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Interpretations of y = Ax

e y is measurement or observation; x is unknown to be determined
e T iIs 'input’ or ‘action’; y is ‘output’ or ‘result’

e y = Ax defines a function or transformation that maps x € R" into
y € R™

Linear functions and examples



Linear elastic structure

e 1, is external force applied at some node, in some fixed direction

e y; is (small) deflection of some node, in some fixed direction

5133 i | !

Ty -=|

provided x, y are small) we have y ~ Ax
Yy

e A is called the compliance matrix

e a;; gives deflection ¢ per unit force at 5 (in m/N)

Linear functions and examples



Total force/torque on rigid body

e 1, is external force/torque applied at some point/direction/axis

e y € R® is resulting total force & torque on body
(y1, Y2, y3 are X-, y-, z- components of total force,
Y4, Y5, Yo are x-, y-, z- components of total torque)

e we have y = Ax

e A depends on geometry
(of applied forces and torques with respect to center of gravity CG)

e jth column gives resulting force & torque for unit force/torque j

Linear functions and examples
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Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and
independent sources

Y3
— < MMN—
0 L2
n= (Do gy = =

e z; is value of independent source j
e 1, is some circuit variable (voltage, current)
e we have y = Ax

e if x; are currents and y; are voltages, A is called the impedance or
resistance matrix

Linear functions and examples 2-10



Final position/velocity of mass due to applied forces

—

e unit mass, zero position/velocity at t = 0, subject to force f(t) for
0<t<n

o f(t)=xforj—1<t<yj,j=1,...,n
(z is the sequence of applied forces, constant in each interval)

e 11, Yo are final position and velocity (i.e., at t = n)
e we have y = Ax
e a;; gives influence of applied force during j —1 < ¢ < j on final position

® ay; gives influence of applied force during 7 —1 < ¢ < j on final velocity

Linear functions and examples 2-11



Gravimeter prospecting

. gi / Javg
y

Pj

® ;= p; — pPavg IS (excess) mass density of earth in voxel j;

e 1, is measured gravity anomaly at location ¢, i.e., some component
(typically vertical) of g; — gavg

o y=Ax

Linear functions and examples 2-12



e A comes from physics and geometry

e jth column of A shows sensor readings caused by unit density anomaly
at voxel j

e 1th row of A shows sensitivity pattern of sensor i

Linear functions and examples 2-13



Thermal system

location 4
o [ ] o ./ =
heating element 5
R

L] u
ry
L2
X3
L4
L5

e 1, is power of jth heating element or heat source

e 1, is change in steady-state temperature at location ¢
e thermal transport via conduction

o y—=Ax

Linear functions and examples 2-14



e a;; gives influence of heater j at location ¢ (in °C/W)

e jth column of A gives pattern of steady-state temperature rise due to
1W at heater j

e ith row shows how heaters affect location

Linear functions and examples 2-15



lllumination with multiple lamps

e n lamps illuminating m (small, flat) patches, no shadows

e z; is power of jth lamp; y; is illumination level of patch i

o y= Az, where q;; = ey

(cosf;; < 0 means patch i is shaded from lamp j)

max{cos#;;,0}

e jth column of A shows illumination pattern from lamp j

Linear functions and examples

2-16



Example: illumination

e n lamps at given positions above an area divided in m regions

e A;;is illumination in region i if lamp j is on with power 1 and other lamps are off

e x;is power of lamp j

e (Ax); is illumination level at region i

e D; is target illumination level at region i

Example: m = 252, n = 10; figure shows position and height of each lamp

Least squares

25m
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8.7



Example: illumination

e left: illumination pattern for equal lamp powers (x = 1)

e right: illumination pattern for least squares solution X, with b =1
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Least squares
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Linear-in-parameters model

we choose the model f(x) from a family of models
F(x) = 01f1(x) + 02 fo(x) + - - - + Op f(x)

e the functions f; are scalar valued basis functions (chosen by us)
e the basis functions often include a constant function (typically, fi(x) = 1)

e the coefficients 01, ..., 6, are the model parameters
e the model f(x) is linear in the parameters 6;

e if fi(x) = 1, this can be interpreted as a regression model
V= ,BT)Z + v
with parameters v = 61, 8 = 6,.;, and new features x generated from x:

X1 = folx), ..., Xp = fp(x)

Least squares data fitting 9.9



fit linear-in-parameters model to data set (x(1), y(y, ... (x(V), y(V))

Least squares model fitting

residual for data sample i is

r = 3@ _ A0y = 3O _ g, f(xD) = ... - gpfp(x(i))

least squares model fitting: choose parameters 6 by minimizing MSE

this is a least squares problem: minimize |46 — y9||% with

C AGxD)
fi(x?)

RGO

Least squares data fitting
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Example: polynomial approximation

f(x) =01 +6x + O3x° + -+ + prp_l
-1

e a linear-in-parameters model with basis functions 1, x, ..., x?

e |east squares model fitting: choose parameters 6 by minimizing MSE

% (60 = A2+ 6@ = Fa@)P 4o 6N = F™)2)

e in matrix notation: minimize ||A6 — y4||? with

EE N
1 p—
A=| xE (xE ) (x S) o ydo ys
1 ™ W2 Wyt )

Least squares data fitting



Example

f(x) degree 2 (p = 3) f(x) degree 6

f(x) degree 15

data set of 100 examples

Least squares data fitting



Piecewise-affine function

e define knot points a; < ap < --- < aj on the real axis

e piecewise-affine function is continuous, and affine on each interval |ay, a;41]

e piecewise-affine function with knot points ay, ..., a; can be written as

f(x) =01+ 0x +03(x —ay)s + - + Ok (x — ap)+

where 1, = max {u,0}

(x+1)4 (x = 1),

3 3

2 2

1 1|

0 0
| | | | | | | x | | | | | | | x
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Least squares data fitting 9.13



Piecewise-affine function fitting
piecewise-affine model is in linear in the parameters 6, with basis functions

i) =1, Hx)=x, fx)=C&-a1)r, ..., fie2(x)=(x—ar)+

Example: fit piecewise-affine function with knots a; = —1, a» = 1 to 100 points

f(x)

Least squares data fitting 9.14



Auto-regressive (AR) time series model

41 =P1z+ -+ BMZ—m+1 t=M,M+1,...

® 71,722, ... Isatime series
e Z;.1 is a prediction of z;,1, made at time ¢
e prediction Z;, is a linear function of previous M values z, ..., Zr—p+1

e M is the memory of the model
Least squares fitting of AR model: given oberved data z;, ..., zr, minimize

~ 2 A 2 A N2
(Zm+1 = Zm+1)” + @y42 — Zy42)” + -+ (27 — 27)

this is a least squares problem: minimize ||A8 — y4||? with

M IM-1 e 21 B1 IM+1
IM+1 M 22 B2 d IM+2
A= : : : ? ’8 = : ? y = :
| Zr-1 Zr-2 ot W-M | - Bum | |27

Least squares data fitting 9.19



Example: hourly temperature at LAX

AN (@) ~
(@) 00 )
T T T

!

64| | |

Temperature (°F)

e blue line shows prediction by AR model of memory M = 8
e model was fit on time series of length T = 744 (May 1-31, 2016)

e plot shows first five days

Least squares data fitting 9.20



Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

e divide data in two sets: training set and test (or validation) set
e use training set to fit model
e use test set to get an idea of generalization ability

e this is also called out-of-sample validation

Over-fit model

e model with low prediction error on training set, bad generalization ability

e prediction error on training set is much smaller than on test set

Least squares data fitting 9.21



Example: polynomial fitting

Relative RMS error

0.2} 1

0 2 4 6 8 10 12 14 16 18 20
Degree

e training set is data set of 100 points used on page 9.11
e test set is a similar set of 100 points

e plot suggests using degree 6

Least squares data fitting 9.22



Over-fitting

polynomial of degree 20 on training and test set

]?(x) training set ]?(x) test set

over-fitting is evident at the left end of the interval

Least squares data fitting 9.23



L. Vandenberghe ECE133A (Fall 2019)

10. Multi-objective least squares

e multi-objective least squares
e regularized data fitting
e control

e estimation and inversion

10.1



Multi-objective least squares

we have several objectives
_ 2 _ 2
Ji=[Aix=b1ll5, ..., Ji=[[Akx = bl

e A;is an m; X n matrix, b; is an m;-vector
e we seek one x that makes all k objectives small

e usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes
2 2
AllArx = Dy||” + - + Al Agx — bl

e coefficients Ay, ..., A} are positive weights
e weights A; express relative importance of different objectives

e without loss of generality, we can choose 4| = 1

Multi-objective least squares 10.2



Solution of weighted least squares

e weighted least squares is equivalent to a standard least squares problem

minimize

VA ]
VA2 A,

| VARA |

[ VA1b;
V207

| Vb

2

e solution is unique if the stacked matrix has linearly independent columns

e ecach matrix A; may have linearly dependent columns (or be a wide matrix)

e it the stacked matrix has linearly independent columns, the solution is

—1
X = (/llA{Al + -+ ﬂkA?;Ak) (/llA{bl + -+ /lkA{bk)

Multi-objective least squares
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Example with two objectives

minimize |[Ajx — blll2 + A||Arx — 192||2

Arand A are 10 X 5

| =%
06 — #2(4)
* =
0.4/ —X A
— %5(4)
02 :
O | |
02} -
1074 1072 109 102 10*

A

plot shows weighted least squares solution X(1) as function of weight A

Multi-objective least squares 10.4



Example with two objectives

minimize |[Ajx — b1||2 + A||Arx — 192||2

Jo(A)

14|

12 |

Ji(2)

e |eft figure shows Ji(1) = ||A1X(A) — ]91”2 and Jo(A) = ||Axx(A) — l?2||2

e right figure shows optimal trade-off curve of J>(1) versus J;(A1)

Multi-objective least squares

16

10.5



multi-objective least squares
regularized data fitting
control

estimation and inversion

Outline



Motivation

e consider linear-in-parameters model

F(x) =01 fi(x) + -+ + 0y fp(x)

we assume fi(x) is the constant function 1
e we fit the model F(x) to examples (x(1, y(D), .. (xV), y(N)y
e large coefficient 8; makes model more sensitive to changes in f;(x)
e keeping 6, ..., 6, small helps avoid over-fitting

e this leads to two objectives:
A (k) (k)\2 & 2
Ji(0) = D (fF™) = y™)% () = >
k=1 j=2
primary objective J;(0) is sum of squares of prediction errors

Multi-objective least squares 10.6



Weighted least squares formulation

N p
minimize J1(0) + 1J»(0) = Z(f(x(k)) - y(k))z +4 Z 812'
k=1 Jj=2

e A is positive regularization parameter
e equivalent to least squares problem: minimize

H[ﬂz] [yodl

2

[ 1 fz(x(l)) fp(x(l)) 1 0 1 0 0
A = 1 fz()f(z)) fp()f(z)) L A= (:) (:) 1 § (:)
L 1AEMY) e 60T (000 - 1]

e stacked matrix has linearly independent columns (for positive A)
e value of A can be chosen by out-of-sample validation or cross-validation

Multi-objective least squares 10.7



Example

elrain
-1} e Test | |

e solid line is signal used to generate synthetic (simulated) data
e 10 blue points are used as training set; 20 red points are used as test set

e we fit a model with five parameters 6y, ..., 05:

4
f(x) = 61+ > Opsr sin(wrx + ¢)  (with given wy, ¢y)
k=1

Multi-objective least squares 10.8



Result of regularized least squares fit

RMS error versus A Coefficients versus A
1.2 [~ f f f f f — 2 [ T T T T T ]
— Train — 01— 6,
1| |— Test S e NG
| O
0.8} N
0.6 | 0
04+ e T
_1 I °

0.2 |

0+ : 9l e

10> 1073 107t 100 10° 10° 10> 1073 107t 10! 10°
A A
e minimum test RMS error is for A around 0.08
e increasing A “shrinks” the coefficients 6,, ..., 05
e dashed lines show coefficients used to generate the data

e for A near 0.08, estimated coefficients are close to these “true” values

Multi-objective least squares
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multi-objective least squares
regularized data fitting
control

estimation and inversion
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Control

y=Ax+b

e X is n-vector of actions or inputs
e vy is m-vector of results or outputs

e relation between inputs and outputs is a known affine function

the goal is to choose inputs x to optimize different objectives on x and y

Multi-objective least squares 10.10



Optimal input design

Linear dynamical system
y(t) = hou(t) + hju(t — 1) + hou(t —2) + - - - + hu(0)

e output y(¢) and input u(t) are scalar
e we assume input u(t) is zero fort < 0
e coefficients hg, hq, ...are the impulse response coefficients

e output is convolution of input with impulse response

Optimal input design
e optimization variable is the input sequence x = (u(0),u(1),...,u(N))

e goal is to track a desired output using a small and slowly varying input

Multi-objective least squares
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Input design objectives

minimize Jy(x) + AyJy(x) + AmJIm(x)

e primary objective: track desired output yq4.s over an interval [0, N]:
J 2
J(x) = > (5(t) = Yaes(t))
=0

e secondary objectives: use a small and slowly varying input signal:

N N—-1
In(x) = D u@®?  Jy(x) = >+ 1) — u(@))?

Multi-objective least squares 10.12



Tracking error

N
J(x) = D) - vaes(t)”
=0
= [|Ax — by
with
hh 0 0 -~ 0 0]
o hg 0O - 0 0
I
hn-1 hn—2 hn—3 -+ hp O
hy  hn-1 hy—2 -+ h1 hy |

Multi-objective least squares

Vdes(0)
Ydes(1)
Ydes(2)

ydes(];] - 1)
Ydes(N)

10.13



Input variation and magnitude

Input variation

N-1
Jy(x) = D (u(t + 1) — u(t))* = || Dx||*
=0

with D the N X (N + 1) matrix

(-1 1.0 --- 0 0 O

o -1 1 --- 0 00

D = s P : -
o 00 --- -1 10

o o0 -~ 0 -1 1

Input magnitude

N
Jn(x) = > ut)* = ||x||”

=0

Multi-objective least squares
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Example

0
-
/les E/

small Ay

-2+

0 100 200 0 100 200

larger Ay 3
larger Am

0 100 200 0 100 200

Multi-objective least squares 10.15



multi-objective least squares
regularized data fitting
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Estimation

Linear measurement model
V= AXex +V

e n-vector xex contains parameters that we want to estimate
e m-vector v is unknown measurement error or noise
e m-vector y contains measurements

e m X n matrix A relates measurements and parameters

Least squares estimate: use as estimate of x.x the solution X of

minimize |[|Ax — y||2

Multi-objective least squares 10.16



Regularized estimation

add other terms to ||Ax — y||? to include information about parameters

Example: Tikhonov regularization
L 2 2
minimize ||[Ax — y||* + A]|x]|

e goal is to make ||Ax — y|| small with small x

e equivalent to solving
(ATA+ADx = Aly

e solution is unique (if 4 > 0) even when A has linearly dependent columns

Multi-objective least squares 10.17



Signal denoising

e observed signal y is n-vector

Y = Xex TV

® Xcx iS unknown signal

® V iS noise

0 500 1000

Least squares denoising: find estimate X by solving

n—1
minimize  ||x — y||* + A Z(xi+1 — x;)°
i=1

goal is to find slowly varying signal X, close to observed signal y

Multi-objective least squares 10.18



Matrix formulation

2
minimize ! X — Y
VaD 0
e Dis (n— 1) X n finite difference matrix
(-1 1 0 --- 0 0 0
0O -1 1 O 0 O
D = : : :

0O 0 O -1 1 O
0O O O 0 -1 1

e equivalent to linear equation

(I+AD'D)x =y

Multi-objective least squares 10.19



Trade-off

the two objectives ||X(1) — y|| and ||Dx(A)|| for varying A

10

— I3 -yl
| — D]

IDX(D)|

=10°

107> 109 10° 1010 0 2 4 6 8 10

P 1£(2) =yl

Multi-objective least squares 10.20



Three solutions

A=10""

()
()

0 500 1000 0 500 1000
k k
1.5 1=10
e {(1) > yfora—0 e
S |
e X(1) — avg(y)l for A — o «
e 1~ 10%is good compromise
0.5 -
0 500 1000
Multi-objective least squares k
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Image deblurring
y=AXex +V

® Xex IS Unknown image, y is observed image
e A is (known) blurring matrix, v is (unknown) noise

e images are M X N, stored as M N-vectors

blurred, noisy image y deblurred image X

Multi-objective least squares 10.22



Least squares deblurring

minimize || Ax — y|I> + A(||Dyx||” + || Dux|1?)

e 1stterm is “data fidelity” term: ensures AX = y

e 2nd term penalizes differences between values at neighboring pixels

—1 M-1 N

M
IDpx||* + IDyxI* = D" > (X1 = Xij)* + D > (Xiw1j — Xij)?
i=1 j=1

i=1j

2

I
ok

if X isthe M X N image stored in the M N-vector x

Multi-objective least squares 10.23



Differencing operations in matrix notation

suppose x is the M X N image X, stored column-wise as M N-vector

X = (XIZM,19 XIZM,Z’ R XlIM,N)

e horizontal differencing: (N — 1) X N block matrix with M x M blocks

I I 0 --- 0 0 O]
pp=| 0 Y00
0 0 0 -~ 0 -1 I

e vertical differencing: N X N block matrix with (M — 1) x M blocks

D 0 --- 0 -1 1 .- 0 0]
e IO P R o
' 0 0 -+ D | 0 0 0 -+ -1 1

Multi-objective least squares 10.24



Deblurred images

10.25

Multi-objective least squares
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Tomography

goal is to reconstruct or estimate a function d : R> — R from
(possibly noisy) line integral measurements

d is often (but not always) some kind of density
we'll focus on 2-D case, but it can be extended to 3-D
used in medicine, manufacturing, networking, geology

best known application: CAT (computer-aided tomography) scan



Computer Tomography (CT)

- - . _ source




Discretization of d

we d is constant on n pixels, numbered 1 to n
represent (discretized) density function d by n-vector z

x; is value of d in pixel i

vV v v v

line integral measurement y; has form
n
yi =Y _ Az +v;
=1
> A;j; is length of line ¢; in pixel j

> in matrix-vector form, we have y = Az +v

Line integral measurements



Hlustration

€1 T2

L6 /

(anyO) "A{

y = 1.06z16 + 0.80x17 + 0.27x12 + 1.06x13 + 1.06214 + 0.53215 + 0.54210 + v

Line integral measurements



Example

s

-
‘l

AX

Line integral measurements



Smoothness prior

> we assume that image is not too rough, as measured by (Laplacian)

IDyal|* + || Dnz®

— Dpx gives first order difference in horizontal direction
— D,z gives first order difference in vertical direction

> roughness measure is sum of squares of first order differences

> it is zero only when z is constant

Least-squares reconstruction
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Least-squares reconstruction

» choose Z to minimize

1Az = ylI* + A Dy | + [ Dni )

— first term is ||v||?, or deviation between what we observed (y) and
what we would have observed without noise (Ax)
— second term is roughness measure

> regularization parameter A > 0 trades off measurement fit versus
roughness of recovered image

Least-squares reconstruction

14



Example

> 50 x 50 pixels (n = 2500)
> 40 angles, 40 offsets (m

» 600 lines shown

1600 lines)

» small measurement noise

16

Example



Reconstruction

reconstructions with A = 109, 20, 230, 2600

Example

18



