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Použit́ı lineárńı úlohy nejmenš́ıch čtverc̊u
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Mnoho aplikaćı úlohy

min
x∈Rn

∥Ax− b∥2

je v knize (zdarma ke stažeńı i se slajdy):

(Slides in this lecture are compiled from course slides by S.Boyd, L.Vanderberghe and coleagues at

UCLA and Stanford: EE263, ECE133A, EE103)
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Interpretations of y = Ax

• y is measurement or observation; x is unknown to be determined

• x is ‘input’ or ‘action’; y is ‘output’ or ‘result’

• y = Ax defines a function or transformation that maps x ∈ Rn into
y ∈ Rm

Linear functions and examples 2–5



Linear elastic structure

• xj is external force applied at some node, in some fixed direction

• yi is (small) deflection of some node, in some fixed direction

x1

x2

x3

x4

(provided x, y are small) we have y ≈ Ax

• A is called the compliance matrix

• aij gives deflection i per unit force at j (in m/N)

Linear functions and examples 2–8



Total force/torque on rigid body

x1

x2

x3

x4

CG

• xj is external force/torque applied at some point/direction/axis

• y ∈ R6 is resulting total force & torque on body
(y1, y2, y3 are x-, y-, z- components of total force,
y4, y5, y6 are x-, y-, z- components of total torque)

• we have y = Ax

• A depends on geometry
(of applied forces and torques with respect to center of gravity CG)

• jth column gives resulting force & torque for unit force/torque j

Linear functions and examples 2–9



Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and
independent sources

x1

x2

y1 y2

y3

ib

βib

• xj is value of independent source j

• yi is some circuit variable (voltage, current)

• we have y = Ax

• if xj are currents and yi are voltages, A is called the impedance or
resistance matrix

Linear functions and examples 2–10



Final position/velocity of mass due to applied forces

f

• unit mass, zero position/velocity at t = 0, subject to force f(t) for
0 ≤ t ≤ n

• f(t) = xj for j − 1 ≤ t < j, j = 1, . . . , n

(x is the sequence of applied forces, constant in each interval)

• y1, y2 are final position and velocity (i.e., at t = n)

• we have y = Ax

• a1j gives influence of applied force during j − 1 ≤ t < j on final position

• a2j gives influence of applied force during j − 1 ≤ t < j on final velocity

Linear functions and examples 2–11



Gravimeter prospecting

ρj

gi gavg

• xj = ρj − ρavg is (excess) mass density of earth in voxel j;

• yi is measured gravity anomaly at location i, i.e., some component
(typically vertical) of gi − gavg

• y = Ax

Linear functions and examples 2–12



• A comes from physics and geometry

• jth column of A shows sensor readings caused by unit density anomaly
at voxel j

• ith row of A shows sensitivity pattern of sensor i

Linear functions and examples 2–13



Thermal system

x1
x2
x3
x4
x5

location 4

heating element 5

• xj is power of jth heating element or heat source

• yi is change in steady-state temperature at location i

• thermal transport via conduction

• y = Ax

Linear functions and examples 2–14



• aij gives influence of heater j at location i (in ◦C/W)

• jth column of A gives pattern of steady-state temperature rise due to
1W at heater j

• ith row shows how heaters affect location i

Linear functions and examples 2–15



Illumination with multiple lamps

pwr. xj

illum. yi

rijθij

• n lamps illuminating m (small, flat) patches, no shadows

• xj is power of jth lamp; yi is illumination level of patch i

• y = Ax, where aij = r−2
ij max{cos θij, 0}

(cos θij < 0 means patch i is shaded from lamp j)

• jth column of A shows illumination pattern from lamp j

Linear functions and examples 2–16



Example: illumination

• n lamps at given positions above an area divided in m regions

• Ai j is illumination in region i if lamp j is on with power 1 and other lamps are off

• x j is power of lamp j

• (Ax)i is illumination level at region i

• bi is target illumination level at region i

Example: m = 252, n = 10; figure shows position and height of each lamp

0 25m
0

25m

1 (4.0m) 2 (3.5m)

3 (6.0m)

4 (4.0m)
5 (4.0m)

6 (6.0m)

7 (5.5m)

8 (5.0m) 9 (5.0m) 10 (4.5m)

Least squares 8.7



Example: illumination

• left: illumination pattern for equal lamp powers (x = 1)

• right: illumination pattern for least squares solution x̂, with b = 1
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Př́ıklad: Prokládáme body p̌ŕımkou

Odhad funkčńı závislosti výšky y [cm] na váze x [kg] člověka z m mě̌reńı (x (i), y (i)).

40 60 80 100

160

180

200

x

y

• Modelujme vztah afinńı funkćı f̂ (x) = θ1 + θ2x .

• Minimalizujeme součet čtverc̊u residúı
m∑
i=1

(f̂ (x (i))− y (i))2 =
m∑
i=1

(θ1 + θ2x
(i) − y (i))2 = ∥Aθ − y∥2

p̌res parametry θ1, θ2.

Tento p̌ŕıklad na daľśıch slajdech zobecńıme!
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m∑
i=1

(f̂ (x (i))− y (i))2 =
m∑
i=1

(θ1 + θ2x
(i) − y (i))2 = ∥Aθ − y∥2

p̌res parametry θ1, θ2.
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40 60 80 100

160

180

200

0.60x + 130.2

x

y
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Linear-in-parameters model

we choose the model f̂ (x) from a family of models

f̂ (x) = θ1 f1(x) + θ2 f2(x) + · · · + θp fp(x)

• the functions fi are scalar valued basis functions (chosen by us)

• the basis functions often include a constant function (typically, f1(x) = 1)

• the coefficients θ1, . . . , θp are the model parameters

• the model f̂ (x) is linear in the parameters θi

• if f1(x) = 1, this can be interpreted as a regression model

ŷ = βT x̃ + v

with parameters v = θ1, β = θ2:p and new features x̃ generated from x:

x̃1 = f2(x), . . . , x̃p = fp(x)

Least squares data fitting 9.9



Least squares model fitting

• fit linear-in-parameters model to data set (x(1), y(1)), . . . , (x(N), y(N))
• residual for data sample i is

r(i) = y(i) − f̂ (x(i)) = y(i) − θ1 f1(x(i)) − · · · − θp fp(x(i))

• least squares model fitting: choose parameters θ by minimizing MSE

1
N

(
(r(1))2 + (r(2))2 + · · · + (r(N))2

)
• this is a least squares problem: minimize ‖Aθ − yd‖2 with

A =


f1(x(1)) · · · fp(x(1))
f1(x(2)) · · · fp(x(2))
... ...

f1(x(N)) · · · fp(x(N))

 , θ =


θ1
θ2
...
θp

 , yd =


y(1)

y(2)
...

y(N)


Least squares data fitting 9.10



Example: polynomial approximation

f̂ (x) = θ1 + θ2x + θ3x2 + · · · + θpxp−1

• a linear-in-parameters model with basis functions 1, x, . . . , xp−1

• least squares model fitting: choose parameters θ by minimizing MSE

1
N

(
(y(1) − f̂ (x(1)))2 + (y(2) − f̂ (x(2)))2 + · · · + (y(N) − f̂ (x(N)))2

)
• in matrix notation: minimize ‖Aθ − yd‖2 with

A =


1 x(1) (x(1))2 · · · (x(1))p−1

1 x(2) (x(2))2 · · · (x(2))p−1
... ... ... ...

1 x(N) (x(N))2 · · · (x(N))p−1

 , yd =


y(1)

y(2)
...

y(N)


Least squares data fitting 9.11



Example

x

f̂ (x) degree 2 (p = 3)

x

f̂ (x) degree 6

x

f̂ (x) degree 10

x

f̂ (x) degree 15

data set of 100 examples
Least squares data fitting 9.12



Piecewise-affine function

• define knot points a1 < a2 < · · · < ak on the real axis

• piecewise-affine function is continuous, and affine on each interval [ak,ak+1]
• piecewise-affine function with knot points a1, . . . , ak can be written as

f̂ (x) = θ1 + θ2x + θ3(x − a1)+ + · · · + θ2+k(x − ak)+

where u+ = max {u,0}

−3 −2 −1 0 1 2 3

0

1

2

3

x

(x + 1)+

−3 −2 −1 0 1 2 3

0

1

2

3

x

(x − 1)+

Least squares data fitting 9.13



Piecewise-affine function fitting

piecewise-affine model is in linear in the parameters θ, with basis functions

f1(x) = 1, f2(x) = x, f3(x) = (x − a1)+, . . . , fk+2(x) = (x − ak)+

Example: fit piecewise-affine function with knots a1 = −1, a2 = 1 to 100 points

−2 −1 0 1 2
x

f̂ (x)

Least squares data fitting 9.14



Auto-regressive (AR) time series model

ẑt+1 = β1zt + · · · + βM zt−M+1, t = M,M + 1, . . .

• z1, z2, . . . is a time series

• ẑt+1 is a prediction of zt+1, made at time t

• prediction ẑt+1 is a linear function of previous M values zt, . . . , zt−M+1

• M is the memory of the model

Least squares fitting of AR model: given oberved data z1, . . . , zT , minimize

(zM+1 − ẑM+1)2 + (zM+2 − ẑM+2)2 + · · · + (zT − ẑT)2

this is a least squares problem: minimize ‖Aβ − yd‖2 with

A =


zM zM−1 · · · z1

zM+1 zM · · · z2
... ... ...

zT−1 zT−2 · · · zT−M

 , β =


β1
β2
...
βM

 , yd =


zM+1
zM+2
...

zT


Least squares data fitting 9.19



Example: hourly temperature at LAX
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• blue line shows prediction by AR model of memory M = 8

• model was fit on time series of length T = 744 (May 1–31, 2016)

• plot shows first five days

Least squares data fitting 9.20



Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

• divide data in two sets: training set and test (or validation) set

• use training set to fit model

• use test set to get an idea of generalization ability

• this is also called out-of-sample validation

Over-fit model

• model with low prediction error on training set, bad generalization ability

• prediction error on training set is much smaller than on test set

Least squares data fitting 9.21



Example: polynomial fitting
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• training set is data set of 100 points used on page 9.11

• test set is a similar set of 100 points

• plot suggests using degree 6

Least squares data fitting 9.22



Over-fitting

polynomial of degree 20 on training and test set

x

f̂ (x) training set

x

f̂ (x) test set

over-fitting is evident at the left end of the interval

Least squares data fitting 9.23



L. Vandenberghe ECE133A (Fall 2019)

10. Multi-objective least squares

• multi-objective least squares

• regularized data fitting

• control

• estimation and inversion

10.1



Multi-objective least squares

we have several objectives

J1 = ‖A1x − b1‖2, . . . , Jk = ‖Ak x − bk ‖2

• Ai is an mi × n matrix, bi is an mi-vector

• we seek one x that makes all k objectives small

• usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes

λ1‖A1x − b1‖2 + · · · + λk ‖Ak x − bk ‖2

• coefficients λ1, . . . , λk are positive weights

• weights λi express relative importance of different objectives

• without loss of generality, we can choose λ1 = 1

Multi-objective least squares 10.2



Solution of weighted least squares

• weighted least squares is equivalent to a standard least squares problem

minimize











√
λ1A1√
λ2A2
...√
λk Ak

 x −

√
λ1b1√
λ2b2
...√
λkbk












2

• solution is unique if the stacked matrix has linearly independent columns

• each matrix Ai may have linearly dependent columns (or be a wide matrix)

• it the stacked matrix has linearly independent columns, the solution is

x̂ =
(
λ1AT

1 A1 + · · · + λk AT
k Ak

)−1 (
λ1AT

1 b1 + · · · + λk AT
k bk

)
Multi-objective least squares 10.3



Example with two objectives

minimize ‖A1x − b1‖2 + λ‖A2x − b2‖2

A1 and A2 are 10 × 5

10−4 10−2 100 102 104

−0.2

0

0.2

0.4

0.6

λ

x̂1(λ)
x̂2(λ)
x̂3(λ)
x̂4(λ)
x̂5(λ)

plot shows weighted least squares solution x̂(λ) as function of weight λ

Multi-objective least squares 10.4



Example with two objectives

minimize ‖A1x − b1‖2 + λ‖A2x − b2‖2

10−4 10−2 100 102 104
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λ

J1(λ)
J2(λ)
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14

λ = 0.1

λ = 1
λ = 10

J1(λ)
J 2
(λ
)

• left figure shows J1(λ) = ‖A1 x̂(λ) − b1‖2 and J2(λ) = ‖A2 x̂(λ) − b2‖2

• right figure shows optimal trade-off curve of J2(λ) versus J1(λ)

Multi-objective least squares 10.5



Outline
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• estimation and inversion



Motivation

• consider linear-in-parameters model

f̂ (x) = θ1 f1(x) + · · · + θp fp(x)

we assume f1(x) is the constant function 1

• we fit the model f̂ (x) to examples (x(1), y(1)), . . . , (x(N), y(N))
• large coefficient θi makes model more sensitive to changes in fi(x)
• keeping θ2, . . . , θp small helps avoid over-fitting

• this leads to two objectives:

J1(θ) =
N∑

k=1
( f̂ (x(k)) − y(k))2, J2(θ) =

p∑
j=2

θ2
j

primary objective J1(θ) is sum of squares of prediction errors

Multi-objective least squares 10.6



Weighted least squares formulation

minimize J1(θ) + λJ2(θ) =
N∑

k=1
( f̂ (x(k)) − y(k))2 + λ

p∑
j=2

θ2
j

• λ is positive regularization parameter

• equivalent to least squares problem: minimize



[ A1√
λA2

]
θ −

[
yd

0

]



2

with yd = (y(1), . . . , y(N)),

A1 =


1 f2(x(1)) · · · fp(x(1))
1 f2(x(2)) · · · fp(x(2))
... ... ...

1 f2(x(N)) · · · fp(x(N))

 , A2 =


0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1


• stacked matrix has linearly independent columns (for positive λ)

• value of λ can be chosen by out-of-sample validation or cross-validation

Multi-objective least squares 10.7



Example

0 0.5 1

−1

0

1

2

3

x

Train
Test

• solid line is signal used to generate synthetic (simulated) data

• 10 blue points are used as training set; 20 red points are used as test set

• we fit a model with five parameters θ1, . . . , θ5:

f̂ (x) = θ1 +
4∑

k=1
θk+1 sin(ωk x + φk) (with given ωk , φk)

Multi-objective least squares 10.8



Result of regularized least squares fit

10−5 10−3 10−1 101 103 105
0
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RMS error versus λ
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Coefficients versus λ

θ1 θ2
θ3 θ4
θ5

• minimum test RMS error is for λ around 0.08

• increasing λ “shrinks” the coefficients θ2, . . . , θ5

• dashed lines show coefficients used to generate the data

• for λ near 0.08, estimated coefficients are close to these “true” values

Multi-objective least squares 10.9
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Control

y = Ax + b

• x is n-vector of actions or inputs

• y is m-vector of results or outputs

• relation between inputs and outputs is a known affine function

the goal is to choose inputs x to optimize different objectives on x and y

Multi-objective least squares 10.10



Optimal input design

Linear dynamical system

y(t) = h0u(t) + h1u(t − 1) + h2u(t − 2) + · · · + htu(0)

• output y(t) and input u(t) are scalar

• we assume input u(t) is zero for t < 0

• coefficients h0, h1, . . . are the impulse response coefficients

• output is convolution of input with impulse response

Optimal input design

• optimization variable is the input sequence x = (u(0),u(1), . . . ,u(N))
• goal is to track a desired output using a small and slowly varying input

Multi-objective least squares 10.11



Input design objectives

minimize Jt(x) + λvJv(x) + λmJm(x)

• primary objective: track desired output ydes over an interval [0,N]:

Jt(x) =
N∑

t=0
(y(t) − ydes(t))2

• secondary objectives: use a small and slowly varying input signal:

Jm(x) =
N∑

t=0
u(t)2, Jv(x) =

N−1∑
t=0
(u(t + 1) − u(t))2

Multi-objective least squares 10.12



Tracking error

Jt(x) =
N∑

t=0
(y(t) − ydes(t))2

= ‖Atx − bt‖2

with

At =



h0 0 0 · · · 0 0
h1 h0 0 · · · 0 0
h2 h1 h0 · · · 0 0
... ... ... . . . ... ...

hN−1 hN−2 hN−3 · · · h0 0
hN hN−1 hN−2 · · · h1 h0


, bt =



ydes(0)
ydes(1)
ydes(2)
...

ydes(N − 1)
ydes(N)



Multi-objective least squares 10.13



Input variation and magnitude

Input variation

Jv(x) =
N−1∑
t=0
(u(t + 1) − u(t))2 = ‖Dx‖2

with D the N × (N + 1) matrix

D =


−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
... ... ... ... ... ...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


Input magnitude

Jm(x) =
N∑

t=0
u(t)2 = ‖x‖2

Multi-objective least squares 10.14



Example

λv = 0,
small λm
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larger λm
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Outline

• multi-objective least squares

• regularized data fitting

• control

• estimation and inversion



Estimation

Linear measurement model
y = Axex + v

• n-vector xex contains parameters that we want to estimate

• m-vector v is unknown measurement error or noise

• m-vector y contains measurements

• m × n matrix A relates measurements and parameters

Least squares estimate: use as estimate of xex the solution x̂ of

minimize ‖Ax − y‖2

Multi-objective least squares 10.16



Regularized estimation

add other terms to ‖Ax − y‖2 to include information about parameters

Example: Tikhonov regularization

minimize ‖Ax − y‖2 + λ‖x‖2

• goal is to make ‖Ax − y‖ small with small x

• equivalent to solving
(AT A + λI)x = AT y

• solution is unique (if λ > 0) even when A has linearly dependent columns

Multi-objective least squares 10.17



Signal denoising

• observed signal y is n-vector

y = xex + v

• xex is unknown signal

• v is noise

0 500 1000

0.5

1

1.5

k
y k

Least squares denoising: find estimate x̂ by solving

minimize ‖x − y‖2 + λ
n−1∑
i=1
(xi+1 − xi)2

goal is to find slowly varying signal x̂, close to observed signal y
Multi-objective least squares 10.18



Matrix formulation

minimize




[ I√

λD

]
x −

[
y

0

]



2

• D is (n − 1) × n finite difference matrix

D =


−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
... ... ... ... ... ...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


• equivalent to linear equation

(I + λDT D)x = y

Multi-objective least squares 10.19



Trade-off

the two objectives ‖ x̂(λ) − y‖ and ‖Dx̂(λ)‖ for varying λ

10−5 100 105 1010
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λ

‖ x̂(λ) − y‖
‖Dx̂(λ)‖

0 2 4 6 8 100

0.5

1
λ = 10−1

λ = 102
λ = 105

‖ x̂(λ) − y‖

‖D
x̂(λ
)‖
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Three solutions
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• x̂(λ) → y for λ→ 0

• x̂(λ) → avg(y)1 for λ→∞
• λ ≈ 102 is good compromise
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) k
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Image deblurring

y = Axex + v

• xex is unknown image, y is observed image

• A is (known) blurring matrix, v is (unknown) noise

• images are M × N , stored as MN-vectors

blurred, noisy image y deblurred image x̂
Multi-objective least squares 10.22



Least squares deblurring

minimize ‖Ax − y‖2 + λ(‖Dvx‖2 + ‖Dhx‖2)

• 1st term is “data fidelity” term: ensures Ax̂ ≈ y

• 2nd term penalizes differences between values at neighboring pixels

‖Dhx‖2 + ‖Dvx‖2 =
M∑

i=1

N−1∑
j=1
(Xi,j+1 − Xi j)2 +

M−1∑
i=1

N∑
j=1
(Xi+1,j − Xi j)2

if X is the M × N image stored in the MN-vector x

Multi-objective least squares 10.23



Differencing operations in matrix notation

suppose x is the M × N image X , stored column-wise as MN-vector

x =
(
X1:M,1, X1:M,2, . . . , X1:M,N

)
• horizontal differencing: (N − 1) × N block matrix with M × M blocks

Dh =


−I I 0 · · · 0 0 0
0 −I I · · · 0 0 0
... ... ... ... ... ...
0 0 0 · · · 0 −I I


• vertical differencing: N × N block matrix with (M − 1) × M blocks

Dv =


D 0 · · · 0
0 D · · · 0
... ... . . . ...
0 0 · · · D

 , D =


−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
... ... ... ... ...
0 0 0 · · · −1 1


Multi-objective least squares 10.24



Deblurred images

λ = 10−6 λ = 10−4

λ = 10−2 λ = 1

Multi-objective least squares 10.25



Tomography

I goal is to reconstruct or estimate a function d : R2 → R from
(possibly noisy) line integral measurements

I d is often (but not always) some kind of density

I we’ll focus on 2-D case, but it can be extended to 3-D

I used in medicine, manufacturing, networking, geology

I best known application: CAT (computer-aided tomography) scan

2



Computer Tomography (CT)

detectors

source

1 / 1



Discretization of d

I we d is constant on n pixels, numbered 1 to n

I represent (discretized) density function d by n-vector x

I xi is value of d in pixel i

I line integral measurement yi has form

yi =
n∑

j=1

Aijxj + vi

I Aij is length of line `i in pixel j

I in matrix-vector form, we have y = Ax+ v

Line integral measurements 6



Illustration

x1 x2

x6

(x0, y0)
θ

y = 1.06x16 + 0.80x17 + 0.27x12 + 1.06x13 + 1.06x14 + 0.53x15 + 0.54x10 + v

Line integral measurements 7



Example

Line integral measurements 9



Smoothness prior

I we assume that image is not too rough, as measured by (Laplacian)

‖Dvx‖2 + ‖Dhx‖2

– Dhx gives first order difference in horizontal direction
– Dvx gives first order difference in vertical direction

I roughness measure is sum of squares of first order differences

I it is zero only when x is constant

Least-squares reconstruction 13



Least-squares reconstruction

I choose x̂ to minimize

‖Ax− y‖2 + λ(‖Dvx̂‖2 + ‖Dhx̂‖2)

– first term is ‖v‖2, or deviation between what we observed (y) and
what we would have observed without noise (Ax)

– second term is roughness measure

I regularization parameter λ > 0 trades off measurement fit versus
roughness of recovered image

Least-squares reconstruction 14



Example

I 50× 50 pixels (n = 2500)
I 40 angles, 40 offsets (m = 1600 lines)
I 600 lines shown
I small measurement noise
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Reconstruction

reconstructions with λ = 10−6, 20, 230, 2600

Example 18


