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Outline

1. History context

– Challenges of traditional/legacy solutions

– What managed platforms (e.g. Databricks) bring to the table and why the companies want it

2. Databricks intro

– Lakehouse concept

– Databricks architecture

– Building blocks (cloud integration, Apache Spark, MLFlow, Delta Lake,…)

– Use cases

3. Core Databricks features

– Compute x Storage, Delta Lake

– Clusters

– Databricks workflows

– Data object types

4. Real world Databricks use cases
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Brief History of Big Data Technologies pt1

1. Structured Data & RDBMS (~1970s)

o Traditional relational databases (e.g., Oracle, PostgreSQL) designed for structured, tabular data.

o Effective for business applications but limited in scalability and flexibility.

2. Data Explosion (~1990s–present) + Internet era (~1991):

o Rapid growth of user-generated data.

o Mobile, IoT, sensors (~2010): real-time, high-volume data streams.

o Rise of semi-structured (JSON, XML) and unstructured data (logs, images, video).

3. Limits of Traditional Tools

o Classic databases couldn't handle the volume, variety, and velocity of modern data.

o Need for distributed processing and scalable storage.

4. Hadoop Ecosystem (2006)

o Open-source framework for distributed computing and storage.

o Core components: HDFS, MapReduce; later extended by Hive, Pig, HBase, Spark.

o Enabled cost-effective big data processing on commodity hardware.
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Brief History of Big Data Technologies pt2

5. Data Lakes

o Centralized storage for structured, semi-structured, and unstructured data.

o Schema-on-read approach: flexible, scalable, cost-efficient.

6. Cloud & Managed Services

o Platforms like AWS (EMR, Kinesis), Azure (Data Factory, Synapse) enable scalable, on-demand data processing.

o No infrastructure maintenance, pay-as-you-go model.

7. Modern Data Platforms

o Unified, cloud-native environments like Databricks, Snowflake, BigQuery.

o Support batch & real-time processing, machine learning, collaborative workflows.

o Emphasis on scalability, simplicity, and integration across the data lifecycle.

o Popular Serveless solutions
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Legacy technology challenges

Infrastructure Challenges

– On-premises infrastructure requires full management by the company → Hardware, networking, data 

centers, monitoring, etc.

– Limited scalability → Scaling up is slow, costly, and often requires upfront investment.

– Over-provisioning is common

→ To handle peak loads, companies must provision more resources than needed most of the time → 

wasteful and expensive.

– Responsibility for security, availability, reliability, and backups lies entirely with the organization

→ Requires large teams and significant effort.

– Manual updates and patching → Software stack must be constantly maintained, updated, and 

secured.

– Key takeaway:

Many tasks consume time and resources but do not deliver direct business value — they’re necessary overhead.
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Legacy technology challenges

Operational Challenges

– Fragmented technology stack

→ Data ingestion, ETL, analytics, dashboarding, and ML often rely on different, disconnected tools.

– Data silos

→ Teams store and manage their own data → limited access across the organization, duplication, and 

inconsistent “truths.”

– High architectural complexity

→ Increases the cost of development, maintenance, and onboarding.

– Performance issues

→ Non-optimized, fragmented systems can lead to slow queries, failed pipelines, and frustrated users.
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Databricks

Founded in 2013

Unified, data analytics platform for building, deploying, sharing, and maintaining enterprise-grade data, 

analytics, and AI solutions at scale

Integrated with cloud vendors – AWS, Azure, GCP

Cloud agnostic

Databricks Lakehouse platform

~ 15% of market share in big-data-analytics domain (https://6sense.com/tech/big-data-analytics/databricks-

market-share)

Databricks account -> Databricks workspaces associated with the account

https://6sense.com/tech/big-data-analytics/databricks-market-share
https://6sense.com/tech/big-data-analytics/databricks-market-share
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How do Databricks solve the challenges?

Cloud-based (AWS, Azure, GCP)

– Infrastructure is managed by the cloud vendor, you just need to provision it.

Auto-scaling support (alleviate the over-provisioning issue)

Provide tools for handling all data-related processing demands (batch, streaming, ML, data sharing,…), all

unified under single platform

Software versions, libraries and runtimes are managed by Databricks, also come with handy libraries

preinstalled

On-demand cluster provisioning -> no need to run machines when idle

Lakehouse concept + centralized data governance solution – supports the „single source of truth“
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Databricks
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Databricks spaces

Databricks SQL

– Compute resources for SQL queries, visualizations and dashboards executed against data sources in 

the lakehouse

– SQL warehouse, optimized for processing large-scale data, multi-tenancy

– Alerting

Data Science & Engineering

– Notebooks, Apache Spark, Spark Structured Streaming

– Databricks Jobs

– ETL – Delta Live Tables

Machine learning

– AutoML, MLFlow

– Scalable machine learning - Spark MLLib, HyperOpt, EDA with Spark
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Databricks architecture
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Databricks architecture

Control Plane (managed by Databricks)

– Runs in Databricks' own cloud account (not in customer’s).

– Manages:Workspace configurationUser permissions & access controlJob scheduling, notebooks, REST API, UI

– No data processing or storage happens here.

Classic Data Plane (customer-managed)

– Runs in the customer's own cloud account (e.g. AWS, Azure).

– Data is processed and stored within customer's VPC.

– Used for:Notebooks and JobsClassic / Pro SQL Warehouses

– Full control, better for regulated environments.

Serverless Data Plane (Databricks-managed)

– Compute runs in a shared, managed environment provided by Databricks.

– Databricks handles provisioning, scaling, and optimization.

– Used for:Serverless SQL WarehousesModel Serving

– Fast startup, lower ops overhead.

– ! Data processed outside customer’s VPC — consider data sensitivity.
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Data Lakehouse
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Databricks Lakehouse

https://docs.databricks.com/en/lakehouse/index.html

Combines best elements from

– Data warehouses

• ACID transactions, data governance

– Data lakes

• Flexibility, cost-efficiency

Built on top of open source technologies – Parquet, Apache Spark, Delta Lake, MLFlow – prevents vendor-

lock

Delta tables (stored with Delta Lake protocol)

– ACID, Data versioning, ETL, indexing

Unity Catalog

– Data governance, Data sharing, Data auditing, Data lineage

https://docs.databricks.com/en/lakehouse/index.html
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Databricks Lakehouse
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Data Lakehouse principles

Multi-hop (medallion) architecture

– Curate data and offer trusted data-as-products

– (Landing) → Ingest → Curated → Final

– (Raw) → Bronze→ Silver→ Gold
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Data Lakehouse principles

Adopt an organization-wide data governance strategy
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Data Lakehouse principles

Encourage open interfaces and open formats
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Data Lakehouse principles

Build to scale and optimize for performance and cost



Databricks core features
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Databricks core features

Decoupled compute from storage

– Storage provided by cloud object storage (e.g. AWS S3) or external locations

– Compute provided by compute clusters

• Clusters also have their own disk attached

Storage layer powered by Delta Lake

– Data versioning, historization

– Indexing, optimization

– ACID transactions

– Optimized for structured streaming

Databricks workflows (jobs)

– Running non-interactive workloads

– On schedule, on demand

– Notifications
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Databricks clusters

Computation resources for data engineering, data science and analytics workloads

Created on classic data plane = your AWS account

Running Spark

All-purpose clusters

– For interactive workloads, usually used with notebooks

– Can be shared accross multiple users

Job clusters

– For non-interactive workloads, automated jobs

– Is terminated when job is finished

Controlled with UI, CLI, or REST API

Pools

– Keep warm instances as idle to reduce start and scale-up times, ! costs
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Databricks clusters
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Databricks clusters

1 driver node, 0-n worker nodes

Autoscaling

– Add or remove instances from the cluster 

based on the workload

Init script for custom initializations

Arbitrary Spark configurations

Policy, access mode

Databricks runtime

– Scala, Spark preinstalled

Autotermination

Tags (Metadata)

Arbitrary log destinations
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Delta Lake 

Default data storage format

Data stored as Parquet files

ACID transactions

– Secured by transaction log, tracks all changes made to the table

Data are versioned

– Keep data files for every version (w.r. to retention period)

– Time travel
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Databricks workflows

Using job clusters

– Job clusters are terminated immediately after job is finished

Consisting of tasks

– Python script

– Spark submit

– Notebook

– JAR, Python wheel

– SQL – Query, Dashboard, Alert

– Job

Compute can be shared or different cluster can be selected for different tasks

Run on demand/schedule/trigger

Databricks native alternative to open source orchestration tools (AirFlow, Dagster, etc.)

Can show nice DAG (graphical view)
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Data objects

Kept and organized in cloud object storage (AWS S3, Azure Blob Storage,…)
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Data objects

Metastore

– Contains metadata of data objects

– Configured with root storage in cloud object storage (e.g. S3 bucket in AWS)

– Can be assigned to multiple workspaces

– One workspace may have only a single metastore

Catalog

– The highest abstraction in DBX Lakehouse relational model

– Collection of schemas (databases)

– Default catalog is hive_metastore

Schema

– LOCATION on cloud object storage

– Collection of tables, views and functions 
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Data objects

Table

– Collection of structured data

– Default storage provider – Delta Lake (https://delta.io/)

• ACID transcations

• Optimized performance (OPTIMIZE, Z-ORDER,…)

• Driven by parquet

– Managed table

• In the same location as database

• Metadata and data is managed by Databricks

• DROP = delete data and metadata

– Unmanaged table, EXTERNAL

• Only metadata is managed by Databricks

• DROP = data is preserved

https://delta.io/
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Data objects

View

– Query text is registered to the metastore (database)

– No actual data is written

Temporary view

– Limited scope and persistence

– Not registered to metastore

– Scopes:

• Notebooks and jobs

• Databricks SQL – query level

• Global temporary views – cluster level
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Data objects

User-defined function

– Associate user-defined logic with a database

– In SQL or Python/Scala/Java

• Code in Python can have a negative impact on performance

• Outside of JVM – data serialization

• Databricks have code optimizers for SQL, not Python

– Usually not good for production workloads (instead use native Apache Spark methods if possible)
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Data objects

Volume

– Represents logical volume of storage in cloud object storage location

– Accessing, storing, governing and organizing files

– Add governance over also to non-tabular datasets

– Only in Unity Catalog

– Managed

– External

        



41

Advanced Databricks features – to be continued

– Machine learning tooling

• MLFlow, Scalable ML with Spark, AutoML, Model serving

– Delta Live Tables

• ETL tool

• Declarative definitions

• A lot of „self optimization and maintanance“

• Development or production modes

– Photon

• New generation data processing engine

• Written in C++

• Compatible with Apache Spark APIs

– SQL warehouses

– Lakehouse federation

– LakehouseIQ
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Real-world Databricks use cases

Gucci

• Use case: media budget allocation to maximize ROI 

https://www.youtube.com/watch?v=mq3IxO_toDA

• MLOps

• Trying to adopt community-recommended best practices

• Speed-up time to market

• Benefit from managed ML services – distributed hyperparameter tuning with HyperOpt and Spark, MLFlow, 

AutoML (kick-off stage)

CDQ

• Use case: migrate custom reporting ETL pipeline to Databricks

• Get scalable solution with usage of Delta Live Tables

• Exploit Lakehouse architecture

• Performance boost

Shell 

• Use case: Databricks as key tool in Shell.ai platform https://www.databricks.com/customers/shell

• Democratize data access in organization, supported cross-team collaboration, develop over 100 AI models

https://www.youtube.com/watch?v=mq3IxO_toDA
https://www.databricks.com/customers/shell
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Outline

1. Spark overview

2. How Spark works

3. Spark Dataframes

4. Spark architecture

5. Spark configuration

6. Spark vs Databricks



Spark overview
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The What, Why and When of Apache Spark

What:

– Unified engine for big data and machine learning

– Distributed data processing engine ->  up to petabytes of data up to thousands of physical or virtual machines

– Open Source with over 1000 contributors from 250+ organizations

– Founded by people who founded Databricks

Why:

– High speed data querying, analysis, and transformation with large data sets.

– Great for iterative algorithms (using a sequence of estimations based on the previous estimate).

– Supports multiple languages (Java, Scala, R, Python)

– Free of charge

When:

– When you’re using functional programming (output of functions only depends on their arguments, not global states)

– Performing ETL or SQL batch jobs with large data sets

– Processing streaming

– Machine Learning tasks
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Spark - facts

In-memory Map-Reduce engine

Written in Scala

Fault-tolerant

Connected with all major big data technologies

Runs „Everywhere“
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Apache Spark Evolution

Spark 1.x – 2014 :

– Spark CORE - Fault-tolerant in memory computation engine

– Spark RDD (Resilient Distributed Dataset) API

– API for Streaming and Mlib

– Spark SQL

Spark 2.x - 2016:

– Speedups the computation 5 to 20 times.

– API for structured Streaming

– API for graph data processing

– SQL 2003 support

– Datasets API over RDD

› Spark 3.x - 2020:

– adaptive query execution, dynamic partition pruning and other optimizations

– Significant improvements in pandas APIs, including Python type hints and additional pandas UDFs

– Up to 40x speedup for calling R user-defined functions

– SQL ANSI supports
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When does Spark work best?

Enable collaboration between data engineers, data scientists, BI analysts, and more

Support both batch and streaming processing workflows

Common Use Cases:

– Client scoring: Risk scoring, fraud detection

– ETL and batch SQL jobs: Data processing and aggregation

– Streaming data triggers: Real-time event response (e.g., alerts, notifications)

– Machine Learning: Model training and inference at scale

– Graph algorithms: Social networks, recommendations, fraud network detection
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When Spark is not so good / appropriate?

Low-latency, real-time applications

– Spark (even with Structured Streaming) has higher latencies (hundreds of ms+)

– Not suitable for use cases needing sub-second responses (e.g., real-time bidding, chat apps)

Small or simple datasetsSpark introduces overhead due to distributed execution

– For small data or lightweight ETL, pandas, SQL, or dbt may be more efficient

Highly interactive use (BI dashboards)

Complex stateful stream processing

– Spark Structured Streaming supports state, but with limits

– Kafka Streams, Flink, or other stream-first engines handle complex event time and state bette

Very tight resource constraints

– Spark is memory-intensive; not ideal for constrained environments (e.g. edge devices, IoT)
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How to work with Spark?

Interactively

– Command line (shell for both Python and Scala)

– Databricks notebook

– Zeppelin/Jupyter notebook

– From IDE (Pycharm, IntelliJ, …)

Batch / application

– compiled .jar file

– *.py file

Learning path:

– http://spark.apache.org

– https://www.databricks.com/spark/getting-started-with-apache-spark

http://spark.apache.org/
https://www.databricks.com/spark/getting-started-with-apache-spark


How Spark works
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Logical point of view

› RDD:

– resilient distributed dataset - the abstractions of Spark. It is used to handle distributed collection of data 

elements (e.g.: rows in text file, data matrix, set of binary data) across all the nodes in a cluster. 

– is immutable 

› Transformation:

– are planned and optimized, but not evaluated

– planned as DAG – Direct acyclic graph

› Action – lazy evaluation:

– action is a trigger that started the whole process

RDD output

Transformation action
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Components of Spark Architecture

Driver

– It is a master node.

– Translates user code into a specified job.

– Schedules the job execution and negotiates with the cluster manager.

– Stores the metadata about all RDDs as well as their partitions.

– The key component is a  SparkContext, others are DAG Scheduler, Task scheduler, backend scheduler and block manager.

Executors - workers

– They are distributed agents those are responsible for the execution of tasks 

– They perform all the data processing

› Cluster Manager

– Responsible for acquiring resources

Driver

SparkContext DAGScheduler TaskScheduler

Executor
Task Task

Executor
Task Task

Executor
Task Task

Cluster Manager
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Example – word count

Task: count number of words in document

Source: text file splitted to lines

Approach:

– Load file from disk

– Transformation of lines: line  split to words  split to items (word, 1)

– Group items with the same word and sum up ones

Result of transformation: RDD with items (word, frequency)
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Example – word count

Transformation:

lines = sc.textFile("bible.txt")

words = lines.flatMap(lambda line: line.split(" "))

items = words.map(lambda word: (word, 1))

counts = items.reduceByKey(lambda a, b: a + b)

Action:

counts.take(5)



Spark Dataframes
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Spark SQL and DataFrames (DataSets)

New from spark 2.x  Enhances the classical RDD approach

Data structure DataFrame = „RDD with columns“

– like database relation table

– with metadata (field names, types)

– works with columns –> SQL syntax can be used

RDD

Dataframe 

1;Andrea;35;64.3;Praha

2;Martin;43;87.1;Ostrava

3;Simona;18;57.8;Brno

id name age weight city

1 Andrea 35 64.3 Praha

2 Martin 42 87.1 Ostrava

3 Simona 18 57.8 Brno
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WHY use DataFrames

Advantage over Spark RDD:

– Dataframe API - shorter and easier code

– Columns and Types

– SQL languague can be used

– Simplified work with databases 

– Catalyst Optimizer can be applied  is faster

Optimized Code

Data Frames

SQL Queries

Data Sets

Catalyst Optimizer

Query Plan Optimized 

Query Plan 

Rules based 

optimization
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How to get a DataFrame?

transformation from existing RDD

– if convertable

– sqlContext.createDataFrame(RDD, schema)

direct input of file

– schema may be defined (Parquet, ORC) or inferred (CSV)

– sqlContext.read.format(format).load(path)

Hive query

– sqlContext.sql(sql_query)
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How to work with a DataFrame?

1. registration of temporary table + SQL querying

– DF.registerTempTable("table")

– sqlContext.sql("select * from table")

2. SPARK API

– DF.operations; select, filter, join, groupBy, sort...

3. Convert to RDD -> RDD operation (map, flatMap, …) and then convert back -> Dataframe
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Example – word count with Dataframes

Transformation

df_final = (

df.withColumn("word", explode(split(col("lines"), ' ')))

.groupBy("word")

.count()

)

Action

df_final.show()
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Example – word count with Spark SQL

Transformation

df.registerTempTable("temp_df")

df_final = (

sqlContext.sql(“

    SELECT word, count(*) FROM

(SELECT explode(split(Description, ' ')) AS word FROM temp_df)

GROUP BY word

“)

Action

df_final.show()



Spark Actions
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Spark Actions

Every action starts all steps of transformation from the beginning!

RDD Dataframe Description

take take,show Show first n rows

count count Count of rows

collect collect Show rdd/dataframe as list 

of rows

saveAsTextFile saveAsTable, write Save file/create table

… …

DF output

Transformation

count()

collect()
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Spark Actions

DF saveAsTable()DF DF DF DF

DF

DF

saveAsTable()

DF DF

Count()

1h 2h 1m 1m

1m

1m

1m

1m

1m1m

Duration cca 3 hours

Duration next 3 

hours

Count()

Duration next 3 hours
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Spark Caching

Methods:

– persist() (several options)

– cache() (use persist with MEMORY_ONLY option)

– unpersist() (release persisted data)

Persist options:

– MEMORY_ONLY – Default –> deserialized JVM memory

– MEMORY_AND_DISK –> excessed partitions into disk.

– MEMORY_ONLY_SER -> serialized JVM memory 

– MEMORY_AND_DISK_SER -> etc.

Persist is not an action!
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Spark Caching

Different from (proprietary) Databricks Disk Cache – optimized caching on SSDs

Cache consistency: 

– Databricks disk caching – changes are automatically detected and cache is updated

– Spark caching – cache must be manually invalidated and refreshed
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Spark data partitions

Partition

– part of data managed in one task

– default partition = 1 HDFS block = 1 task = 1 core

– partition is ideally managed on the node where is stored – data locality!

– More partitions  more tasks  higher parallelization     

•  smaller data  lower efficiency  higher overhead

› Default for Joins:

– The default number of partitions to use when shuffling data for joins or aggregations.

– spark.sql.shuffle.partitions = 200

How to change number of partition?

– in load:  sc.textFile(file, count_of_partitions)

– In the code (before/after specific transformation/action):

• coalesce (count_of_partitions)

• repartition(count_of_partitions)

• partitionBy (count_of_partitions)
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Data locality & shuffling



Start and configuration
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pyspark | spark-shell | spark-submit --param value

Useful parameters:

--name -> name of the application

--class -> The entry point for your application

--master -> The master URL for the cluster (local, Yarn, Mesos, ..)

--deploy_mode -> where the driver will be deployed (client/cluster)

--driver-memory -> memory for driver

--num-executors -> count of executors

--executor-cores -> count of cores for executor

--executor-memory -> memory for executor

NOTE: Spark is deployed in Databricks clusters by default and Spark Context (Spark session) is initialized, 

you don‘t need to care about running Spark on your own



Deploy mode
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Deploy mode (execution mode)

Deploy mode

› Determines where the resources used by Spark application are physically located

Deploy mode types:

– Local mode

– Client mode

– Cluster mode

Differences:

› Where the driver runs – client or cluster ?

› Where the executors run - client or cluster ?

› What is cluster manager – spark CM or 3rdParty (yarn, messos, ..)
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Deploy mode: Local mode

Properties:

› The entire application is run on a single machine (paralelism through threads)

› The Spark driver runs on the client machine

› The Executor processes run on the client machine

› Spark CM is used

› Used on Databricks single node clusters

Purpose:

› Development

› Debugging

› Testing
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Deploy mode: Client mode

Properties

› The Spark driver runs on the client machine that submitted the application (usually an edge node)

› The executor processes run on cluster

› Cluster manager is used

› On Databricks multi-node clusters in interactive environment (e.g. Notebook)

Purpose

› Spark-shell (interactive sessions)

› Easy debugging

› Input and output attached

› Can overload the edge node
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Deploy mode: Client mode (example for YARN)
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Deploy mode: Cluster mode

Properties

› The Spark driver runs on a worker node inside the cluster

› The executor processes run on cluster

› The cluster manager maintans the executor processes

› Databricks job clusters

Purpose

› The best deploy mode for stable applications

› Better resource utilization than in client mode

› More difficult debugging
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Deploy mode: Cluster mode (example for YARN)



Spark configuration
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Spark executor memory

Reserved - the memory is reserved for the system and is used to store Spark’s internal object. The size is hardcoded.

User Memory - It's used for storing your data structures and data needed for RDD conversion operations, such as lineage.

Unified memory:

• Execution memory - It’s mainly used to store temporary data in the calculation process of Shuffle, Join, Sort, Aggregation, 

etc.

• Storage Memory - It’s mainly used to store Spark cache data, such as RDD cache, Unroll data, and so on.

• Size of an Execution and Storage memory can by dynamically changed by  the Dynamic occupancy mechanism process.

Memory overhead - Off heap (no GC). Call stacks, shared libraries, constants defined in Code, the code itself, ….
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Spark executor memory example

Spark.executor.memory = 4 GB

– Memory overhead = 10% of executor memory, max 384 MB

– Reserved memory = 300 MB

– User Memory = (Java Heap — Reserved Memory) * (1.0 — spark.memory.fraction) = (3640-300)* (1-

0,6)= 1336 MB

– Storage Memory = (Java Heap — Reserved Memory) * spark.memory.fraction * 

spark.memory.storageFraction = (3640-300)*(0,6*0,5)= 1002 MB

– Execution Memory = (Java Heap — Reserved Memory) * spark.memory.fraction * (1.0 — 

spark.memory.storageFraction) = (3640-300)*(0,6*0,5)=1002 MB
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Resources configuration: Spark Driver

Considerations:

› Client or cluster mode

› With the client mode – beware of overloading Edge node

› Size of the result returned by executor (collect action)
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Resources configuration: Spark Executor

Considerations

Resources available in the cluster, sizing of  cluster nodes

Few large executors or many small executors?

– Small executors

• Higher parallelization but more shuffling

• One partition - one executor, risk of spilling the data to disk

• Total overhead grows (Reserved memory)

– Large executors

• Lower parallelization

• Issue with resources allocation

• Might be wasteful

• GC overhead
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Resources configuration: Recommendations

• Allows Spark dynamically change the number of executors based on the workload

• Number of cores – deside based on the load. Usually 2 - 4 cores/executor

• Driver memory – keep default

• Executor memory – ((data size) *1,5)/0,6) / number of executors (max 16G)

• For start use spark.executor.memory = 2G.

• Number of executors - number of task / executor > 100

• For start use spark.dynamicAllocation.maxExecutors < 10.

• For long running processes set spark.sql.ui.retainedExecutions <= 100 (default 1000)



Spark vs Databricks
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Spark vs Databricks

Databricks

– Tool/platform built on top of Apache Spark

– Add other functionality, e.g. Notebooks, production jobs and workflows, etc.

– Databricks runtime

• Built on Apache Spark and optimized for performance

• Photon engine

• Disk caching, dynamic file pruning, predictive I/O, cost-based optimizers, etc.

• Auto-scaling compute

• Pre-installed Java, Scala, Python and R libraries

• …

– Apache Spark is running on Databricks clusters

• Can set spark configuration on cluster level and change some configurations during runtime

• Managed Delta Lake

• You cannot set spark configuration for managed compute (SQL warehouse)



Q&A
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