Optimalizace

Použití lineární úlohy nejmenších čtverců

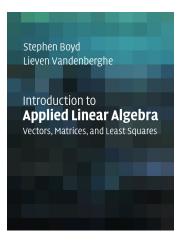
Tomáš Werner

FEL ČVUT

Mnoho aplikací úlohy

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

je v knize (zdarma ke stažení i se slajdy):



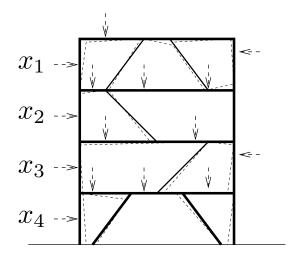
(Slides in this lecture are compiled from course slides by S.Boyd, L.Vanderberghe and coleagues at UCLA and Stanford: EE263, ECE133A, EE103)

Interpretations of y = Ax

- \bullet y is measurement or observation; x is unknown to be determined
- x is 'input' or 'action'; y is 'output' or 'result'
- y = Ax defines a function or transformation that maps $x \in \mathbf{R}^n$ into $y \in \mathbf{R}^m$

Linear elastic structure

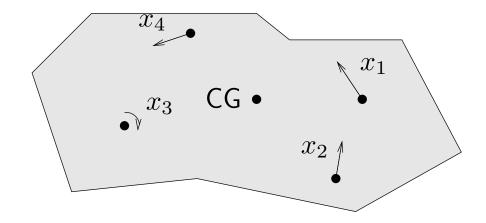
- x_i is external force applied at some node, in some fixed direction
- y_i is (small) deflection of some node, in some fixed direction



(provided x, y are small) we have $y \approx Ax$

- A is called the *compliance matrix*
- a_{ij} gives deflection i per unit force at j (in m/N)

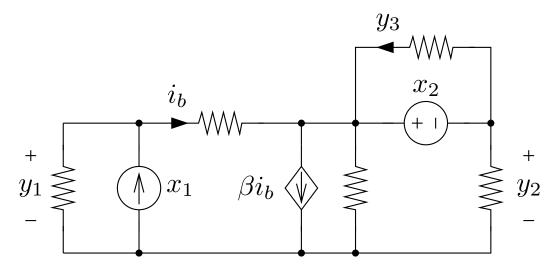
Total force/torque on rigid body



- x_j is external force/torque applied at some point/direction/axis
- $y \in \mathbb{R}^6$ is resulting total force & torque on body $(y_1, y_2, y_3 \text{ are } \mathbf{x}$ -, \mathbf{y} -, \mathbf{z} components of total force, y_4, y_5, y_6 are \mathbf{x} -, \mathbf{y} -, \mathbf{z} components of total torque)
- we have y = Ax
- A depends on geometry (of applied forces and torques with respect to center of gravity CG)
- ullet jth column gives resulting force & torque for unit force/torque j

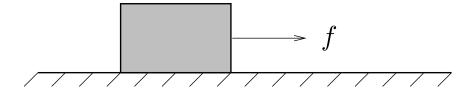
Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and independent sources



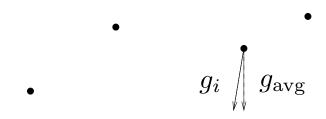
- x_i is value of independent source j
- y_i is some circuit variable (voltage, current)
- we have y = Ax
- if x_j are currents and y_i are voltages, A is called the *impedance* or resistance matrix

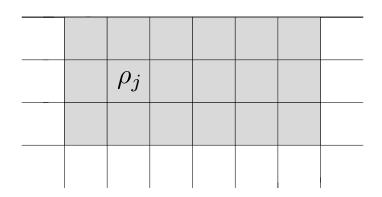
Final position/velocity of mass due to applied forces



- \bullet unit mass, zero position/velocity at t=0, subject to force f(t) for $0 \leq t \leq n$
- $f(t) = x_j$ for $j 1 \le t < j$, j = 1, ..., n (x is the sequence of applied forces, constant in each interval)
- y_1 , y_2 are final position and velocity (i.e., at t=n)
- we have y = Ax
- a_{1j} gives influence of applied force during $j-1 \le t < j$ on final position
- ullet a_{2j} gives influence of applied force during $j-1 \leq t < j$ on final velocity

Gravimeter prospecting

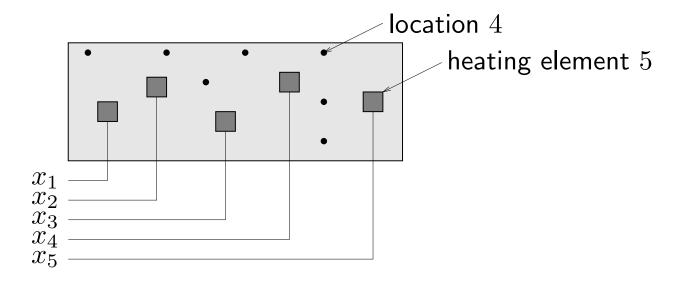




- $x_j = \rho_j \rho_{\text{avg}}$ is (excess) mass density of earth in voxel j;
- y_i is measured gravity anomaly at location i, i.e., some component (typically vertical) of $g_i g_{\rm avg}$
- \bullet y = Ax

- ullet A comes from physics and geometry
- ullet jth column of A shows sensor readings caused by unit density anomaly at voxel j
- ullet ith row of A shows sensitivity pattern of sensor i

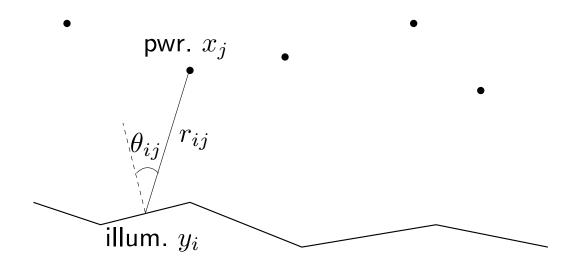
Thermal system



- x_j is power of jth heating element or heat source
- ullet y_i is change in steady-state temperature at location i
- thermal transport via conduction
- \bullet y = Ax

- a_{ij} gives influence of heater j at location i (in ${}^{\circ}C/W$)
- \bullet $j{\rm th}$ column of A gives pattern of steady-state temperature rise due to $1{\rm W}$ at heater j
- ith row shows how heaters affect location i

Illumination with multiple lamps

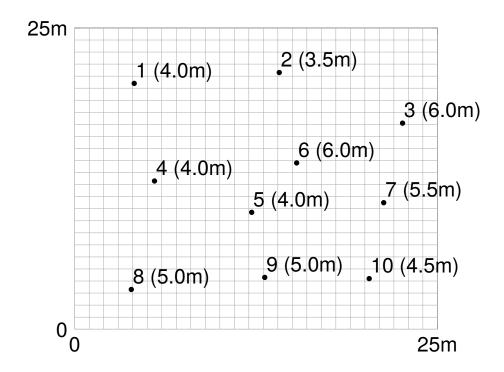


- ullet n lamps illuminating m (small, flat) patches, no shadows
- ullet x_j is power of jth lamp; y_i is illumination level of patch i
- y = Ax, where $a_{ij} = r_{ij}^{-2} \max\{\cos \theta_{ij}, 0\}$ ($\cos \theta_{ij} < 0$ means patch i is shaded from lamp j)
- ullet jth column of A shows illumination pattern from lamp j

Example: illumination

- *n* lamps at given positions above an area divided in *m* regions
- A_{ij} is illumination in region i if lamp j is on with power 1 and other lamps are off
- x_j is power of lamp j
- $(Ax)_i$ is illumination level at region i
- b_i is target illumination level at region i

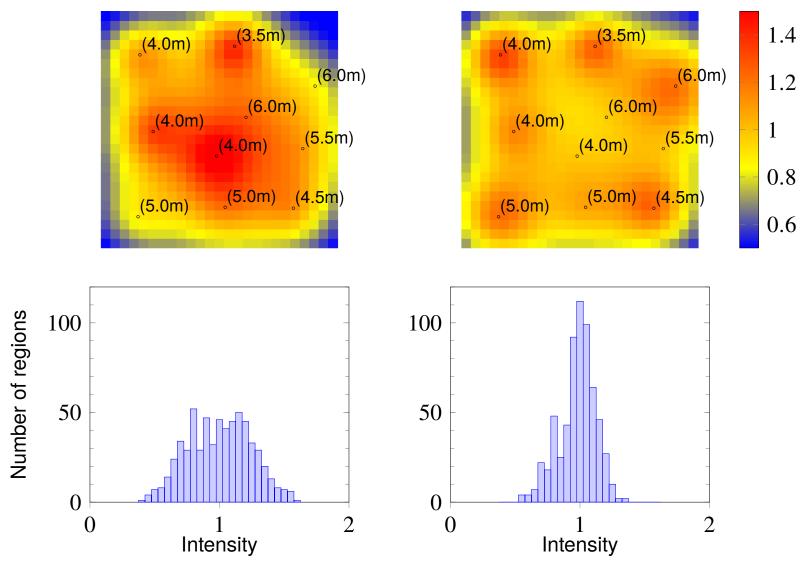
Example: $m = 25^2$, n = 10; figure shows position and height of each lamp



Least squares

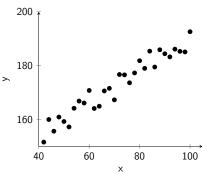
Example: illumination

- left: illumination pattern for equal lamp powers (x = 1)
- right: illumination pattern for least squares solution \hat{x} , with b = 1

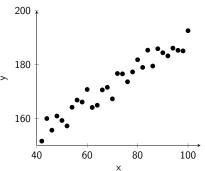


Least squares

Odhad funkční závislosti výšky y [cm] na váze x [kg] člověka z m měření $(x^{(i)}, y^{(i)})$.

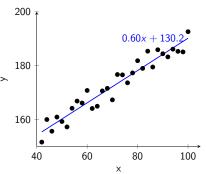


Odhad funkční závislosti výšky y [cm] na váze x [kg] člověka z m měření $(x^{(i)}, y^{(i)})$.



• Modelujme vztah afinní funkcí $\hat{f}(x) = \theta_1 + \theta_2 x$.

Odhad funkční závislosti výšky y [cm] na váze x [kg] člověka z m měření $(x^{(i)}, y^{(i)})$.

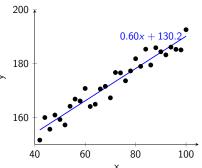


- Modelujme vztah **afinní funkcí** $\hat{f}(x) = \theta_1 + \theta_2 x$.
- Minimalizujeme součet čtverců residuí

$$\sum_{i=1}^{m} (\hat{f}(x^{(i)}) - y^{(i)})^2 = \sum_{i=1}^{m} (\theta_1 + \theta_2 x^{(i)} - y^{(i)})^2 = \|\mathbf{A}\boldsymbol{\theta} - \mathbf{y}\|^2$$

přes parametry θ_1, θ_2 .

Odhad funkční závislosti výšky y [cm] na váze x [kg] člověka z m měření $(x^{(i)}, y^{(i)})$.



- Modelujme vztah **afinní funkcí** $\hat{f}(x) = \theta_1 + \theta_2 x$.
- Minimalizujeme součet čtverců residuí

$$\sum_{i=1}^{m} (\hat{f}(x^{(i)}) - y^{(i)})^2 = \sum_{i=1}^{m} (\theta_1 + \theta_2 x^{(i)} - y^{(i)})^2 = \|\mathbf{A}\boldsymbol{\theta} - \mathbf{y}\|^2$$

přes parametry θ_1, θ_2 .

Tento příklad na dalších slajdech zobecníme!

Linear-in-parameters model

we choose the model $\hat{f}(x)$ from a family of models

$$\hat{f}(x) = \theta_1 f_1(x) + \theta_2 f_2(x) + \dots + \theta_p f_p(x)$$

- the functions f_i are scalar valued basis functions (chosen by us)
- the basis functions often include a constant function (typically, $f_1(x) = 1$)
- the coefficients $\theta_1, \ldots, \theta_p$ are the model *parameters*
- the model $\hat{f}(x)$ is linear in the parameters θ_i
- if $f_1(x) = 1$, this can be interpreted as a regression model

$$\hat{\mathbf{y}} = \boldsymbol{\beta}^T \tilde{\mathbf{x}} + \mathbf{v}$$

with parameters $v = \theta_1$, $\beta = \theta_{2:p}$ and new features \tilde{x} generated from x:

$$\tilde{x}_1 = f_2(x), \quad \dots, \quad \tilde{x}_p = f_p(x)$$

Least squares model fitting

- fit linear-in-parameters model to data set $(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})$
- residual for data sample i is

$$r^{(i)} = y^{(i)} - \hat{f}(x^{(i)}) = y^{(i)} - \theta_1 f_1(x^{(i)}) - \dots - \theta_p f_p(x^{(i)})$$

ullet least squares model fitting: choose parameters heta by minimizing MSE

$$\frac{1}{N}\left((r^{(1)})^2 + (r^{(2)})^2 + \dots + (r^{(N)})^2\right)$$

• this is a least squares problem: minimize $||A\theta - y^{d}||^2$ with

$$A = \begin{bmatrix} f_1(x^{(1)}) & \cdots & f_p(x^{(1)}) \\ f_1(x^{(2)}) & \cdots & f_p(x^{(2)}) \\ \vdots & & & \vdots \\ f_1(x^{(N)}) & \cdots & f_p(x^{(N)}) \end{bmatrix}, \qquad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix}, \qquad y^{d} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

Example: polynomial approximation

$$\hat{f}(x) = \theta_1 + \theta_2 x + \theta_3 x^2 + \dots + \theta_p x^{p-1}$$

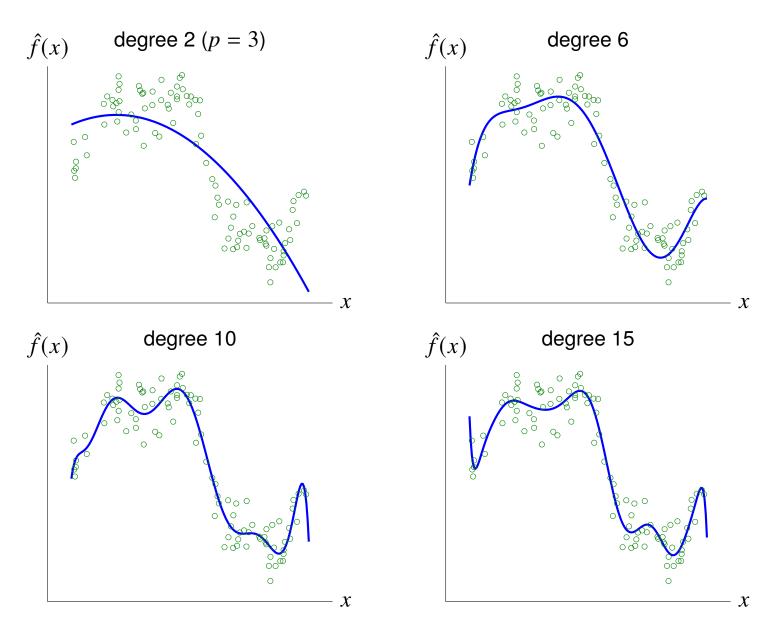
- a linear-in-parameters model with basis functions 1, x, ..., x^{p-1}
- ullet least squares model fitting: choose parameters heta by minimizing MSE

$$\frac{1}{N} \left((y^{(1)} - \hat{f}(x^{(1)}))^2 + (y^{(2)} - \hat{f}(x^{(2)}))^2 + \dots + (y^{(N)} - \hat{f}(x^{(N)}))^2 \right)$$

• in matrix notation: minimize $||A\theta - y^{d}||^2$ with

$$A = \begin{bmatrix} 1 & x^{(1)} & (x^{(1)})^2 & \cdots & (x^{(1)})^{p-1} \\ 1 & x^{(2)} & (x^{(2)})^2 & \cdots & (x^{(2)})^{p-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x^{(N)} & (x^{(N)})^2 & \cdots & (x^{(N)})^{p-1} \end{bmatrix}, \qquad y^{d} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

Example



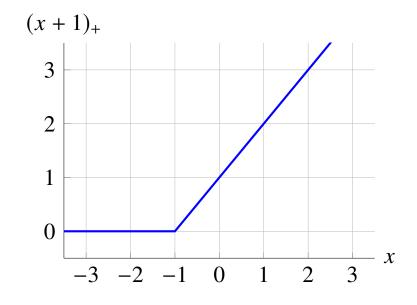
data set of 100 examples

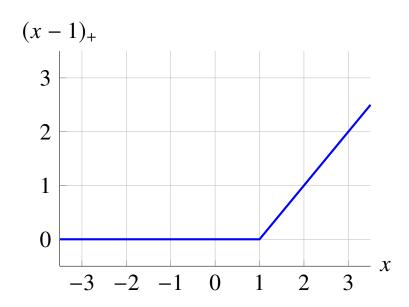
Piecewise-affine function

- define *knot points* $a_1 < a_2 < \cdots < a_k$ on the real axis
- piecewise-affine function is continuous, and affine on each interval $[a_k, a_{k+1}]$
- piecewise-affine function with knot points a_1, \ldots, a_k can be written as

$$\hat{f}(x) = \theta_1 + \theta_2 x + \theta_3 (x - a_1)_+ + \dots + \theta_{2+k} (x - a_k)_+$$

where $u_+ = \max\{u, 0\}$



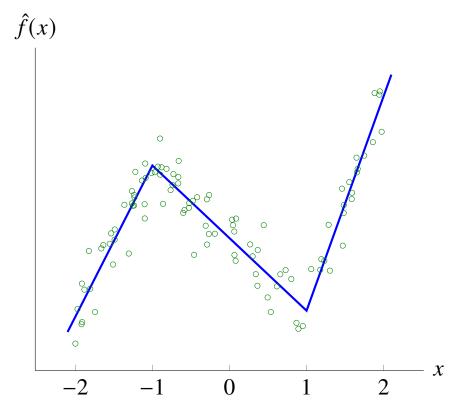


Piecewise-affine function fitting

piecewise-affine model is in linear in the parameters θ , with basis functions

$$f_1(x) = 1$$
, $f_2(x) = x$, $f_3(x) = (x - a_1)_+$, ..., $f_{k+2}(x) = (x - a_k)_+$

Example: fit piecewise-affine function with knots $a_1 = -1$, $a_2 = 1$ to 100 points



Auto-regressive (AR) time series model

$$\hat{z}_{t+1} = \beta_1 z_t + \dots + \beta_M z_{t-M+1}, \qquad t = M, M+1, \dots$$

- z_1, z_2, \dots is a time series
- \hat{z}_{t+1} is a prediction of z_{t+1} , made at time t
- prediction \hat{z}_{t+1} is a linear function of previous M values z_t, \ldots, z_{t-M+1}
- *M* is the *memory* of the model

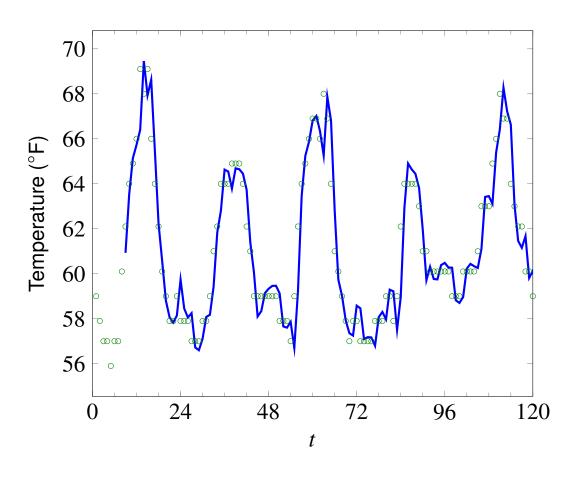
Least squares fitting of AR model: given oberved data z_1, \ldots, z_T , minimize

$$(z_{M+1} - \hat{z}_{M+1})^2 + (z_{M+2} - \hat{z}_{M+2})^2 + \dots + (z_T - \hat{z}_T)^2$$

this is a least squares problem: minimize $||A\beta - y^{d}||^2$ with

$$A = \begin{bmatrix} z_M & z_{M-1} & \cdots & z_1 \\ z_{M+1} & z_M & \cdots & z_2 \\ \vdots & \vdots & & \vdots \\ z_{T-1} & z_{T-2} & \cdots & z_{T-M} \end{bmatrix}, \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_M \end{bmatrix}, \qquad y^{d} = \begin{bmatrix} z_{M+1} \\ z_{M+2} \\ \vdots \\ z_T \end{bmatrix}$$

Example: hourly temperature at LAX



- blue line shows prediction by AR model of memory M=8
- model was fit on time series of length T = 744 (May 1–31, 2016)
- plot shows first five days

Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

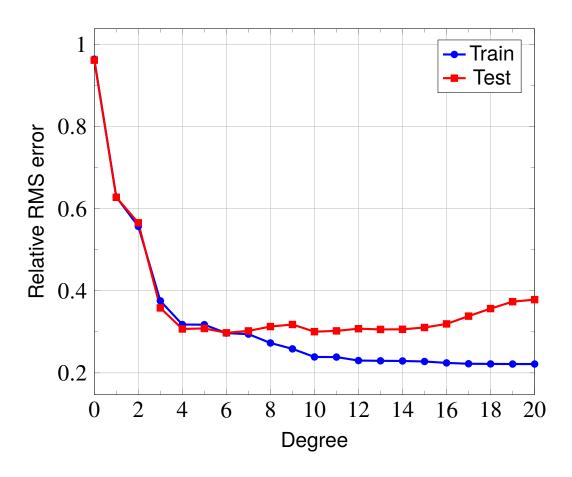
Model validation: to assess generalization ability,

- divide data in two sets: training set and test (or validation) set
- use training set to fit model
- use test set to get an idea of generalization ability
- this is also called *out-of-sample validation*

Over-fit model

- model with low prediction error on training set, bad generalization ability
- prediction error on training set is much smaller than on test set

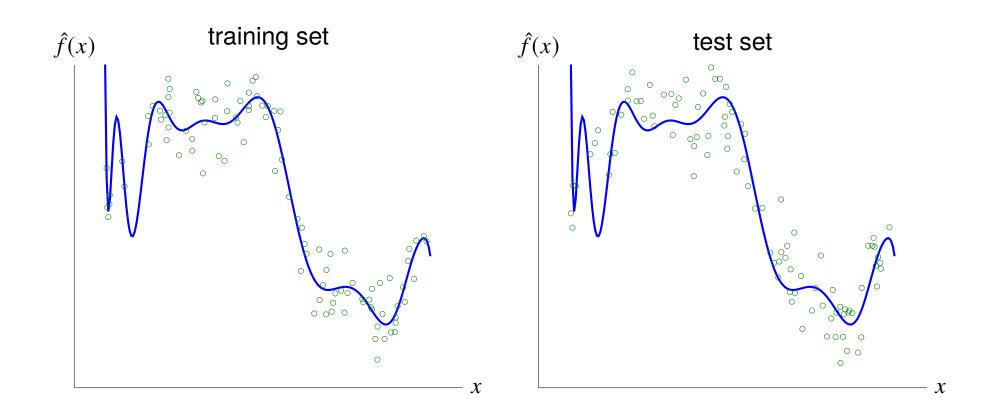
Example: polynomial fitting



- training set is data set of 100 points used on page 9.11
- test set is a similar set of 100 points
- plot suggests using degree 6

Over-fitting

polynomial of degree 20 on training and test set



over-fitting is evident at the left end of the interval

L. Vandenberghe ECE133A (Fall 2019)

10. Multi-objective least squares

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Multi-objective least squares

we have several objectives

$$J_1 = ||A_1x - b_1||^2, \qquad \dots, \qquad J_k = ||A_kx - b_k||^2$$

- A_i is an $m_i \times n$ matrix, b_i is an m_i -vector
- we seek one x that makes all k objectives small
- usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes

$$|\lambda_1||A_1x - b_1||^2 + \dots + |\lambda_k||A_kx - b_k||^2$$

- coefficients $\lambda_1, \ldots, \lambda_k$ are positive weights
- weights λ_i express relative importance of different objectives
- without loss of generality, we can choose $\lambda_1 = 1$

Solution of weighted least squares

weighted least squares is equivalent to a standard least squares problem

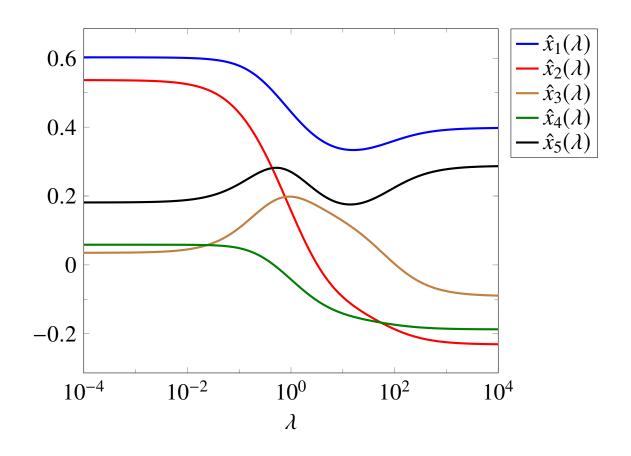
- solution is unique if the stacked matrix has linearly independent columns
- each matrix A_i may have linearly dependent columns (or be a wide matrix)
- it the stacked matrix has linearly independent columns, the solution is

$$\hat{x} = \left(\lambda_1 A_1^T A_1 + \dots + \lambda_k A_k^T A_k\right)^{-1} \left(\lambda_1 A_1^T b_1 + \dots + \lambda_k A_k^T b_k\right)$$

Example with two objectives

minimize
$$||A_1x - b_1||^2 + \lambda ||A_2x - b_2||^2$$

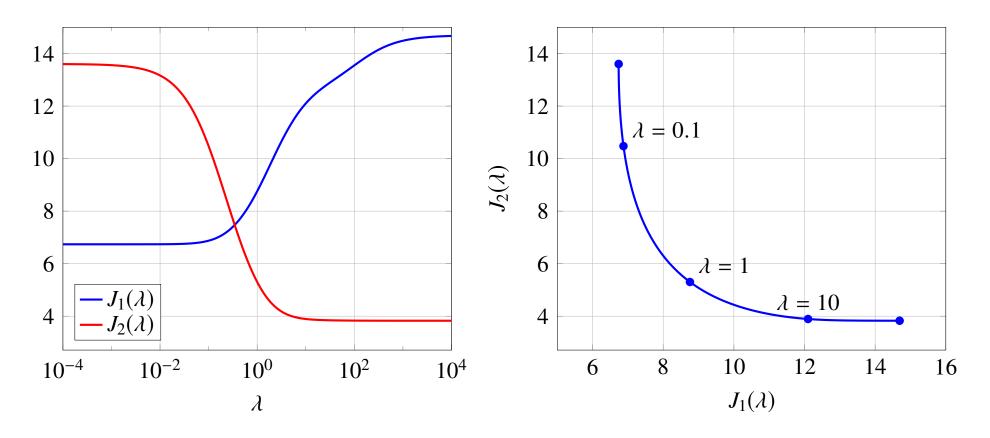
 A_1 and A_2 are 10×5



plot shows weighted least squares solution $\hat{x}(\lambda)$ as function of weight λ

Example with two objectives

minimize
$$||A_1x - b_1||^2 + \lambda ||A_2x - b_2||^2$$



- left figure shows $J_1(\lambda) = ||A_1\hat{x}(\lambda) b_1||^2$ and $J_2(\lambda) = ||A_2\hat{x}(\lambda) b_2||^2$
- right figure shows optimal trade-off curve of $J_2(\lambda)$ versus $J_1(\lambda)$

Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Motivation

consider linear-in-parameters model

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

we assume $f_1(x)$ is the constant function 1

- we fit the model $\hat{f}(x)$ to examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})$
- large coefficient θ_i makes model more sensitive to changes in $f_i(x)$
- keeping $\theta_2, \ldots, \theta_p$ small helps avoid over-fitting
- this leads to two objectives:

$$J_1(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2, \qquad J_2(\theta) = \sum_{j=2}^{p} \theta_j^2$$

primary objective $J_1(\theta)$ is sum of squares of prediction errors

Weighted least squares formulation

minimize
$$J_1(\theta) + \lambda J_2(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2 + \lambda \sum_{j=2}^{p} \theta_j^2$$

- λ is positive *regularization parameter*
- equivalent to least squares problem: minimize

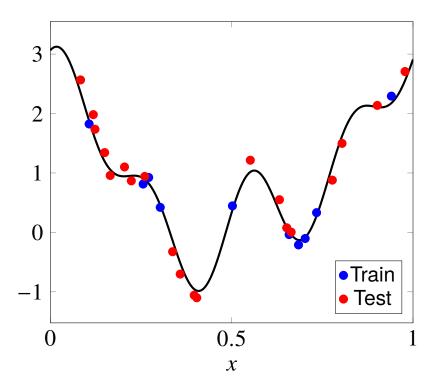
$$\left\| \left[\begin{array}{c} A_1 \\ \sqrt{\lambda} A_2 \end{array} \right] \theta - \left[\begin{array}{c} y^{d} \\ 0 \end{array} \right] \right\|^2$$

with
$$y^d = (y^{(1)}, \dots, y^{(N)}),$$

$$A_{1} = \begin{bmatrix} 1 & f_{2}(x^{(1)}) & \cdots & f_{p}(x^{(1)}) \\ 1 & f_{2}(x^{(2)}) & \cdots & f_{p}(x^{(2)}) \\ \vdots & \vdots & & \vdots \\ 1 & f_{2}(x^{(N)}) & \cdots & f_{p}(x^{(N)}) \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

- stacked matrix has linearly independent columns (for positive λ)
- value of λ can be chosen by out-of-sample validation or cross-validation

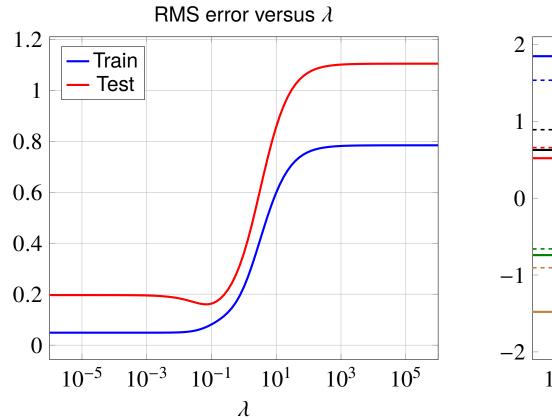
Example

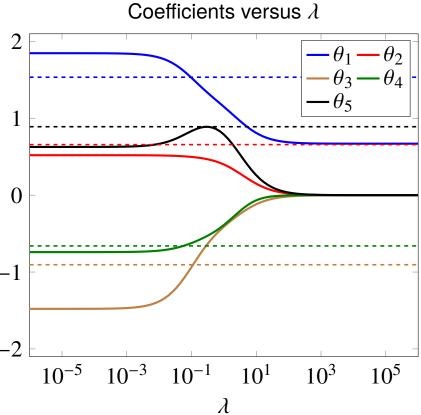


- solid line is signal used to generate synthetic (simulated) data
- 10 blue points are used as training set; 20 red points are used as test set
- we fit a model with five parameters $\theta_1, \ldots, \theta_5$:

$$\hat{f}(x) = \theta_1 + \sum_{k=1}^{4} \theta_{k+1} \sin(\omega_k x + \phi_k) \qquad \text{(with given } \omega_k, \phi_k\text{)}$$

Result of regularized least squares fit





- minimum test RMS error is for λ around 0.08
- increasing λ "shrinks" the coefficients $\theta_2, \ldots, \theta_5$
- dashed lines show coefficients used to generate the data
- for λ near 0.08, estimated coefficients are close to these "true" values

Multi-objective least squares

Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Control

$$y = Ax + b$$

- *x* is *n*-vector of *actions* or *inputs*
- *y* is *m*-vector of *results* or *outputs*
- relation between inputs and outputs is a known affine function

the goal is to choose inputs x to optimize different objectives on x and y

Optimal input design

Linear dynamical system

$$y(t) = h_0 u(t) + h_1 u(t-1) + h_2 u(t-2) + \dots + h_t u(0)$$

- output y(t) and input u(t) are scalar
- we assume input u(t) is zero for t < 0
- coefficients h_0, h_1, \dots are the *impulse response coefficients*
- output is convolution of input with impulse response

Optimal input design

- optimization variable is the input sequence $x = (u(0), u(1), \dots, u(N))$
- goal is to track a desired output using a small and slowly varying input

Input design objectives

minimize
$$J_{t}(x) + \lambda_{v}J_{v}(x) + \lambda_{m}J_{m}(x)$$

• primary objective: track desired output y_{des} over an interval [0, N]:

$$J_{t}(x) = \sum_{t=0}^{N} (y(t) - y_{des}(t))^{2}$$

• secondary objectives: use a small and slowly varying input signal:

$$J_{\rm m}(x) = \sum_{t=0}^{N} u(t)^2, \qquad J_{\rm v}(x) = \sum_{t=0}^{N-1} (u(t+1) - u(t))^2$$

Tracking error

$$J_{t}(x) = \sum_{t=0}^{N} (y(t) - y_{des}(t))^{2}$$
$$= ||A_{t}x - b_{t}||^{2}$$

with

$$A_{t} = \begin{bmatrix} h_{0} & 0 & 0 & \cdots & 0 & 0 \\ h_{1} & h_{0} & 0 & \cdots & 0 & 0 \\ h_{2} & h_{1} & h_{0} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_{0} & 0 \\ h_{N} & h_{N-1} & h_{N-2} & \cdots & h_{1} & h_{0} \end{bmatrix}, \qquad b_{t} = \begin{bmatrix} y_{\text{des}}(0) \\ y_{\text{des}}(1) \\ y_{\text{des}}(2) \\ \vdots \\ y_{\text{des}}(N-1) \\ y_{\text{des}}(N) \end{bmatrix}$$

Input variation and magnitude

Input variation

$$J_{V}(x) = \sum_{t=0}^{N-1} (u(t+1) - u(t))^{2} = ||Dx||^{2}$$

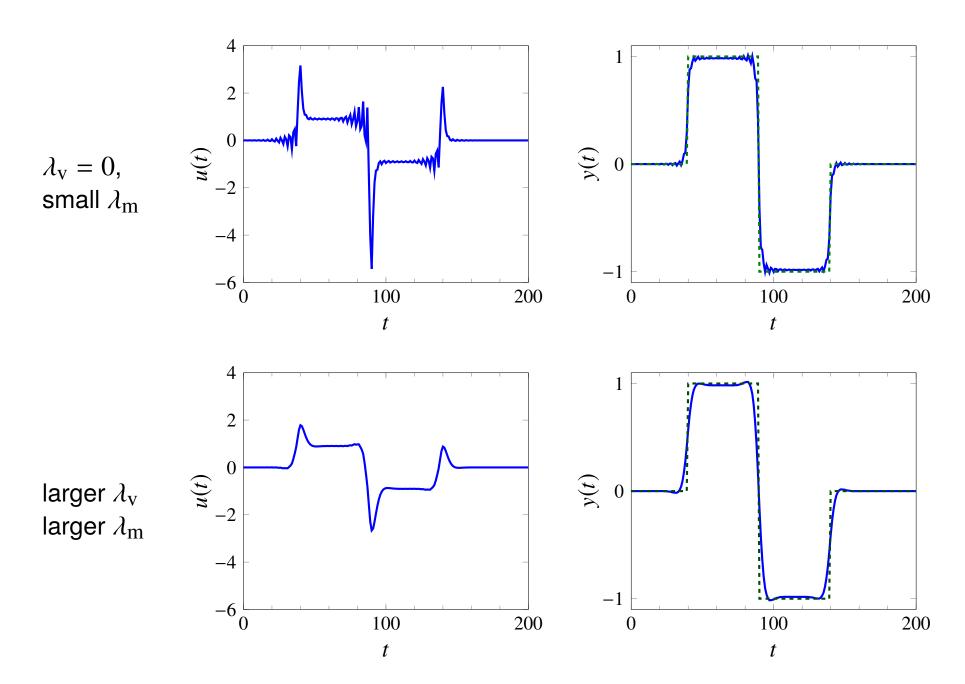
with D the $N \times (N + 1)$ matrix

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

Input magnitude

$$J_{\rm m}(x) = \sum_{t=0}^{N} u(t)^2 = ||x||^2$$

Example



Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Estimation

Linear measurement model

$$y = Ax_{\rm ex} + v$$

- n-vector x_{ex} contains parameters that we want to estimate
- *m*-vector *v* is unknown measurement error or noise
- *m*-vector *y* contains measurements
- $m \times n$ matrix A relates measurements and parameters

Least squares estimate: use as estimate of x_{ex} the solution \hat{x} of

minimize
$$||Ax - y||^2$$

Regularized estimation

add other terms to $||Ax - y||^2$ to include information about parameters

Example: Tikhonov regularization

minimize
$$||Ax - y||^2 + \lambda ||x||^2$$

- goal is to make ||Ax y|| small with small x
- equivalent to solving

$$(A^T A + \lambda I)x = A^T y$$

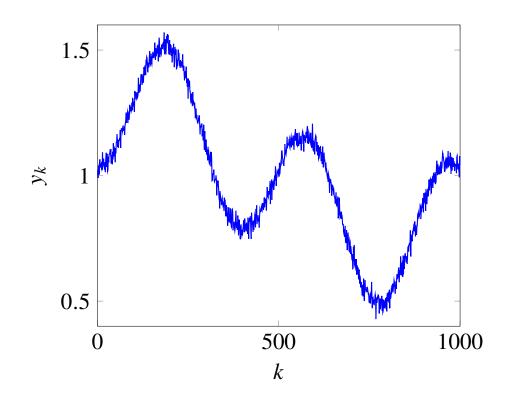
• solution is unique (if $\lambda > 0$) even when A has linearly dependent columns

Signal denoising

• observed signal *y* is *n*-vector

$$y = x_{\rm ex} + v$$

- $x_{\rm ex}$ is unknown signal
- v is noise



Least squares denoising: find estimate \hat{x} by solving

minimize
$$||x - y||^2 + \lambda \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$$

goal is to find slowly varying signal \hat{x} , close to observed signal y

Matrix formulation

minimize
$$\left\| \begin{bmatrix} I \\ \sqrt{\lambda}D \end{bmatrix} x - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\|^2$$

• D is $(n-1) \times n$ finite difference matrix

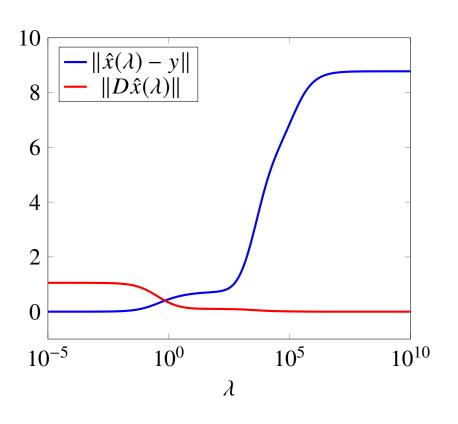
$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

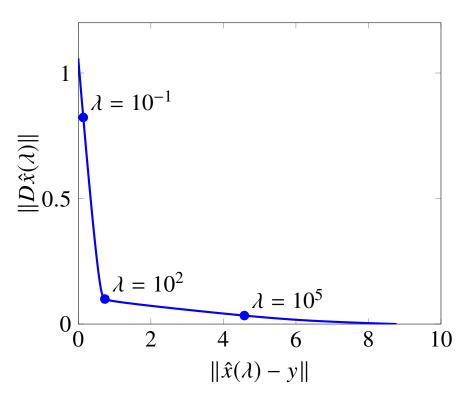
equivalent to linear equation

$$(I + \lambda D^T D)x = y$$

Trade-off

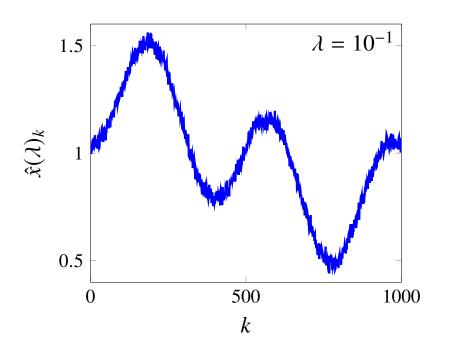
the two objectives $\|\hat{x}(\lambda) - y\|$ and $\|D\hat{x}(\lambda)\|$ for varying λ

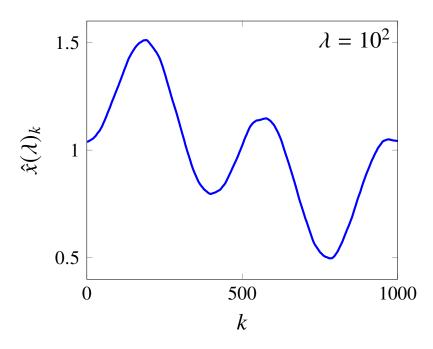


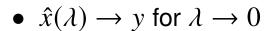


Multi-objective least squares 10.20

Three solutions







- $\hat{x}(\lambda) \to \mathbf{avg}(y)\mathbf{1}$ for $\lambda \to \infty$
- $\lambda \approx 10^2$ is good compromise

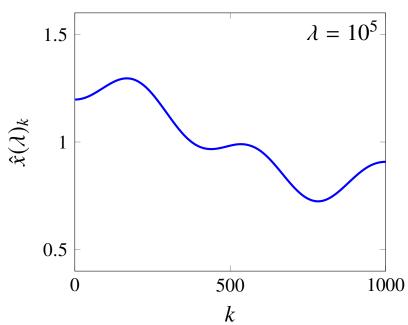


Image deblurring

$$y = Ax_{\rm ex} + v$$

- x_{ex} is unknown image, y is observed image
- A is (known) blurring matrix, v is (unknown) noise
- images are $M \times N$, stored as MN-vectors

blurred, noisy image *y*

deblurred image \hat{x}

Least squares deblurring

minimize
$$||Ax - y||^2 + \lambda(||D_{v}x||^2 + ||D_{h}x||^2)$$

- 1st term is "data fidelity" term: ensures $A\hat{x} \approx y$
- 2nd term penalizes differences between values at neighboring pixels

$$||D_{h}x||^{2} + ||D_{v}x||^{2} = \sum_{i=1}^{M} \sum_{j=1}^{N-1} (X_{i,j+1} - X_{ij})^{2} + \sum_{i=1}^{M-1} \sum_{j=1}^{N} (X_{i+1,j} - X_{ij})^{2}$$

if X is the $M \times N$ image stored in the MN-vector x

Differencing operations in matrix notation

suppose x is the $M \times N$ image X, stored column-wise as MN-vector

$$x = (X_{1:M,1}, X_{1:M,2}, \ldots, X_{1:M,N})$$

• horizontal differencing: $(N-1) \times N$ block matrix with $M \times M$ blocks

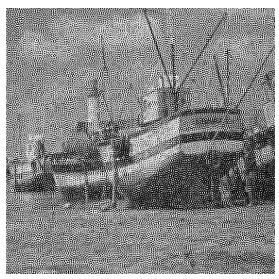
$$D_{h} = \begin{bmatrix} -I & I & 0 & \cdots & 0 & 0 & 0 \\ 0 & -I & I & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -I & I \end{bmatrix}$$

• vertical differencing: $N \times N$ block matrix with $(M-1) \times M$ blocks

$$D_{V} = \begin{bmatrix} D & 0 & \cdots & 0 \\ 0 & D & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D \end{bmatrix}, \qquad D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$

Deblurred images

$$\lambda = 10^{-6}$$



$$\lambda = 10^{-2}$$

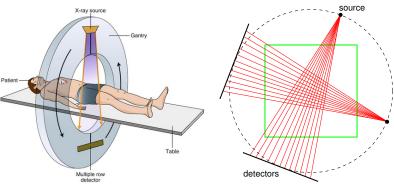
$$\lambda = 10^{-4}$$

$$\lambda = 1$$

Tomography

- ightharpoonup goal is to reconstruct or estimate a function $d: \mathbf{R}^2 \to \mathbf{R}$ from (possibly noisy) line integral measurements
- d is often (but not always) some kind of density
- ▶ we'll focus on 2-D case, but it can be extended to 3-D
- used in medicine, manufacturing, networking, geology
- best known application: CAT (computer-aided tomography) scan

Computer Tomography (CT)



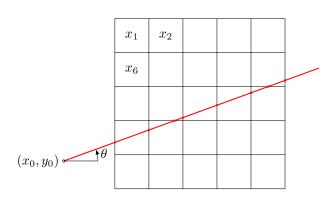
Discretization of d

- lacktriangle we d is constant on n pixels, numbered 1 to n
- ightharpoonup represent (discretized) density function d by n-vector x
- $ightharpoonup x_i$ is value of d in pixel i
- \blacktriangleright line integral measurement y_i has form

$$y_i = \sum_{j=1}^n A_{ij} x_j + v_i$$

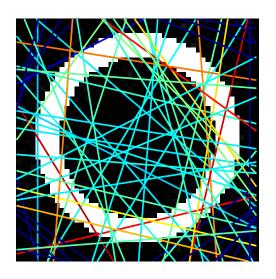
- ▶ A_{ij} is length of line ℓ_i in pixel j
- lacktriangle in matrix-vector form, we have y=Ax+v

Illustration



$$y = 1.06x_{16} + 0.80x_{17} + 0.27x_{12} + 1.06x_{13} + 1.06x_{14} + 0.53x_{15} + 0.54x_{10} + v$$

Example



Smoothness prior

• we assume that image is not too rough, as measured by (Laplacian)

$$||D_{\mathbf{v}}x||^2 + ||D_{\mathbf{h}}x||^2$$

- $D_h x$ gives first order difference in horizontal direction
- $D_v x$ gives first order difference in vertical direction
- roughness measure is sum of squares of first order differences
- ightharpoonup it is zero only when x is constant

Least-squares reconstruction

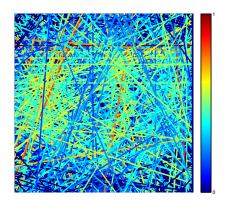
 \triangleright choose \hat{x} to minimize

$$||Ax - y||^2 + \lambda(||D_{\mathbf{v}}\hat{x}||^2 + ||D_{\mathbf{h}}\hat{x}||^2)$$

- first term is $||v||^2$, or deviation between what we observed (y) and what we would have observed without noise (Ax)
- second term is roughness measure
- \blacktriangleright regularization parameter $\lambda>0$ trades off measurement fit versus roughness of recovered image

Example

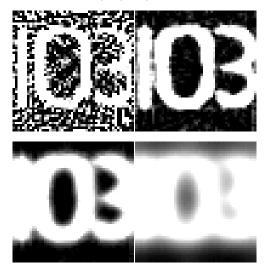
- ▶ 50×50 pixels (n = 2500)
- ▶ 40 angles, 40 offsets (m = 1600 lines)
- ▶ 600 lines shown
- small measurement noise



Example 16

Reconstruction

reconstructions with $\lambda=10^{-6}, 20, 230, 2600$



Example 18