C++ Constructs by Examples

Jan Faigl

Katedra pocitact
Fakulta elektrotechnicka
Ceské vysoké uceni technické v Praze

Prednaska 13
BOB36PRP — Proceduralni programovani

Overview of the Lecture
® Part 1 — C++ constructs in class Matrix example
Class and Object — Matrix
Operators
Relationship
Inheritance
Polymorphism

Inheritance and Composition

Cast |

Part 1 — C4++ constructs in class Matrix example

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 1 /64 |Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 2 /64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 3 /64
Class and Object — Matrix Class and Object — Matrix Class and Object — Matrix
Class as an Extended Data Type with Encapsulation Example — Class Matrix — Constructor Example — Class Matrix — Hidding Data Fields
Data hidding is utilized to encapsulate implementation of matrix. ® Class Matrix encapsulate dimension of the matrix Prlmarlly.we aim to hide dlr‘ect access to the“partlcula: data fields
1 class Matrix { Di i fixed for th ire life of the obi ® For the dimensions, we provide the so-called “accessor’ methods.
. N n
2 private: imensions are fixed for the entire life of the object (const) = The methods are declared as const to assure they are read only methods and do not
: const int ROUS; modify the object (compiler checks that)
4 const int COLS; 1 class Matrix { 1 Matrix::Matrix(int rows, int cols) : ROWS(. Y . . prier | .
5 double *vals; 2 public: rows), COLS(cols) = Private method at () is used to access to the particular cell at r row and ¢ column.
6 }; 1D array is utilized to have a continuous memory. 2D dynamic array 3 Matrix(int rows, int) ’ inline is used to instruct compiler to avoid function call and rather put the function body
be used in C++11 ' R ’ 1 class Matrix { directly at the calling place.
= |n the example, it is shown can be used in C++11. cols); o 3 vals = new double[ROWS * COLS]; 2 public:
PP . . “Matrix();
= How initialize and free required memory in constructor and destructor. : private: ’ 4 L X 4 inline int rows(void) const { return ROWS; } // const method cannot
= How to report an error using exception and try-catch statement. 6 const int ROWS; s Matrix:: Matrix() 5 inline int cols(void) const { return COLS; } // modify the object
= How to use references. 7 const int COLS; r { 7 private:
= How to define a copy constructor. 8 double *vals; 8 delete[] vals; 8 // returning reference to the variable allows to set the variable
= How to define (overload) an operator for our class and objects. 9 }; 9 9 (/ Qutside, it is]..ike a Pointer but automatically dereferenced
= How to use C function and header files in C++. Notice, for simplicity we do not test validity of the matrix dimensions. 10 inline double& at(int r, int c) const
. 11
= How to print to standard output and stream. = Constant data fields ROWS and COLS must be initialized in the constructor, i.e., in the 12 return vals[COLS * r + cl;
= How to define stream operator for output. R . o i X
. N initializer list. We should also preserve the order of the initialization as the variables are defined. 13
= How to define assignment operator. w3}
Jan Faigl, 2025 BOB36PRP — Pednaska 13: Quick Introduction to C++ (Part 2) 5 /64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 6/ 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 7/64
Class and Object — Matrix Class and Object — Matrix Class and Object — Matrix
Example — Class Matrix — Using Reference Example — Class Matrix — Getters/Setters Example — Class Matrix — Exception Handling
® The at () method can be used to fill the matrix randomly. = Access to particular cell of the 1 class Matrix { ® The code where an exception can be raised is put into the try-catch block.
Lo -)) . > - blic: : L A
= The random() function is defined in <stdlib.h>, but in C++ we prefer to include C matrix is provided through the 5 ©" gouple getValueAt(int r, int c) const; ® The particular exception is specified in the catch by the class name.
libraries as <cstdlib>. so-called getter and setter * | void setValueAt(double v, int r, int c) ® We use the program standard output denoted as std: : cout.
1 class Matrix { methods. 5 }; ' 1 #include <iostream> We can avoid std:: by using namespace std;
2 public:) = The methods are based on the private at () method but will throw an exception if a cell out 3 #include "matrix.h" Or just using std::cout;
3 Av01d4flllRandom(v01d); of ROWS and COLS would be requested. 5 int main(void)
4 private: 1 #include <stdexcept> s {
5 inline doubleg at(int r, int c) const { return vals[COLS * r + c]; } > double Matrix::getValueAt(int r, int c) const ; int ret = 0
6 }; - H
i . 4 if (r <0 orr >= ROWS or ¢ < 0 or ¢ >= COLS) { 8 try L
1 #include <cstdlib> s throw std::out_of_range("Out of range at Matrix::getValueAt"); 9 Matrix m1(3, 3);
3 void Matrix::fillRandom(void) 6 10 ml.setValueAt(10.5, 2, 3); // col 3 raises the exception
7 return at(r, c); .
4 . 12 ml.fillRandom();
5 for (int r = 0; r < ROWS; ++r) { o void Matrix::setValueAt(double v, int r, int c) 13 } catch (std::out_of rangek e) {
6 for (int ¢ = 0; ¢ < COLS; ++c) { 0 { 14 std::cout << "ERROR: " << e.what() << std::endl;
7 at(r, c) = (rand() % 100) / 10.0; // set vals[COLS * r + c] 1 if (r <0 or r >= ROWS or ¢ < 0 or ¢ >= COLS) { 15 ret = -1
. 12 throw std::out_of_range("Out of range at Matrix::setValueAt"); 1 }
9 ¥ :i it(r o) = v 17 return ret;
10 In this case, it is more straightforward to just fill 1D array of vals for i in 0..(ROWS * COLS). 5} : ! 18} lec13cc/demo-matrix. cc
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 8 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 9 /64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 10 / 64

Class and Object — Matrix

Example — Class Matrix — Printing the Matrix

= We create a print () method to nicely print the matrix to the standard output.

Class and Object — Matrix

Example — Class Matrix — Printing the Matrix

® The variable m1 is passed as reference to print () function and thus it is not copied.

Class and Object — Matrix

Example — Class Matrix — Copy Constructor
= \We may overload the constructor to create a copy of the object.

class Matrix {

.) 1 #include <iostream> 1
= Formatting is controlled by i/o stream manipulators defined in <iomanip> header file. 2 #include <iomanip> 5 public:
3 #include "matrix.h" 3 L
1 #include <iostream> s void print(const Matrix& m); 2 Matrix(const Matrix &m);
2 #include <iomanip> . . .
i " ; " 7 int main(void) 5
4 #include "matrix.h s 6 };
6 void print(const Matrix& m) 9 int ret = 0; .
. 1 try { = We create an exact copy of the matrix.
8 std::cout << std::fixed << std::setprecision(1); 1 Matrix m1(3, 3); 1 Matrix::Matrix(const Matrix &m) : ROWS(m.ROWS), COLS(m.COLS)
9 for (int r = 0; r < m.rows(); ++r) { 12 mi.fillRandom() ;) 2 { // copy constructor
10 for (int ¢ = 0; ¢ < m.cols(); ++c) { 1 std::cout << "Matrix mi" << std::endl; s vals = new double[ROWS * COLS];
1 std:i:cout << (¢ > 0?7 " " ") << std:isetw(4); 14 print(mi1); 4 for (int i = 0; i < ROWS #* COLS; ++i) {
12 std::cout << m.getValueAt(r, c); '’ 5 vals[i] = m.vals[i];
I } u Example of the output 6
14 std::cout << std::endl; clang++ --pedantic matrix.cc demo-matrix.cc & ./a.out 7 3}
1 } Matrix ml
16} 1.3 9.7 9.8 = Notice, access to private fields is allowed within in the class.
1.5 1.2 4.3
8.7 0.8 9.8 leci3cc/matrix.h, leci3cc/matrix.cc, lecl3cc/demo-matrix.cc We are implementing the class, and thus we are aware what are the internal data fields.
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 11 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 12 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 13 / 64
Class and Object — Matrix Class and Object — Matrix Class and Object — Matrix
Example — Class Matrix — Dynamic Object Allocation Example — Class Matrix — Sum Example — Class Matrix — Operator +
= We can create a new instance of the object by the new operator. = The method to sum two matrices will : cla;iblil??;ix { ® In C++, we can define our operators, e.g., + for sum of two matrices.
= We may also combine dynamic allocation with the copy constructor. return a new matrix. 5 Matrix sun(const Matrix &m2); = It will be called like the sum() method.
= Notice, the access to the methods of the object using the pointer to the object is by .) . * 1 class M‘?t{”lx {
the -> operator ® The variable ret is passed using the copy constructor. 2 public:)
: 1 Matrix Matrix::sum(const Matrix &m2) 3 Matrix sum(const Matrix &m2);
1 matrix m1(3, 3); 2 4 Matrix operator+(const Matrix &m2);
> mi.fillRandom(); 3 if (ROWS != m2.ROWS or COLS != m2.COLS) { 5
3 std::cout << "Matrix ml" << std::endl: 4 throw nvalid_argument ("Matrix dimensions do not match at .
o+ print(mi); ’ Matrix::sun"); = In our case, we can use the already implemented sum() method.
H
s . . .
6 Matrix *m2 = new Matrix(mi); s Matrix ret(ROWS, COLS); 1 Matrix Matrix::operator+(const Matrix &m2)
7 Matrix *m3 = new Matrix(m2->rows(), m2->cols()); ’ for (int i = 0; 1 < ROWS * COLS; ++1) { 2 {
8 std::cout << std::endl << "Matrix m2" << std::endl; 8 ret.vals[i] = vals[i] + m2.vals[il; 3 return sum(m2);
X °
o print(*m2); 10 return ret; ¢
10 m3->fillRandom();) u ¥ We may also implement sum as addition to the particular matrix. = The new operator can be applied for the operands of the Matrix type like as to default types.
1 std::cout << std::endl << "Matrix m3" << std::endl; . X .
12 print(sm3); Matrix mi(3, 3); 1 Matrix m1(3,3);
1 delete m2: = The sum() method can be then used as any other method. :l‘;f?llzazdom(); Matrix(at) 2 mil.fillRandom();
H atrix *m2 = new Matrix(ml); ; . s
15 delete m3; Natrix md = mi.eun(vm2); 3 Ma1.:r1x m2(m1), m3(ml + m2); // use sum of ml and m2 to init m3
lec13cc/demo-matrix.cc 4 print(m3);
Jan Faigl, 2025 BOB36PRP — Pednaska 13: Quick Introduction to C++ (Part 2) 14 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 15 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 16 / 64
Class and Object — Matrix Class and Object — Matrix Class and Object — Matrix
Example — Class Matrix — Output Stream Operator Example — Class Matrix — Example of Usage Example — Class Matrix — Assignment Operator =
. . . 1 class Matrix {
= An output stream operator << can be defined to pass Matrix objects to the output stream. Havi h di I in th 2 public:
1 #include <ostream> ® Having the stream operator we can use + directly in the output. 3 Matrixg operator=(const Matrix &m)
2 class Matrix { ... }; 1 std::cout << "\nMatrix demo using operators" << std::endl; N . . . o
3 std:iostreamg operator<<(std::ostream& out, const Matrix& m); > Matrix mi(2, 2); 5 if (this != &m) { // to avoid overwriting itself
. . . . N : ’ 6 if (ROWS != m.ROWS or COLS != m.COLS) {
® It is defined outside the Matrix. 3 Matrix m2(m1); 7 throw std::out_of_range("Cannot assign matrix with
1 #include <iomanip> 4 ml.fillRandom(); s different dimensions");
2 std::ostream& operator<<(std::ostream& out, const Matrix& m) s m2.fillRandom(); 9 ¥
3 6 std::cout << "Matrix ml" << std::endl << ml; 10 for (int i = 0; i < ROWS * COLS; ++i) {
4 if (out) { 7 std:icout << "\nMatrix m2" << std::endl << m2; n vals[i] = m.vals[i];
N out << std::fixed << std::setprecision(1); g8 std::cout << "\nMatrix ml + m2" << std::endl << ml + m2; =
6 for (int r = 0; r < m.rows(); ++r) { 13 }
7 for (int ¢ = 0; ¢ < m.cols(); ++c) { 14 return *this; // we return reference not a pointer
. out << (¢ >0 7 " h i M) << std:isetu(d); = Example of the output operator. 1
9 out << m.getValueAt(r, c); : . 6}
10) s Marixmn U Ratime T Matrixml ¢ m2 7/ % can be then used as
u out << std::endl; 18 Matrix m1(2,2), m2(2,2), m3(2,2);
b 3 s 0.8 3.1 0.4 2.3 1.2 5.4 19 mi.fillRandom();
1 “Outside” operator can be used in an output stream pipeline with other data types. In this case, 4 2.2 4.6 3.3 7.2 5.5 11.8 20 m2.fillRandom();
" . we can use just the public methods. But, if needed, we can declare the operator as a friend leci3cc/demo-matrix.cc 2 m3 = ml + m2;
“ 3 return out; method to the class, which can access the private fields. 22 stdiicout << mi << " + " << stdirendl << m2 << " = " << stdirendl << m3 << std::endl;
1
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 17 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 18 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 19 / 64

Operators

Example of Encapsulation

Operators

Example — Matrix Subscripting Operator

® For a convenient access to matrix cells, we can implement operator () with two argu-
ments r and ¢ denoting the cell row and column.

Operators

Example Matrix — Identity Matrix

= Implementation of the set identity using the matrix subscripting operator.
1 #include <iostream>
2 #include <iomanip>
3 #include "matrix.h"

1 class Matrix {
= Class Matrix encapsulates 2D matrix of double values. 2 public: . . s void pr.mt(const Matrix& m);
3 l‘:latrnlc(lnt rows, int cols); 7 int main(void)
1 class Matrix { 4 . M:trlx(); 8
2 private: s private: . 9 int ret = 0;
3 const int ROWS; ° zgﬁzz ig; gg‘{{g’ 10 try { ’
. 2 7 H :
4 (cionzilz 1111: (]?OI'..S, s double #vals; 1 Matrix m1(3, 3);
5 N ouble *vals; o) 12 ml.fillRandom() ;
s }; . " ; " .. .
’ leci3cc/matrix.h 1 Matrix::Matrix(int rows, int cols) : ROWS(rows), COLS(cols) B St(,i' scout << "Matrix ml" << std::endl;
) 14 print(ml);
3 vals = new double[ROWS * COLS]; R
A = Example of output
v I %0 1 clang++ --pedantic matrix.cc demo-matrix.cc && ./a.out
6 atrix::"Matrix 2 Matrix mil
7 3 1.3 9.7 9.8
8 delete[] vals; 4 1.5 1.2 4.3
o } For simplicity and imp d lability, we do not check range of arguments. 5 8.7 0.8 9.8
Jan Faigl, 2025 BOB36PRP — Pfednaska 13: Quick Introduction to C++ (Part 2) 21 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 22 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction tl@ﬁ"@é%"’matrix-cc 23 /64
Relationship Relationship Inheritance
Relationship between Objects Example — Aggregation/Composition Inheritance
= Objects can be in relationship based on the. m Aggregation — relationship of the type “has” or “it is composed. ® Founding definition and implementation of one class on another existing class(es).
= Inheritance — is the relationship of the type is . = Let A be aggregation of B C, then objects B and C are contained in A. u Let class B be inherited from the class A, then
Object of descendant class is also the ancestor class. = |t results that B and C cannot survive without A. = Class B is subclass or the derived class of A;
= One class is derived from the ancestor class. E e imol . In such a case, we call the relationship as composition = Class A is superclass or the base class of B.
ji i Xam m men on .
) _ _ Objects of the derived class extends the based class. ample implementatio u The subclass B has two parts in general:
= Derived class contains all the field of the ancestor class. Derived is inherited f A
However, some of the fields may be hidden. 1 class GraphComp { // composition 1 struct Edge { L] erlv.e part is inherite rom i))
New methods can be implemented in the derived class. 2 private: 2 Node v1; = New incremental part contains definitions and implementation added by the class B.
New implementation override the previous one. 3 std::vector<Edge> edges; 3 Node v2; ® The inheritance is relationship of the type is-a.
u Derived class (objects) are specialization of a more general ancestor (super) class. 4 }i Granhe < . 4 }; ¢ Node { = Object of the type B is also an instance of the object of the type A.
H H BT : 6 Class rap: omp aggregation 6 sStruc ode
= An object can be part of the other objects — it is the has relation. ; public: ; Data data; = Properties of B inherited from the A can be redefined.
L] Slmllarly to compound structures that gontaln other struct data types as their data fields, 8 GraphComp (std: :vector<Edge>& edges) ¥ = Change of field visibility (protected, public, private).
objects can also gompoqnd of other objects. edges (edges) {} = Qverriding of the method implementation.
= We can further distinguish. 9 private: ine inheri hi hi £ obi
u Aggregation — an object is a part of other object. 10 const std::vector<Edge>& edges; = Using inheritance we can create |§ra(c ies of objects.)
e N 1 }; Implement general function in superclasses or creating abstract classes that are further
= Composition — inner object exists only within the compound object. S .
specialized in the derived classes.
Jan Faigl, 2025 BOB36PRP — Pednaska 13: Quick Introduction to C++ (Part 2) 25 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 26 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 28 / 64
Inheritance Inheritance Inheritance
Example MatrixExt — Extension of the Matrix Example MatrixExt — Identity and Multiplication Operator Example MatrixExt — Example of Usage 1/2
® We can use only the public (or protected) methods of Matrix class.
1 #include "matrix_ext.h" Matrix does not have any protected members. = Objects of the class MatrixExt also have the methods of the Matrix.
= We will extend the existing class Matrix to have identity method and also multiplication 2 zoid MatrixExt::setIdentity(void)
3 . .
e DO TIRIOS « : ¥ineaaas e vty
: 5 or (int ¢ = 0; ¢ < cols(); ++c X et —ext. /a.
= \We refer the superclass as the Base class using typedef. : (othisy (o, 0 = (mme ey 7 3.0 ¢ 0.05 + using std::cout; Matrix mi:
= We need to provide a constructor for the MatrixExt; however, we used the existing constructor 7 6 int main(void) 3.0
in the base class. s ¥ 7 . 5.0
:)) o ¥ 8 int ret = 0; Matrix m2:
1 class MatrixExt : public Matrix { 1 Matrix MatrixExt::operator*(const Matrix &m2) 9 MatrixExt m1(2, 1); 1.0 2.0
2 typedef Matrix Base; // typedef for refering the superclass 2 { 0 mi(0, 0) = 3; mi(1, 0) = 5; -
A public: 13 Matrix m3(rows(), m2.cols()); MatrixE 2(1, 2): mi * m2 =
Lo . . . 10 for (int r = 0; r < rows(); ++1) { 12 atrixExt m2(1, 2); 13.0
5 MatrixExt (int r, int c) : Base(r, c¢) {} // base constructor - for (int ¢ = 0; ¢ < m2.cols(); ++c) { 13 m2(0, 0) = 1; m2(0, 1) = 2; m2 *mi =
7 void setIdentity(void); 16 m3(r, ¢) = 0.0; 15 cout << "Matrix mi:\n" << ml << std::endl; 3.0 6.0
8 Matrix operator*(const Matrix &m2); 17 for (int k = 0; k <_cols(); ++k) { 16 cout << "Matrix m2:\n" << m2 << std::endl; 5.0 10.0
s }:) 18 m3(r, c) += (xthis)(r, k) * m2(k, c); 17 cout << "ml * m2 << m2 * ml << std::endl;
H lec13cc/matrix_ext.h 19 N 18 cout << "m2 * mi =\n" << ml * m2 << ¢ rendl;
: 19 return ret;
- Teturn m3; Leci3ce/matrix_ext.cc 20 } lec13cc/demo-matrix_ext.cc
23}
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 29 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 30 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 31 /64

Inheritance

Example MatrixExt — Example of Usage 2/2

= We may use objects of MatrixExt anywhere objects of Matrix can be applied.

= This is a result of the inheritance.
And a first step towards polymorphism

void setIdentity(Matrix& matrix)

for (int r = 0; r < matrix.rows(); ++r) {
for (int ¢ = 0; ¢ < matrix.cols(); ++c) {
matrix(r, ¢) = (r ==¢c) ? 1.0 : 0.0;

}
}
MatrixExt m1(2, 1);
cout << "Using setldentity for Matrix" << std::endl;
setIdentity(ml);
cout << "Matrix ml:\n" << ml << std::endl;

leci3cc/demo-matrix_ext.cc

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2)

32 /64

Inheritance

Categories of the Inheritance

m Strict inheritance — derived class takes all of the superclass and adds own methods and
attributes. All members of the superclass are available in the derived class. It strictly
follows the is-a hierarchy.

m Nonstrict inheritance — the subclass derives from the a superclass only certain
attributes or methods that can be further redefined.

® Multiple inheritance — a class is derived from several superclasses.

Jan Faigl, 2025

BOB36PRP - Prednaska 13: Quick Introduction to C++ (Part 2) 33 /64

Jan Faigl, 2025

Inheritance

Inheritance — Summary

® Inheritance is a mechanism that allows.
= Extend data field of the class and modify them.
= Extend or modify methods of the class.
= Inheritance allows to
= Create hierarchies of classes.
= “Pass’ data fields and methods for further extension and modification.
= Specialize (specify) classes.
® The main advantages of inheritance are:
= |t contributes essentially to the code reusability.

Together with encapsulation!

= Inheritance is foundation for the polymorphism.

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

34 /64

Polymorphism

Polymorphism

= Polymorphism can be expressed as the ability to refer in a same way to different objects.

We can call the same method names on different objects.
We work with an object whose actual content is determined at the runtime.
Polymorphism of objects - Let the class B be a subclass of A, then the object of the B
can be used wherever it is expected to be an object of the class A.
Plolymorphism of methods requires dynamic binding, i.e., static vs. dynamic type of the
class.

= Let the class B be a subclass of A and redefines the method m().
= A variable x is of the static type B, but its dynamic type can be A or B.

Polymorphism

Example MatrixExt — Method Overriding 1/2
® |n MatrixExt, we may override a method implemented in the base class Matrix, e.g.,
fillRandom() will also use negative values.

class MatrixExt : public Matrix {

1

2 “ee

3 void fillRandom(void);

4

7 void MatrixExt::fillRandom(void)

° for (int r = 0; r < rows(); ++r) {
for (int ¢ = 0; ¢ < cols(); ++c) {
(*this) (r, ¢) = (rand() % 100) / 10.0;
if (rand() % 100 > 50) {
(xthis)(r, c¢) *= -1.0; // change the sign

Polymorphism

Example MatrixExt — Method Overriding 2/2

= We can call the method fillRandom() of the MatrixExt.
MatrixExt *ml = new MatrixExt(3, 3);

1 =
2 Matrix *m2 = new MatrixExt(3, 3);
3 ml->fillRandom(); m2->fillRandom();
4 cout << "ml: MatrixExt as MatrixExt:\n" << *ml << std::endl;
5 cout << "m2: MatrixExt as Matrix:\n" << *m2 << std::endl;
6 delete ml; delete m2;
leci3cc/demo-matrix_ext.cc
= However, in the case of m2 the Matrix::fillRandom() is called.

mi: MatrixExt as MatrixExt:
-1.3 9.8 1.2
8.7 -9.8 -7.9
-3.6 -7.3 -0.6

= Which method is actually called for x.m() depends on the dynamic type. 14 } m?:gMa;r;ngtsas Hatrix:
15 } 9.0 7.0 6.6
16 } 7.2 1.8 9.7
17 } . . . e . . .
leci3cc/matrix_ext.h, lecl3cc/matrix_ext.cc We need a dynamic object type identification at runtime for the polymorphism of the methods.
Jan Faigl, 2025 BOB36PRP — Pednaska 13: Quick Introduction to C++ (Part 2) 36 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 37 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 38 / 64
Polymorphism Polymorphism Polymorphism
Virtual Methods — Polymorphism and Inheritance Example — Overriding without Virtual Method 1/2 Example — Overriding with Virtual Method 2/2
1 #include <iostream> clang++ demo-novirtual.cc 1 #include <iostream> clang++ demo-virtual.cc
2 using namespace std; ./a.out 2 using namespace std; /a.out
s class A { Object of the class A 3 class A { Object of the class A
N public: Object of the class B N public: Object of the class B
s void info()) s virtual void info() // Virtual !!! J
o Object of the class A 6 Object of the class B
= We need a dynamic binding for polymorphism of the methods. 7 cout << "Object of the class A" << endl; 7 cout << "Object of the class A" << endl;
. 8 s
= |t is usually implemented as a virtual method in object oriented programming o }; o };
10 class B : public A { 10 class B : public A {
Ianguages' 1 public: 1 public:
= Override methods that are marked as virtual has a dynamic binding to the particular 12 void info() 12 void info()
R 13 13
dynamic type. 14 cout << "Object of the class B" << endl; 14 cout << "Object of the class B" << endl;
15 15
16 }; 6 };
17 A% a = new AQ; B* b = new BO; 17 A% a = new AQ); B+ b = new BO);
18 A* ta = a; // backup of a pointer 18 A* ta = a; // backup of a pointer
19 a->info(); // calling method info() of the class A 19 a->info(); // calling method info() of the class A
20 b->info(); // calling method info() of the class B 20 b->info(); // calling method info() of the class B
21 a = b; // use the polymorphism of objects 21 a = b; // use the polymorphism of objects
22 a->info(); // without the dynamic binding, method of the class A is called 22 a->info(); // the dynamic binding exists, method of the class B is called
23 delete ta; delete b; lecl3cc/demo-novirtual.cc 23 delete ta; delete b; lecl3cc/demo-virtual.cc
Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 39 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 40 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 41 / 64

Polymorphism

Derived Classes, Polymorphism, and Practical Implications

= Derived class inherits the methods and data fields of the superclass, but it can also
add new methods and data fields.
= |t can extend and specialize the class.
= |t can modify the implementation of the methods.
= An object of the derived class can be used instead of the object of the superclass.
= E.g., we can implement more efficient matrix multiplication without modification of the
whole program.
We may further need a mechanism to create new object based on the dynamic type, i.e.,
using the nevInstance virtual method.
= Virtual methods are important for the polymorphism.
® |t is crucial to use a virtual destructor for a proper destruction of the object.
E.g., when a derived class allocate additional memory.

Polymorphism

Example — Virtual Destructor 1/4

#include <iostream>

1

2 using namespace std;

3 class Base {

4 public:

5 Base(int capacity) {

6 cout << "Base::Base -- allocate data" << endl;
7 int *data = new int[capacity];

8 }

9 virtual "Base() { // virtual destructor is important
10 cout << "Base::"Base -- release data" << endl;
11 }

12 protected:

13 int *data;

};

leci3cc/demo-virtual_destructor.cc

Polymorphism

Example — Virtual Destructor 2/4

class Derived : public Base {

1

2 public:

3 Derived(int capacity) : Base(capacity) {

4 cout << "Derived::Derived -- allocate data2" << endl;
B int *data2 = new int[capacity];

6 }

7 “Derived() {

8 cout << "Derived::"Derived -- release data2" << endl;
9 int *data?2;

10 }

1 protected:

int *data2;

lecl3cc/demo-virtual_destructor.cc

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 42 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 43 / 64 Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 44 / 64
Polymorphism Polymorphism Inheritance and Composition
Example — Virtual Destructor 3/4 Example — Virtual Destructor 4/4 Inheritance and Composition
. . = Without virtual destructor, e.g.,
= Using virtual destructor all allocated data are properly released. g
1 class Base {
1 cout << "Using Derived " << endl; 2 m A part of the object oriented programming is the object oriented design (OOD).
2 geilzed g‘_’bJ:“ = new Derived(1000000); 3 Base(); // without virtualdestructor = |t aims to provide “a plan” how to solve the problem using objects and their relationship.
3 elete object; . . P e . . .
© << Jdl' ’ 4T . . = An important part of the design is identification of the particular objects
4 cou endl; 5 Derived *object = new Derived(1000000) ; = thei lization to the cl
6 cout << "Using Base" << endl; 6 delete object; €Ir generalization to the classes
7 Base *object = new Derived(1000000); 7 Base *object = new Derived(1000000) ; = and also designing a class hierarchy.
s delete object;) 8 delete object; = Sometimes, it may be difficult to decides:
leci3cc/demo-virtual_destructor.cc What is th) ob d what is th ializati hich is i
. [] at is the common (general) object and what is the specialization, which is important
clang++ demo-virtual_destructor.cc &% ./a.out ® Only both constructors are called, but only destructor of the Base class in the second step for class hierarchy(gand ap)plyi|J1g the inheritance P P
Using Derived Using Base case Base *object = new Derived(1000000) ;. . e
Base: :Base -- allocate data Base::Base -- allocate data ® It may also be questionable when to use composition.
ived: :Deri ; Using Derived Using B . .))
Derived::Derived -- allocate data2 Derived -- allocate data2 BoneE P sing Base m Let show the inheritance on an example of geometrical objects.
~Derived —- release data? ase::Base -- allocate data Base::Base -- allocate data
Base::~Base -- release data ase -- release data Derived::Derived -- allocate data2 Derived::Derived -- allocate data2
Derived::“Derived -- release data2 Base::"Base -- release data
Both desctructors Derived and Base are called Base::"Base -- release data)
Only the desctructor of Base is called
Jan Faigl, 2025 BOB36PRP — Pednaska 13: Quick Introduction to C++ (Part 2) 45 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 46 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 48 / 64
Inheritance and Composition

Inheritance and Composition

Example — Is Cuboid Extended Rectangle? 1/2

class Rectangle {

1
2 public:

3 Rectangle(double w, double h) : width(w), height(h) {}
a inline double getWidth(void) const { return width; }

5 inline double getHeight(void) const { return height; }
6

7

8

9

inline double getDiagonal(void) const
return sqrt(width*width + heightxheight);

protected:
double width;
double height;

};

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2)

49 / 64

Example — Is Cuboid Extended Rectangle? 2/2

public Rectangle {

1 class Cuboid :

2 public:

3 Cuboid(double w, double h, double d)

4 Rectangle(w, h), depth(d) {}

5 inline double getDepth(void) const { return depth; }
6 inline double getDiagonal(void) const

7 {

8 const double tmp = Rectangle::getDiagonal();

9 return sqrt(tmp * tmp + depth * depth);

protected:
double depth;
};

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4+ (Part 2)

Inheritance and Composition

50 / 64

Example — Inheritance Cuboid Extend Rectangle

® Class Cuboid extends the class Rectangle by the depth.

® Cuboid inherits data fields width a height.
® Cuboid also inherits ,getters” getWidth() and getHeight ().
= Constructor of the Rectangle is called from the Cuboid constructor.

® The descendant class Cuboid extends (override) the getDiagonal () methods.

It actually uses the method getDiagonal() of the ancestor Rectangle: :getDiagonal ()

= \We create a “specialization” of the Rectangle as an extension Cuboid class.
Is it really a suitable extension?

What is the cuboid area? What is the cuboid circumference?

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 51 /64

Jan Faigl, 2025

Inheritance and Composition

Example — Inheritance — Rectangle is a Special Cuboid 1/2
= Rectangle is a cuboid with zero depth.

1 class Cuboid {

3 public:

a Cuboid(double w, double h, double d)

5 width(w), height(h), depth(d) {}

7 inline double getWidth(void) const { return width; }

8 inline double getHeight(void) const { return height; }
9 inline double getDepth(void) const { return depth; }
1 inline double getDiagonal(void) const

12

13 return sqrt(width*width + heightxheight + depth*depth);
14 }

16 protected:

17 double width;

18 double height;

19 double depth;

20 };

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 52 / 64

Jan Faigl, 2025

Inheritance and Composition

Example — Inheritance — Rectangle is a Special Cuboid 2/2

1 class Rectangle : public Cuboid {

3 public:

4 Rectangle(double w, double h) : Cuboid(w, h, 0.0) {}
5}

® Rectangle is a “cuboid” with zero depth.
® Rectangle inherits all data fields: with, height, and depth.
u |t also inherits all methods of the ancestor.
Accessible can be only particular ones.
® The constructor of the Cuboid class is accessible and it used to set data fields with
the zero depth.

® Objects of the class Rectangle can use all variable and methods of the Cuboid class.

BOB36PRP - Prednaska 13: Quick Introduction to C++ (Part 2) 53 / 64

Jan Faigl, 2025

Inheritance and Composition

Should be Rectangle Descendant of Cuboid or Cuboid be Descendant of
Rectangle?

1. Cuboid is descendant of the rectangle.
= “Logical” addition of the depth dimensions, but methods valid for the rectangle do not
work of the cuboid.
Eg., area of the rectangle
2. Rectangle as a descendant of the cuboid.
= Logically correct reasoning on specialization.
“All what work for the cuboid also work for the cuboid with zero depth.”
= |nefficient implementation — every rectangle is represented by 3 dimensions.
Specialization is correct

Everything what hold for the ancestor have to be valid for the descendant.

However, in this particular case, usage of the inheritance is questionable.

BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2) 54 / 64

Jan Faigl, 2025

Inheritance and Composition

Relationship of the Ancestor and Descendant is of the type "is-a”

= |s a straight line segment descendant of the point?

= Straight line segment does not use any method of a point.
is-a?: segment is a point 7 — NO — segment is not descendant of the point.

= |s rectangle descendant of the straight line segment?
is-a?: NO

Inheritance and Composition

Substitution Principle

m Relationship between two derived classes.
= Policy.
® Derived class is a specialization of the superclass.
There is the is-a relationship.
= Wherever it is possible to sue a class, it must be possible to use the descendant in such a
way that a user cannot see any difference.

Inheritance and Composition

Composition of Objects

® If a class contains data fields of other object type, the relationship is called
composition.
= Composition creates a hierarchy of objects, but not by inheritance.

Inheritance creates hierarchy of relationship in the sense of descendant / ancestor.

u Composition is a relationship of the objects — aggregation — consists / is compound.

= |s rectangle descendant of the square, or vice versa? . o Polymorphism u |t is a relationship of the type “has.”
“ " . . L ® Relationship is-a must be permanent.
= Rectangle "extends” square by one dimension, but it is not a square.
® Square is a rectangle with the width same as the height.
Set the width and height in the constructor!
Jan Faigl, 2025 BOB36PRP — Pednaska 13: Quick Introduction to C++ (Part 2) 55 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 56 / 64 | Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 57 / 64

Inheritance and Composition

Example — Composition 1/3

= Each person is characterized by attributes of the Person class:
= name (string)
® address (string)
® birthDate (date)
® graduationDate (date)
= Date is characterized by three attributes Datum (class Date):
= day (int)
® month (int)
® year (int)

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 58 / 64

Jan Faigl, 2025

Inheritance and Composition

Example — Composition 2/3

1 #include <string> 1 class Date {

3 class Person { 2 public:

4 public: 3 int day;

5 std::string name; 4 int month;
6 std::string address; 5 int year;
7 Date birthDate; 6 33

8 Date graduationDate;

0 1

BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 59 / 64

Jan Faigl, 2025

Inheritance and Composition

Example — Composition 3/3

std::string name | td: :string address

Date birthDate

Date graduationDate

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 60 / 64

Inheritance and Composition
Inheritance vs Composition

= |nheritance objects:
= Creating a derived class (descendant, subclass, derived class)
® Derived class is a specialization of the superclass
" May add variables (data fields)
= Add or modify methods
= Unlike composition, inheritance changes the properties of the objects
= New or modified methods
= Access to variables and methods of the ancestor (base class, superclass)
If access is allowed (public/protected)

Or overlapping variables (names)

= Composition of objects is made of attributes (data fields) of the object type
It consists of objects
= A distinction between composition an inheritance
m Is” test — a symptom of inheritance (is-a)
m Has’ test — a symptom of composition (has)

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 61 /64

Inheritance and Composition

Inheritance and Composition — Pitfalls

m Excessive usage of composition and also inheritance in cases it is not needed leads to
complicated design.
® Watch on literal interpretations of the relationship is-a and has, sometimes it is not
even about the inheritance, or composition.
E.g., Point2D and Point3D or Circle and Ellipse.
u Prefer composition and not the inheritance.
One of the advantages of inheritance is the polymorphism.
® Using inheritance violates the encapsulation.
Especially with the access rights set to the protected.

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C4+ (Part 2) 62 / 64

Jan Faigl, 2025

Summary of the Lecture

BOB36PRP — Prednaska 13: Quick Introduction to C4++ (Part 2)

63 / 64

Topics Discussed

Topics Discussed
= 2D Matrix — Examples of C++ constructs
= Overloading constructors
= References vs pointers
= Data hidding — getters/setters
= Exception handling
= Operator definition
= Stream based output
= Operators
= Subscripting operator
= Relationship between objects
= Aggregation
= Composition
= |nheritance — properties and usage in C++
= Polymorphism — dynamic binding and virtual methods
= |nheritance and Composition

Jan Faigl, 2025 BOB36PRP — Prednaska 13: Quick Introduction to C++ (Part 2) 64 / 64

