Jan Faigl, 2025

C++ Constructs by Examples

Jan Faigl

Katedra pocitacil
Fakulta elektrotechnicka

Ceské vysoké uceni technické v Praze

Prednaska 13
BOB36PRP — Proceduralni programovani

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

1/64

Overview of the Lecture

® Part 1 — C++ constructs in class Matrix example

Class and Object — Matrix
Operators

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 2/ 64

Class and Object — Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Cast |

Part 1 — C4++ constructs in class Matrix example

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 3/ 64

Class and Object — Matrix

Class as an Extended Data Type with Encapsulation

m Data hidding is utilized to encapsulate implementation of matrix.

1 class Matrix {

2 private:

3 const int ROWS;
4 const int COLS;
5 double *vals;

6

+s 1D array is utilized to have a continuous memory. 2D dynamic array

® In the example, it is shown can be used in C4+11.

= How initialize and free required memory in constructor and destructor.
How to report an error using exception and try-catch statement.

How to use references.

How to define a copy constructor.

How to define (overload) an operator for our class and objects.

How to use C function and header files in C++.

How to print to standard output and stream.

How to define stream operator for output.

How to define assignment operator.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 5/ 64

Class and Object — Matrix

Example — Class Matrix — Constructor

m Class Matrix encapsulate dimension of the matrix

® Dimensions are fixed for the entire life of the object (const)

1 class Matrix { 1 Matrix::Matrix(int rows, int cols) : ROWS(
2 public: rows), COLS(cols)
3 Matrix(int rows, int 2 {
cols); 3 vals = new double[ROWS * COLS];
4 “Matrix(); 4 3}
: prlZ§E:; int ROWS: 6 Matrix:: Matrix()
7 const int COLS; 7 1
8 double *vals; 8 delete[] vals;
o }; o}

Notice, for simplicity we do not test validity of the matrix dimensions.

m Constant data fields ROWS and COLS must be initialized in the constructor, i.e., in the

initializer list. We should also preserve the order of the initialization as the variables are defined.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 6/ 64

Class and Object — Matrix

Example — Class Matrix — Hidding Data Fields

® Primarily we aim to hide direct access to the particular data fields.

m For the dimensions, we provide the so-called “accessor” methods.

® The methods are declared as const to assure they are read only methods and do not
modify the object (compiler checks that).

® Private method at () is used to access to the particular cell at r row and ¢ column.

inline is used to instruct compiler to avoid function call and rather put the function body

1 class Matrix { directly at the calling place.

N

© o N o

10
11
12
13
14}

Jan Faigl, 2025

public:

inline int rows(void) const { return ROWS; } // const method cannot
inline int cols(void) const { return COLS; } // modify the object
private:

// returning reference to the variable allows to set the variable
// outside, it is like a pointer but automatically dereferenced
inline double& at(int r, int c) const
{

return vals[COLS * r + c];

}

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

7/ 64

Class and Object — Matrix

Example — Class Matrix — Using Reference

® The at () method can be used to fill the matrix randomly.
® The random() function is defined in <stdlib.h>, but in C++ we prefer to include C
libraries as <cstdlib>.

1 class Matrix {
2 public:
3 void fillRandom(void);
4 private:
5 inline double& at(int r, int c) const { return vals[COLS * r + c]; }
6 I
1 #include <cstdlib>
3 void Matrix::fillRandom(void)
4
{
5 for (int r = 0; r < ROWS; ++r) {
6 for (int ¢ = 0; ¢ < COLS; ++c) {
7 at(r, c) = (rand() % 100) / 10.0; // set vals[COLS * r + c]
8 }
9 }
10 } In this case, it is more straightforward to just fill 1D array of vals for i in 0..(ROWS * COLS).

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 8/ 64

Class and Object — Matrix

Example — Class Matrix — Getters/Setters

m Access to particular cell of the
matrix is provided through the
so-called getter and setter

® The methods are based on the private at () method but will throw an exception if a cell out

Jan Faigl

methods.

1
2
3
4

5

class Matrix {
public:
double getValueAt(int r, int c) const;
void setValueAt(double v, int r, int c)

} .

of ROWS and COLS would be requested.

#include <stdexcept>

double Matrix::getValueAt(int r, int c) const

{

}

if (r < 0 or r > ROWS or ¢ < 0 or ¢ >= COLS) {
throw std::out_of_range("Out of range at Matrix::getValueAt");

}

return at(r, c);

void Matrix::setValueAt(double v, int r, int c)

{

}

, 2025

if (r < 0 or r >= ROWS or ¢ < 0 or ¢ >= COLS) {
throw std::out_of_range("Out of range at Matrix::setValueAt");

}

at(r, c) = v;

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

9/ 64

Class and Object — Matrix

Example — Class Matrix — Exception Handling

® The code where an exception can be raised is put into the try-catch block.
m The particular exception is specified in the catch by the class name.

® We use the program standard output denoted as std: : cout.

w

© 0 N o O

10

12
13
14
15
16
17
18

#include <iostream> We can avoid std:: by using namespace std;
#include "matrix.h" Or just using std::cout;
int main(void)
{
int ret = 0;
try {
Matrix m1(3, 3);
ml.setValueAt(10.5, 2, 3); // col 3 raises the exception
ml.fillRandom() ;
} catch (std::out_of_range& e) {
std::cout << "ERROR: " << e.what() << std::endl;
ret = -1
}
return ret;
} lecl3cc/demo-matrix.cc

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

10 / 64

Class and Object — Matrix

Example — Class Matrix — Printing the Matrix

® We create a print () method to nicely print the matrix to the standard output.

® Formatting is controlled by i/o stream manipulators defined in <iomanip> header file.

1 #include <iostream>

2 #include <iomanip>

4 #include "matrix.h"

6 void print(const Matrix& m)

7 {

8 std::cout << std::fixed << std::setprecision(1);
9 for (int r = 0; r < m.rows(); ++r) {

10 for (int ¢ = 0; ¢ < m.cols(); ++c) {

11 std::cout << (¢ > 0 7 " " : ") << std::setw(4);
12 std::cout << m.getValueAt(r, c);

13 }

14 std::cout << std::endl;

15 }

16

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 11 / 64

Class and Object — Matrix

Example — Class Matrix — Printing the Matrix

® The variable m1 is passed as reference to print () function and thus it is not copied.

1 #include <iostream>

2 #include <iomanip>

3 #include "matrix.h"

5 void print(const Matrix& m);
7 int main(void)

s {

9 int ret = 0;

10 try {

11 Matrix mi1(3, 3);

12 ml.fillRandom() ;

13 std::cout << "Matrix ml" << std::endl;
14 print(ml);

15

= Example of the output

clang++ --pedantic matrix.cc demo-matrix.cc && ./a.out
Matrix ml

1.3 9.7 9.8
1.5 1.2 4.3
8.7 0.8 9.8 lecl3cc/matrix.h, lecl3cc/matrix.cc, lecl3cc/demo-matrix.cc

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 12 / 64

Class and Object — Matrix

Example — Class Matrix — Copy Constructor

® We may overload the constructor to create a copy of the object.

class Matrix {
public:

1
2
3 .«
4 Matrix(const Matrix &m);
5
6 F;

m We create an exact copy of the matrix.

1 Matrix::Matrix(const Matrix &m) : ROWS(m.ROWS), COLS(m.COLS)
2 { // copy constructor

3 vals = new double[ROWS * COLS];

4 for (int 1 = 0; i < ROWS * COLS; ++i) {

5 vals[i] = m.vals[i];

6 }

7}

m Notice, access to private fields is allowed within in the class.

We are implementing the class, and thus we are aware what are the internal data fields.
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 13 / 64

Class and Object — Matrix

Example — Class Matrix — Dynamic Object Allocation

m We can create a new instance of the object by the new operator.

m We may also combine dynamic allocation with the copy constructor.

® Notice, the access to the methods of the object using the pointer to the object is by
the -> operator.

matrix m1(3, 3);
ml.fillRandom() ;
std::cout << "Matrix ml" << std::endl;

print (mil);
Matrix *m2 = new Matrix(ml);

Matrix *m3 = new Matrix(m2->rows(), m2->cols());
std::cout << std::endl << "Matrix m2" << std::endl;

print (*m2) ;
m3->fillRandom() ;
std::cout << std::endl << "Matrix m3" << std::endl;

print (*m3) ;
delete m2;
delete m3;

© 0 N OO A WN =

H B R R oR
A N H O

lecl3cc/demo-matrix.cc
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 14 / 64

Class and Object — Matrix

Example — Class Matrix — Sum

® The method to sum two matrices will

class Matrix {
public:

1
2

return a new matrix. 3 Matrix sum(const Matrix &m2);
4

}

® The variable ret is passed using the copy constructor.
Matrix Matrix::sum(const Matrix &m2)

1
2
3
4

© © N o o

11

® The sum() method can be then used as any other method.

Jan Faigl, 2025

{

if (ROWS != m2.ROWS or COLS != m2.COLS) {
throw std::invalid_argument("Matrix dimensions do not match at
Matrix::sum");
X
Matrix ret (ROWS, COLS);
for (int i = 0; i < ROWS * COLS; ++i) {
ret.vals[i] = vals[i] + m2.vals[i];

}
return ret;
We may also implement sum as addition to the particular matrix.

Matrix m1(3, 3);
ml.fillRandom();

Matrix *m2 = new Matrix(ml);
Matrix m4 = mil.sum(*m2);

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 15 / 64

Class and Object — Matrix

Example — Class Matrix — Operator +

a b W N =

AW N R

1
2
3
4

In C++, we can define our operators, e.g., + for sum of two matrices.
It will be called like the sum() method.
class Matrix {
public:
Matrix sum(const Matrix &m2);
Matrix operator+(const Matrix &m2);

}

In our case, we can use the already implemented sum() method.
Matrix Matrix::operator+(const Matrix &m2)

{

return sum(m2) ;

}
The new operator can be applied for the operands of the Matrix type like as to default types.

Matrix m1(3,3);

ml.fillRandom() ;

Matrix m2(m1), m3(m1 + m2); // use sum of ml and m2 to init m3
print(m3);

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 16 / 64

Class and Object — Matrix

Example — Class Matrix — Output Stream Operator

= An output stream operator << can be defined to pass Matrix objects to the output stream.

1 #include <ostream>
2 class Matrix { ... };
3 std::ostream& operator<<(std::ostream& out, const Matrix& m);

® |t is defined outside the Matrix.

1 #include <iomanip>

2 std::ostream& operator<<(std::ostream& out, const Matrix& m)

3 {

4 if (out) {

5 out << std::fixed << std::setprecision(l);

6 for (int r = 0; r < m.rows(); ++r) {

7 for (int ¢ = 0; ¢ < m.cols(); ++c) {

8 out << (¢ >0 7?7 " " : "") << std::setw(4);

9 out << m.getValueAt(r, c);

10 }

11 out << std::endl;

12 }

13 } “Outside” op_erator can be: used in an output_ stream pipeline with other data types. In this case,
we can use just the public methods. But, if needed, we can declare the operator as a friend

14 } return out; method to the class, which can access the private fields.

15

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

17 / 64

Class and Object — Matrix

Example — Class Matrix — Example of Usage

® Having the stream operator we can use + directly in the output.

std::cout << "\nMatrix demo using operators" << std::endl;
Matrix m1(2, 2);

Matrix m2(m1);

ml.fillRandom() ;

m2.fillRandom() ;
std::cout << "Matrix ml" << std::endl << mi;

std::cout << "\nMatrix m2" << std::endl << m2;
std::cout << "\mMatrix ml + m2" << std::endl << ml + m2;

0 N O o A W N -

® Example of the output operator.

1 Matrix demo using operators

2 Matrix ml Matrix m2 Matrix ml + m2
3 0.8 3.1 0.4 2.3 1.2 5.4

4 2.2 4.6 3.3 7.2 5.5 11.8

lec13cc/demo-matrix.cc

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 18 / 64

Class and Object — Matrix

Example — Class Matrix — Assignment Operator =

1 class Matrix {

2 public:

3 Matrix& operator=(const Matrix &m)

4 {

5 if (this != &m) { // to avoid overwriting itself

6 if (ROWS != m.ROWS or COLS != m.COLS) {

7 throw std::out_of_range("Cannot assign matrix with
8 different dimensions");

9 ¥

10 for (int i = 0; i < ROWS * COLS; ++i) {

11 vals[i] = m.vals[i];

12 }

13 }

14 return *this; // we return reference not a pointer
15 }

16 };

17 // it can be then used as

18 Matrix m1(2,2), m2(2,2), m3(2,2);

19 ml.fillRandom();

20 m2.fillRandom();

21 m3 = ml + m2;

22 std:i:cout << ml << " + " << gtd::endl << m2 << " =" << sgtd::endl << m3 << std::endl;

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 19 / 64

Operators

Example of Encapsulation

m Class Matrix encapsulates 2D matrix of double values.

class Matrix {
private:
const int ROWS;
const int COLS;
double *vals;

S s W N

};

lecl3cc/matrix.h

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 21 / 64

Operators

Example — Matrix Subscripting Operator

© 00N O UAE W N

W N o A W N

9

Jan Faigl, 2025

m For a convenient access to matrix cells, we can implement operator () with two argu-
ments r and ¢ denoting the cell row and column.

class Matrix {
public:
Matrix(int rows, int cols);
“Matrix();
private:
const int ROWS;
const int COLS;
double *vals;
};
Matrix::Matrix(int rows, int cols)
{
vals = new double[ROWS * COLS];

}
Matrix:: Matrix()
{
delete[] vals;
} For simplicity and improved readability, we do not check range of arguments.

: ROWS(rows), COLS(cols)

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

22 / 64

Operators

Example Matrix — Identity Matrix

= Implementation of the set identity using the matrix subscripting operator.
1 #include <iostream>
2 #include <iomanip>
3 #include "matrix.h"

5 void print(const Matrix& m);
7 int main(void)

s {

9 int ret = 0;

10 try {

11 Matrix m1(3, 3);

12 ml.fillRandom() ;

13 std::cout << "Matrix ml" << std::endl;
14 print(ml);

m Example of output
clang++ --pedantic matrix.cc demo-matrix.cc && ./a.out
Matrix ml

AW N R
[
w
©
\]
e}
(e0]

1.2
5 8.7 0.8)
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction tbEl3q@hdemo-matrix.cc 23 /64

Relationship

Relationship between Objects

® Objects can be in relationship based on the.

® Inheritance — is the relationship of the type is .
Object of descendant class is also the ancestor class.
® One class is derived from the ancestor class.
Objects of the derived class extends the based class.
® Derived class contains all the field of the ancestor class.
However, some of the fields may be hidden.
= New methods can be implemented in the derived class.
New implementation override the previous one.
® Derived class (objects) are specialization of a more general ancestor (super) class.

® An object can be part of the other objects — it is the has relation.

m Similarly to compound structures that contain other struct data types as their data fields,
objects can also compound of other objects.
m We can further distinguish.

m Aggregation — an object is a part of other object.
= Composition — inner object exists only within the compound object.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 25 / 64

Relationship

Example — Aggregation/Composition
m Aggregation — relationship of the type “has” or “it is composed.

m Let A be aggregation of B C, then objects B and C are contained in A.
® |t results that B and C cannot survive without A.
In such a case, we call the relationship as composition
Example implementation

1 class GraphComp { // composition 1 struct Edge {
2 private: 2 Node v1;
3 std::vector<Edge> edges; 3 Node v2;
4 3} 4 T
6 class GraphComp { // aggregation 6 struct Node {
7 public: 7 Data data;
8 GraphComp (std: :vector<Edge>& edges) : 8 I;
edges (edges) {}
9 private:
10 const std::vector<Edge>& edges;
1}

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

26 / 64

Inheritance

Inheritance

® Founding definition and implementation of one class on another existing class(es).
B Let class B be inherited from the class A, then

m Class B is subclass or the derived class of A;
m Class A is superclass or the base class of B.

The subclass B has two parts in general:

® Derived part is inherited from A;
m New incremental part contains definitions and implementation added by the class B.

The inheritance is relationship of the type is-a.
m Object of the type B is also an instance of the object of the type A.
Properties of B inherited from the A can be redefined.

® Change of field visibility (protected, public, private).
m Qverriding of the method implementation.

Using inheritance we can create hierarchies of objects.
Implement general function in superclasses or creating abstract classes that are further
specialized in the derived classes.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 28 / 64

Inheritance

Example MatrixExt — Extension of the Matrix

m We will extend the existing class Matrix to have identity method and also multiplication
operator.

m We refer the superclass as the Base class using typedef.

= We need to provide a constructor for the MatrixExt; however, we used the existing constructor
in the base class.

1 class MatrixExt : public Matrix {

2 typedef Matrix Base; // typedef for refering the superclass

4 public:

5 MatrixExt(int r, int c) : Base(r, c) {} // base constructor

7 void setIdentity(void);

8 Matrix operator*(const Matrix &m2);

o }; lecl3cc/matrix_ext.h

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 29 / 64

Inheritance

Example MatrixExt — Identity and Multiplication Operator

® We can use only the public (or protected) methods of Matrix class.

1 #include "matrix_ext.h" Matrix does not have any protected members.
2 void MatrixExt::setIdentity(void)

3 {

4 for (int r = 0; r < rows(); ++r) {

5 for (int ¢ = 0; ¢ < cols(); ++c) {

6 (*#this)(r, ¢) = (r == ¢c) 7 1.0 : 0.0;

7 }

8 }

o T

11 Matrix MatrixExt::operator*(const Matrix &m2)

12 {

13 Matrix m3(rows(), m2.cols());

14 for (int r = 0; r < rows(); ++r) {

15 for (int ¢ = 0; ¢ < m2.cols(); ++c) {

16 m3(r, c) = 0.0;

17 for (int k = 0; k < cols(); ++k) {

18 m3(r, c) += (*this)(r, k) * m2(k, c);
19 }

20 }

21

22) return m3; leci3cc/matrix_ext.cc
23

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 30 / 64

© © N & BN K

12
13
15
16
17
18
19
20

Jan Faigl, 2025

Inheritance

Example MatrixExt — Example of Usage 1/2

® Objects of the class MatrixExt also have the methods of the Matrix.

#include <iostream>
#include "matrix_ext.h"

using std::cout;

i

{

nt main(void)

int ret = 0;

MatrixExt m1(2, 1);

m1(0, 0) = 3; mi(1, 0) = 5;

MatrixExt m2(1, 2);

m2(0, 0) = 1; m2(0, 1) = 2;

cout << "Matrix ml:\n" << ml << std::endl;
cout << "Matrix m2:\n" << m2 << std::endl;
cout << "ml * m2 =\n" << m2 * ml << std::endl;
cout << "m2 * ml =\n" << ml * m2 << std::endl;
return ret;

BOB36PRP — Prednaska 13:

clang++ matrix.cc matrix_ext.cc demo-
matrix_ext.cc && ./a.out

Matrix mil:

3.0

5.0

Matrix m2:

1.0 2.0
ml * m2 =

13.0
m2 * ml
3.0 6.
5.0 10.

o o

lecl3cc/demo-matrix_ext.cc

Quick Introduction to C++ (Part 2) 31/ 64

Inheritance

Example MatrixExt — Example of Usage 2/2

0 N o o A W N -

10
11
12
13

® We may use objects of MatrixExt anywhere objects of Matrix can be applied.

® This is a result of the inheritance.

And a first step towards polymorphism.

void setIdentity(Matrix& matrix)

{
for (int r = 0; r < matrix.rows(); ++r) {
for (int ¢ = 0; ¢ < matrix.cols(); ++c) {
matrix(r, ¢) = (r ==¢) 7?7 1.0 : 0.0;
}
}
}

MatrixExt m1(2, 1);

cout << "Using setIdentity for Matrix" << std::endl;
setIdentity(ml);

cout << "Matrix mi:\n" << ml << std::endl;

lecl3cc/demo-matrix_ext.cc

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 32 /64

Inheritance

Categories of the Inheritance

m Strict inheritance — derived class takes all of the superclass and adds own methods and
attributes. All members of the superclass are available in the derived class. It strictly
follows the is-a hierarchy.

m Nonstrict inheritance — the subclass derives from the a superclass only certain
attributes or methods that can be further redefined.

m Multiple inheritance — a class is derived from several superclasses.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 33 /64

Inheritance

Inheritance — Summary

® |nheritance is a mechanism that allows.
m Extend data field of the class and modify them.
m Extend or modify methods of the class.

® |nheritance allows to

m Create hierarchies of classes.
m “Pass” data fields and methods for further extension and modification.

® Specialize (specify) classes.
® The main advantages of inheritance are:

® |t contributes essentially to the code reusability.
Together with encapsulation!

® Inheritance is foundation for the polymorphism.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 34 / 64

Polymorphism

Polymorphism

Polymorphism can be expressed as the ability to refer in a same way to different objects.

We can call the same method names on different objects.

We work with an object whose actual content is determined at the runtime.

Polymorphism of objects - Let the class B be a subclass of A, then the object of the B
can be used wherever it is expected to be an object of the class A.

Polymorphism of methods requires dynamic binding, i.e., static vs. dynamic type of the
class.

m Let the class B be a subclass of A and redefines the method m().
® A variable x is of the static type B, but its dynamic type can be A or B.
® Which method is actually called for x.m() depends on the dynamic type.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 36 / 64

Polymorphism

Example MatrixExt — Method Overriding 1/2

® |n MatrixExt, we may override a method implemented in the base class Matrix, e.g.,
fillRandom() will also use negative values.

1 class MatrixExt : public Matrix {
2 [
3 void fillRandom(void);
4 }
7 void MatrixExt::fillRandom(void)
{
9 for (int r = 0; r < rows(); ++r) {
10 for (int ¢ = 0; ¢ < cols(); ++c) {
11 (*this) (r, c) = (rand() % 100) / 10.0;
12 if (rand() % 100 > 50) {
13 (*this) (r, c) *= -1.0; // change the sign
14 ¥
15 }
16 }
17}

lecl3cc/matrix_ext.h, lecl3cc/matrix_ext.cc
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 37 / 64

Polymorphism

Example MatrixExt — Method Overriding 2/2

® We can call the method fillRandom() of the MatrixExt.
MatrixExt *ml = new MatrixExt(3, 3);

Matrix *m2 = new MatrixExt(3, 3);

ml->fillRandom(); m2->fillRandom() ;

cout << "ml: MatrixExt as MatrixExt:\n" << *ml << std::endl;

cout << "m2: MatrixExt as Matrix:\n" << #m2 << std::endl;
delete ml; delete m2;

o 00~ W N

lecl3cc/demo-matrix_ext.cc
®m However, in the case of m2 the Matrix::fillRandom() is called.

ml: MatrixExt as MatrixExt:
-1.3 9.8 1.2

8.7 -9.8 -7.9

-3.6 -7.3 -0.6

m2: MatrixExt as Matrix:
7.9 2.3 0.5
9.0 7.0 6.6
7.2 1.8 9.7

We need a dynamic object type identification at runtime for the polymorphism of the methods.
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 38 / 64

Polymorphism

Virtual Methods — Polymorphism and Inheritance

® We need a dynamic binding for polymorphism of the methods.

® |t is usually implemented as a virtual method in object oriented programming
languages.

m Qverride methods that are marked as virtual has a dynamic binding to the particular
dynamic type.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 39 / 64

Polymorphism

Example — Overriding without Virtual Method 1/2

1 #include <iostream> clang++ demo-novirtual.cc
2 using namespace std; ./a.out
s class A.{ Object of the class A
4 public: .
Lo Object of the class B
5 void info()
6 { Object of the class A
7 cout << "Object of the class A" << endl;
8 }
9 };
10 class B : public A {
11 public:
12 void info()
13 {
14 cout << "Object of the class B" << endl;
15 }
16 T

Ax a = new A(D; B* b = new B();

Ax ta = a; // backup of a pointer

a->info(); // calling method info() of the class A

b->info(); // calling method info() of the class B

a = b; // use the polymorphism of objects

22 a->info(); // without the dynamic binding, method of the class A is called

23 delete ta; delete b; lecl13cc/demo-novirtual.cc
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 40 / 64

NN R R R
R O © © N

Polymorphism

Example — Overriding with Virtual Method 2/2

© ® N O O AW N

I R e =
B O © ® N o o dwWwN RO

22
23

#include <iostream> clang++ demo-virtual.cc

using namespace std; ./a.out

Clasibﬁié' Object of the class A
P N Object of the class B

irtual id inf Virtual !!!
zlr ual void info() // Virtua Object of the class B

cout << "Object of the class A" << endl;
}
};
class B : public A {
public:
void info()

{
3

cout << "Object of the class B" << endl;

3

Ax a = new A(D; B* b = new B();

Ax ta = a; // backup of a pointer

a->info(); // calling method info() of the class A

b->info(); // calling method info() of the class B

a = b; // use the polymorphism of objects

a->info(); // the dynamic binding exists, method of the class B is called

delete ta; delete b; lec13cc/demo-virtual.cc

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

41 / 64

Polymorphism

Derived Classes, Polymorphism, and Practical Implications

® Derived class inherits the methods and data fields of the superclass, but it can also
add new methods and data fields.
® |t can extend and specialize the class.
® |t can modify the implementation of the methods.
® An object of the derived class can be used instead of the object of the superclass.
m E.g., we can implement more efficient matrix multiplication without modification of the

whole program.
We may further need a mechanism to create new object based on the dynamic type, i.e.,
using the newInstance virtual method.

® Virtual methods are important for the polymorphism.

® |t is crucial to use a virtual destructor for a proper destruction of the object.
E.g., when a derived class allocate additional memory.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 42 / 64

Polymorphism

Example — Virtual Destructor 1/4

1 #include <iostream>

2 using namespace std;

3 class Base {

4 public:

5 Base(int capacity) {

6 cout << "Base::Base -- allocate data" << endl;
7 int *data = new int[capacity];

8 }

9 virtual "Base() { // virtual destructor is important
10 cout << "Base::"Base -- release data" << endl;
11 }

12 protected:

int *data;

-
w

};

-
IS

lec13cc/demo-virtual_destructor.cc

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 43 / 64

Polymorphism

Example — Virtual Destructor 2/4

1 class Derived : public Base {

2 public:

3 Derived(int capacity) : Base(capacity) {

4 cout << "Derived::Derived -- allocate data2" << endl;
5 int *data2 = new int[capacity];

6 }

7 “Derived() {

8 cout << "Derived::"Derived -- release data2" << endl;
9 int *data2;

10 }

11 protected:

12 int *data2;

13 F;

lec13cc/demo-virtual_destructor.cc

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 44 / 64

Polymorphism

Example — Virtual Destructor 3/4

m Using virtual destructor all allocated data are properly released.

cout << "Using Derived " << endl;
Derived *object = new Derived(1000000) ;
delete object;

cout << endl;

cout << "Using Base" << endl;

Base *object = new Derived(1000000) ;
delete object;

0 N O B W N

lec13cc/demo-virtual_destructor.cc

clang++ demo-virtual_destructor.cc && ./a.out

Using Derived Using Base

Base::Base -- allocate data Base::Base -- allocate data
Derived: :Derived -- allocate data2 Derived: :Derived -- allocate data2
Derived:: Derived -- release data2 Derived::"Derived -- release data2
Base::"Base -- release data Base::"Base -- release data

Both desctructors Derived and Base are called

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 45 / 64

Polymorphism

Example — Virtual Destructor 4/4

m Without virtual destructor, e.g.,

class Base {

“Base(); // without virtualdestructor
+;
Derived *object = new Derived(1000000) ;
delete object;
Base *object = new Derived(1000000) ;
delete object;

W N O A W N

® Only both constructors are called, but only destructor of the Base class in the second
case Base *object = new Derived(1000000) ;.

Using Derived Using Base

Base::Base -- allocate data Base::Base -- allocate data
Derived::Derived -- allocate data2 Derived::Derived -- allocate data2
Derived::“Derived -- release data2 Base::"Base -- release data
Base::"Base -- release data

Only the desctructor of Base is called

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 46 / 64

Inheritance and Composition

Inheritance and Composition

® A part of the object oriented programming is the object oriented design (OOD).
= |t aims to provide “a plan” how to solve the problem using objects and their relationship.
An important part of the design is identification of the particular objects
their generalization to the classes
and also designing a class hierarchy.
m Sometimes, it may be difficult to decides:
® What is the common (general) object and what is the specialization, which is important
step for class hierarchy and applying the inheritance.
® |t may also be questionable when to use composition.

® et show the inheritance on an example of geometrical objects.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 48 / 64

Inheritance and Composition

Example — Is Cuboid Extended Rectangle? 1/2

1 class Rectangle {
2 public:
3 Rectangle(double w, double h) : width(w), height(h) {3}
4 inline double getWidth(void) const { return width; }
5 inline double getHeight(void) const { return height; }
6 inline double getDiagonal(void) const
7
{
8 return sqrt(width*width + height*height);
9 }
11 protected:
12 double width;
13 double height;
14 };

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 49 / 64

Inheritance and Composition

Example — Is Cuboid Extended Rectangle? 2/2

1 class Cuboid : public Rectangle {
2 public:
3 Cuboid(double w, double h, double d)
4 Rectangle(w, h), depth(d) {}
5 inline double getDepth(void) const { return depth; }
6 inline double getDiagonal(void) const
7
{
8 const double tmp = Rectangle::getDiagonal();
9 return sqrt(tmp * tmp + depth * depth);
10 }
12 protected:

-
w

double depth;

-
IS

};

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 50 / 64

Inheritance and Composition

Example — Inheritance Cuboid Extend Rectangle

m Class Cuboid extends the class Rectangle by the depth.

® Cuboid inherits data fields width a height.
m Cuboid also inherits ,,getters” getWidth() and getHeight ().
m Constructor of the Rectangle is called from the Cuboid constructor.

m The descendant class Cuboid extends (override) the getDiagonal () methods.

It actually uses the method getDiagonal () of the ancestor Rectangle: :getDiagonal ()

m We create a “specialization” of the Rectangle as an extension Cuboid class.
Is it really a suitable extension?

What is the cuboid area? What is the cuboid circumference?

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 51 / 64

Inheritance and Composition

Example — Inheritance — Rectangle is a Special Cuboid 1/2

m Rectangle is a cuboid with zero depth.

1 class Cuboid {

3 public:

4 Cuboid(double w, double h, double d)

5 width(w), height(h), depth(d) {}

7 inline double getWidth(void) const { return width; }

8 inline double getHeight(void) const { return height; }
9 inline double getDepth(void) const { return depth; }
11 inline double getDiagonal(void) const

12 {

13 return sqrt(width*width + height*height + depth*depth);
14 }

16 protected:

17 double width;

18 double height;

19 double depth;

20 };

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 52 / 64

Inheritance and Composition

Example — Inheritance — Rectangle is a Special Cuboid 2/2

1 class Rectangle : public Cuboid {

3 public:

4 Rectangle(double w, double h) : Cuboid(w, h, 0.0) {}
5 1

m Rectangle is a “cuboid” with zero depth.
® Rectangle inherits all data fields: with, height, and depth.

® |t also inherits all methods of the ancestor.

Accessible can be only particular ones.

® The constructor of the Cuboid class is accessible and it used to set data fields with
the zero depth.

® Objects of the class Rectangle can use all variable and methods of the Cuboid class.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 53 / 64

Inheritance and Composition

Should be Rectangle Descendant of Cuboid or Cuboid be Descendant of
Rectangle?

1. Cuboid is descendant of the rectangle.

m “Logical’ addition of the depth dimensions, but methods valid for the rectangle do not
work of the cuboid.
E.g., area of the rectangle

2. Rectangle as a descendant of the cuboid.

m |ogically correct reasoning on specialization.
“All what work for the cuboid also work for the cuboid with zero depth.”
= |nefficient implementation — every rectangle is represented by 3 dimensions.

Specialization is correct

Everything what hold for the ancestor have to be valid for the descendant.

However, in this particular case, usage of the inheritance is questionable.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 54 / 64

Inheritance and Composition

2]

Relationship of the Ancestor and Descendant is of the type “is-a

® |s a straight line segment descendant of the point?

m Straight line segment does not use any method of a point.
is-a?: segment is a point 7 — NO — segment is not descendant of the point.

m |s rectangle descendant of the straight line segment?
is-a?: NO

m |s rectangle descendant of the square, or vice versa?

m Rectangle “extends” square by one dimension, but it is not a square.
m Square is a rectangle with the width same as the height.

Set the width and height in the constructor!

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 55 / 64

Inheritance and Composition

Substitution Principle

m Relationship between two derived classes.

= Policy.

m Derived class is a specialization of the superclass.
There is the is-a relationship.

m Wherever it is possible to sue a class, it must be possible to use the descendant in such a

way that a user cannot see any difference.
Polymorphism

m Relationship is-a must be permanent.

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 56 / 64

Jan Faigl, 2025

Inheritance and Composition

Composition of Objects

If a class contains data fields of other object type, the relationship is called
composition.

Composition creates a hierarchy of objects, but not by inheritance.

Inheritance creates hierarchy of relationship in the sense of descendant / ancestor.

Composition is a relationship of the objects — aggregation — consists / is compound.

It is a relationship of the type “has.”

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 57 | 64

Inheritance and Composition

Example — Composition 1/3

m Each person is characterized by attributes of the Person class:
® name (string)
® address (string)
® birthDate (date)
® graduationDate (date)
» Date is characterized by three attributes Datum (class Date):
B day (int)
® month (int)
® year (int)

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 58 / 64

Inheritance and Composition

Example — Composition 2/3

1 #include <string> 1 class Date {

3 class Person { 2 public:

4 public: 3 int day;

5 std::string name; 4 int month;
6 std::string address; 5 int year;
7 Date birthDate; 6 1;

8 Date graduationDate;

o };

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 59 / 64

Class and Object — Matrix Operators

Relationship Inheritance Polymorphism Inheritance and Composition

Example — Composition 3/3

Jan Faigl, 2025

std::string name

Person

std::string address]

Date bi

rthDate

-

[Date graduationDate

7

| int year | | int month |

| int day | | int year | | int month | | int day |

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

60 / 64

Inheritance and Composition

Inheritance vs Composition

® |nheritance objects:

m Creating a derived class (descendant, subclass, derived class)
m Derived class is a specialization of the superclass

= May add variables (data fields) Or overlapping variables (names)
= Add or modify methods

m Unlike composition, inheritance changes the properties of the objects
= New or modified methods
® Access to variables and methods of the ancestor (base class, superclass)
If access is allowed (public/protected)
m Composition of objects is made of attributes (data fields) of the object type
It consists of objects
m A distinction between composition an inheritance
m Is" test — a symptom of inheritance (is-a)
m Has’ test — a symptom of composition (has)

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 61 / 64

Inheritance and Composition

Inheritance and Composition — Pitfalls

m Excessive usage of composition and also inheritance in cases it is not needed leads to
complicated design.

Watch on literal interpretations of the relationship is-a and has, sometimes it is not
even about the inheritance, or composition.
E.g., Point2D and Point3D or Circle and Ellipse.

Prefer composition and not the inheritance.

One of the advantages of inheritance is the polymorphism.

Using inheritance violates the encapsulation.
Especially with the access rights set to the protected.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 62 / 64

Topics Discussed

Summary of the Lecture

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 63 / 64

Topics Discussed

Topics Discussed

® 2D Matrix — Examples of C++ constructs
Overloading constructors
References vs pointers
Data hidding — getters/setters
Exception handling
Operator definition
Stream based output
Operators

m Subscripting operator
Relationship between objects

= Aggregation

= Composition

Inheritance — properties and usage in C++

Polymorphism — dynamic binding and virtual methods

Inheritance and Composition

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 64 / 64

	1
	Class and Object – Matrix
	Operators
	Relationship
	Inheritance
	Polymorphism
	Inheritance and Composition

	Summary
	Topics Discussed

