Linear-Quadratic Control

Jenny Hong Nicholas Moehle Stephen Boyd

EE103 Stanford University

November 30, 2016

Linear dynamical system

$$x_{t+1} = Ax_t + Bu_t, \quad t = 1, 2, \dots$$

- ightharpoonup n-vector x_t is state at time t
- ightharpoonup m-vector u_t is input at time t
- ightharpoonup n imes n matrix A is dynamics matrix
- $n \times m$ matrix B is input matrix
- sequence x_1, x_2, \ldots is called *state trajectory*

Simulation

- ightharpoonup given x_1 , u_1, u_2, \ldots find x_2, x_3, \ldots
- ightharpoonup can be done by recursion: for $t=1,2,\ldots$,

$$x_{t+1} = Ax_t + Bu_t$$

Vehicle example

consider a vehicle moving in a plane:

- ightharpoonup sample position and velocity at times $\tau=0,h,2h,\ldots$
- ightharpoonup 2-vectors p_t and v_t are position and velocity at time ht
- \triangleright 2-vector u_t gives applied force on the vehicle time ht
- friction force is $-\eta v_t$
- ▶ vehicle has mass m
- \blacktriangleright for small h,

$$m\frac{v_{t+1} - v_t}{h} \approx -\eta v_t + u_t, \qquad \frac{p_{t+1} - p_t}{h} \approx v_t$$

we use approximate state update

$$v_{t+1} = (1 - h\eta/m)v_t + (h/m)u_t, \qquad p_{t+1} = p_t + hv_t$$

- vehicle state is 4-vector $x_t = (p_t, v_t)$
- dynamics recursion is

$$x_{t+1} = Ax_t + Bu_t,$$

where

$$A = \begin{bmatrix} 1 & 0 & h & 0 \\ 0 & 1 & 0 & h \\ 0 & 0 & 1 - h\eta/m & 0 \\ 0 & 0 & 0 & 1 - h\eta/m \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ h/m & 0 \\ 0 & h/m \end{bmatrix}$$

Control

- $ightharpoonup x_1$ is given
- ▶ choose u_1, u_2, \dots, u_{T-1} to achieve some goals, e.g.,
 - terminal state should have some fixed value: $x_T = x^{\mathrm{des}}$
 - $u_1, u_2, \ldots, u_{T-1}$ should be small, say measured as

$$||u_1||^2 + \cdots + ||u_{T-1}||^2$$

(sometimes called 'energy')

 many control problems are linearly constrained least-squares problems

Minimum-energy state transfer

- given initial state x_1 and desired final state x^{des}
- choose u_1, \ldots, u_{T-1} to minimize 'energy'

minimize
$$\|u_1\|^2 + \dots + \|u_{T-1}\|^2$$

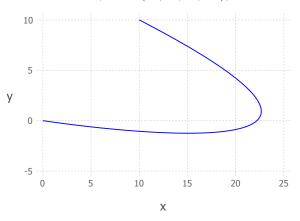
subject to $x_{t+1} = Ax_t + Bu_t, \quad t = 1, \dots, T-1$
 $x_T = x^{\mathrm{des}}$

variables are $x_2, \ldots, x_T, u_1, \ldots, u_{T-1}$

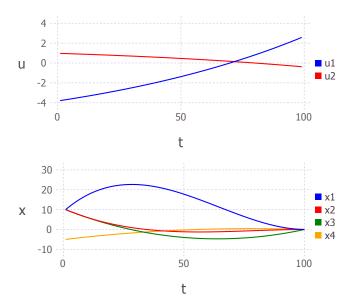
► roughly speaking: find minimum energy inputs that steer the state to given target state over *T* periods

State transfer example

vehicle model with $T = 100, x_1 = (10, 10, 10, -5), x^{\text{des}} = 0$



Control 10



Control 11

Output tracking

- $> y_t = Cx_t$ is output (e.g., position)
- \triangleright y_t should follow a desired trajectory, *i.e.*, sum square tracking error

$$||y_2 - y_2^{\text{des}}||^2 + \dots + ||y_T - y_T^{\text{des}}||^2$$

should be small

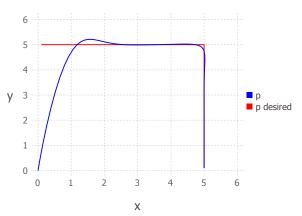
the output tracking problem is

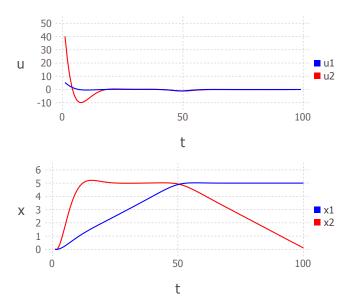
variables are $x_2, ..., x_T, u_1, ..., u_{T-1}, y_2, ..., y_T$

ightharpoonup parameter ho>0 trades off control 'energy' and tracking error

Output tracking example

vehicle model with $T=100,~\rho=0.1,~x_1=0,~y_t=p_t$ (position tracking)





Waypoints

- using output, can specify waypoints
- specify output (position) $w^{(k)}$ at time t_k at K total places

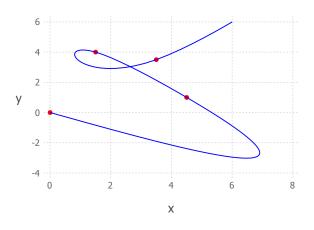
$$\begin{array}{ll} \text{minimize} & \|u_1\|^2 + \dots + \|u_{T-1}\|^2 \\ \text{subject to} & x_{t+1} = Ax_t + Bu_t, \quad t = 1, \dots, T-1 \\ & Cx_{t_k} = w^{(k)}, \quad k = 1, \dots, K \end{array}$$

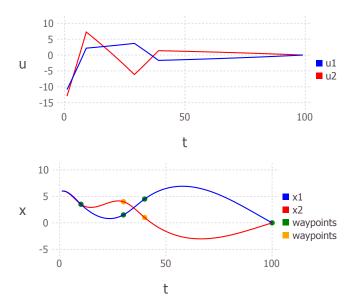
variables are $x_2, \ldots, x_T, u_1, \ldots, u_{T-1}$

Waypoints example

- vehicle model
- $T = 100, x_1 = (10, 10, 20, 0), x^{\text{des}} = 0$
- K = 4, $t_1 = 10$, $t_2 = 30$, $t_3 = 40$, $t_4 = 80$

Waypoints example





Rendezvous

we control two vehicles with dynamics

$$x_{t+1} = Ax_t + Bu_t, \quad z_{t+1} = Az_t + Bv_t$$

- final relative state constraint $x_T = z_T$
- formulate as state transfer problem:

$$\begin{array}{ll} \text{minimize} & \sum_{t=1}^{T-1} (\|u_t\|^2 + \|v_t\|^2) \\ \text{subject to} & x_{t+1} = Ax_t + Bu_t, \quad t = 1, \dots, T-1, \\ & z_{t+1} = Az_t + Bv_t, \quad t = 1, \dots, T-1, \\ & x_T = z_T \end{array}$$

variables are $x_2, ..., x_T, u_1, ..., u_{T-1}, z_2, ..., z_T, v_1, ..., v_{T-1}$

Examples 21

Rendezvous example

$$x_1 = (0,0,0,-5), z_1 = (10,10,5,0)$$

Examples 22