (SQL warehouse)
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