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Fundamental Question of Classical Electrodynamics

A specified distribution of elementary charges is in a state of arbitrary
(but known) motion. At certain time we pick one of them and ask what
is the force acting on it.

Rather difficult question — will not be fully answered
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Elementary Charge

Coulomb

smallest known
amount of charge

As far as we know, all charges in nature have values +Ne, N € Z

GENERAL INTRO Electromagnetic Field Theory 1

@»
3 / XXX CTU-FEE in Prague, Department of Electromagnetic Field elmag.org




Charge conservation

Amount of charge is conserved in every frame (even non-inertial).

Neutrality of atoms has been verified to 20 digits
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Continuous approximation of charge distribution

Volumetric Surface Line
density of density of density of
charge charge charge
C m° [C-m_Q} [C-m_l}

N/

Q:L‘[p(r dV:[J(T)dS:fT(r)dl

Net charge lC}

Continuous approximation allows for using powerful mathematics
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Fundamental Question of Electrostatics

There exist a specified distribution of static elementary charges. We
pick one of them and ask what is the force acting on it.

This will be answered in full details
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Coulomb(’s) Law

Radius vector of

the measuring .
Radius vector

h
carge of the source
. Source [m] charge
Measuring charge
charge C] [m]
q
\ l Permittivity of
qq, (T‘ — 7 vacuum Farad
F(r)= -
dre, ‘r —7r ‘
g = L 8.8541878128-10 " F-m ™"
Speed of light 0 1 2
00
rorce on - ¢, = 299792458 m -5~ :
" harge p, = 1.25663706212-10° H-m ! ®
[N] Permeability / \ o
of vacuum

Henry
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Coulomb(’s) Law + Superposition Principle

Entire electrostatics can be deduced from this formula
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Electric Field

Intensity of
electric field

Vo

Force is represented by field — entity generated by charges and permeating the space
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Continuous Distribution of Charge

Continuous description of charge allows for using powerful mathematics
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Continuous Description of a Point Charge

Di‘rac’s .deljta Defining property of
function Dirac’s delta “function”
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Gauss(’) Law

Total charge

Mind the enclosed by
orientation of the surface
the surface [C}
AT _ 1L _Q
VE(T): () ﬁ fE dS—gfp(r)dV_g
o S 0V 0
Differential law Integral law
(local) (global)
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Rotation of Electric Field

Differential law Integral law
(local) (global)
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Various Views on Electrostatics

Integral laws of Differential laws of
electrostatics electrostatics

Coulomb’s law

The physics content is the same, the formalism is different.
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Electric potential

Defined up to
Electric potential arbitrary constant

dV’+K

VxE=0 X E(r):—Vgo(r) ) 90 = f

Scalar description of electrostatic field
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Voltage

Potential
difference is a Voltage
unique number [V]

Work necessary to
take charge g from
point A to point B

W=—TF-dl=qU
A

Voltage represents connection of abstract field theory with experiments
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Electrostatic Energy

Energy is
carried by
charges

Energy is carried
==y charges and
fields

Energy is carried

Be careful with point charges (self-energy) by fields
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Electrostatic Energy vs Force

Energy of a
system of point
charges Coulomb’s law
1 44, q (r, =7
W = i - F (r ) _ W= ¢ £ j
87‘(’80 i |r—r § 3 Ame qu - 3
jmi L0 Piee [T

Electrostatic forces are always acting so as to minimize energy of the system
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Electric Stress Tensor

Total electric
force acting in

a volume Stress tensor
F:fp(r)E(r)dvzsojf; ds - ;:EE—%;‘E‘
v 3

All the information on the volumetric Coulomb's force is contained at the boundary
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Ideal Conductor — classical description

ldeal conductor contains unlimited amount of free charges which
under action of external electric field rearrange so as to annihilate
electric field inside the conductor.

In 3D, the free charge always resides on the external bounding
surface of the conductor.

\ In 1D and 2D

it is not so

Generally, free charges in conductors move so as to minimize the energy
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Ideal Conductor — quantum description

In an ideal conductor, wave functions of electrons in outer shells
perceive flat potential background. In reaction to an external electric
field, these wave functions are slightly modified so as to provide zero
average charge density inside the conductor. Due to flat potential
background, there is no counter interaction.

Long-range transport of charge does not truly happen in a solid conductor
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Boundary Conditions on Ideal Conductor

e Inside conductor

o E(r)z() & go(r):const.

Potential is
continuous
across the
e Just outside conductor boundary
Surface charge
residing on the
° n<r) X E(T) =0 < 90<r) = const. outer surface of
the conductor
oo Ol
e n|(r E('r)—— RN _ _ =
Outward
normal to the Ngrmgl
conductor derivative
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Capacitance of a System of N conductors

Self and mutual Capacitances
capacitances depend solely
on geometry
: and position of
Electrostatic conductors

Q =

]

\ energy
Z Os%;

J

—) W= _ZCUSOJ’%

Electrostatic system is fully characterized by capacitances (we know the energy)

ELECTROSTATICS Electromagnetic Field Theory 1

23/ XXX CTU-FEE in Prague, Department of Electromagnetic Field gef |)}§>org

s



Capacitance of a System of two conductors

Potential
difference
between
Capacitance conductors
1

Charge on
positively ®
charged ®
conductor O
®
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Poisson(’s) equation

The solution to Poisson’s equation is unique in a given volume once the potential is known on its

bounding surface and the charge density is known throughout the volume.
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Laplace(’s) equation

The solution to Laplace’s equation is unique in a given volume once the potential is known on its

bounding surface.
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Mean Value Theorem

Only for spheres
Center of the sphere containing no charge

(T ) = 47332 ¢ o(r)ds

sphere

Radius of the sphere

The solution to Laplace’s equation posses neither maxima nor minima inside the solved volume.
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Earnshaw(’s) Theorem

Consequence of
mean value theorem

A charged particle cannot be held in stable equilibrium by
electrostatic forces alone.

Mind that the solution to Laplace’s equation posses neither maxima nor minima inside the solved O
volume. This means that charged patrticle will always travel towards the boundary. .
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Image Method

When solving field generated by charges in the presence of
conductors, it is sometimes possible to remove the conductor and
mimic its boundary conditions by adding extra charges to the exterior
of the solution volume. The uniqueness theorem claims that this is a
correct solution.

Image method always works with planes and spheres.
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Separation of Variables

Constants
determined by
boundary conditions

Semi-analytical method for canonical problems
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Finite Differences

P (:IZ + h’ Y Z) - SO(z'ﬂ)jk

Approximation by a _
system of linear Mind the mean
algebraic equations value theorem

Powerful numerical method for closed problems
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Integral Equation & Method of Moments

Assumed to be

known in volume g‘litr:frm(leoir; Simple functions for
where the charge unkno%vn which th? pOtthlal
resides integral can be

easily evaluated

e f dV, o (r) %;a"pn (r)

[oulr)e(r)av =S, g1 [ 2] "(‘,)dv’dv
\ ApproximTation by a \

Known system of linear
algebraic equations

Known

Powerful numerical method for open problems

ELECTROSTATICS
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Dielectrics

Number of dipoles
in unitary volume
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Electric Field of a Dipole

Two opposite charges
very close to each other "r sl

> |~

center

Electric dipole
moment General formula

[C - m] Formula for two
opposite charges
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Field Produced by Polarized Matter

1 P(r’)-(r—r’) , 1 V’-P(r’) ,
SO(T):47T8 f 3 dV' = g f — ~ f S dV
0V ‘r—r‘ o s |T T ov |T—T
Only apply at infinitely
sharp boundary Potential of volumetric
(unrealistic) charge density

This formula holds very well outside the matter and, curiously, it also well approximates the field inside
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Electric Displacement

Electric displacement [C - m_2l

Only free charge

(compare to divergence
of electric field)
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Linear Isotropic Dielectrics

Relative permittivity

el =t
P(r) = €,X, (T‘)E(T‘) D(r) = €€, (T‘)E(T‘) = S(T)E(T‘)

Electric susceptibility Permittivity

P

All the complicated structure of matter reduces to a simple scalar quantity
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Fields in Presence of Dielectrics 1/2

Analogy with electric field in vacuum can only be used when entire
space is homogeneously filled with dielectric.

VXD(T) = VX[S(T‘)E(T‘)] = ()

Inequality is due to
boundaries

Analogy with vacuum can only be used when space is homogeneously filled with dielectric
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Fields in Presence of Dielectrics 2/2

Not a function of
coordinates

Poisson’s equation holds only when permittivity does not depend on coordinates
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Dielectric Boundaries

Normal
pointing to
region (1)
Both conditions are needed for unique solution
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Electrostatic Energy in Dielectrics
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Forces on Dielectrics

This only
holds when
charge is held
constant
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Electric Current

Current Velocity of
density Charge charge
[A - m_2] [C] [m - s_l]

Volumetric density
represented by
Dirac delta

)

Charges in motion are represented by current density
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Local Charge Conservation

Charge is conserved locally at every space-time point
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Global Charge Conservation

When charge leaves a given volume, it is always
accompanied by a current through the bounding envelope

Charge can neither be created nor destroyed. It can only be displaced.
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Stationary Current

When charge enters a volume, another must leave it
without any delay

There is no charge accumulation in stationary flow
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Ohm(’s) Law

Conductivity
8™

This simple linear relation holds for enormous interval of electric field strengths
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Electromotive Force

Stationary flow of charges cannot be caused by electrostatic field. The
motion forces are non-conservative, are called electromotive forces,
and are commonly of chemical, magnetic or photoelectric origin.

fE@yﬂxo fE@yﬂzo

For curves passing
through sources of
electromotive force

For curves not crossing
sources of electromotive force
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Boundary Conditions for Stationary Current

Charge conservation forces the continuity of current across the boundary
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Electric Current

Current

4]

Cross-section of
current path

m’

Existence of high contrast in conductivity between conductors and dielectrics allows for well
defined current paths.
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Resistance (Conductance)

Potential
difference Resistance c t Conductance
(voltage) l Q] urren ls]
A
vl |

Length along
Resistance of a cylinder current path
homogeneous cylinder of lm]
conductive material Cross-section of

current path

m’
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Resistive Circuits and Kirchhoff(’s) Laws

In a loop On a resistor At a junction

Kirchhoff’'s laws are a consequence of electrostatics and law’s of stationary current flow
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Joule(’s) Heat

Power lost via
conduction

Power lost on
resistor

W) W)

Electric field within conducting material produces heat
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Fundamental Question of Magnetostatics

There exist a specified distribution of stationary current. We pick a
differential volume of it and ask what is the force acting on it.
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Biot-Savart(’s) Law

Measuring Source
Permeability current current
of vacuum element element

p, =1.25663706212-10° H-m ™"

\ //

d V >< d V' x 'r — 'r
47T "r —7r ‘3
Force on . .
. Radius vector of Radius vector
measuring the measuring of the source
current current current

¥ . o
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Biot-Savart(’s) Law + Superposition Principle

Entire magnetostatics can be deduced from this formula
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Magnetic Field

Magnetic field
(Magnetic induction)

7]
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Divergence of Magnetic Field

There are no point sources of magnetostatic field
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Curl of Magnetic Field — Ampere(’s) Law

Total current
captured within
the curve

4]
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Magnetic Vector Potential

Defined up to
arbitrary scalar
function

Magnetic vector
potential

I(r'

=

dV' + Vi(r)

V-B=0 ) B(r)szA(T) b A(T): o f

47 Y

Reduced description of magnetostatic field
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Poisson(’s) equation

The solution to Poisson’s equation is unique in a given volume once the potential is known on its

bounding surface and the current density is known through out the volume.
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Boundary Conditions

Surface
current on the
boundary

Normal
pointing to
region (1)
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Magnetostatic Energy

For now it is just a formula that works — it must be derived with the help of time varying fields

MAGNETOSTATICS Electromagnetic Field Theory 1

@»
63 / XXX CTU-FEE in Prague, Department of Electromagnetic Field elmag.org




Magnetostatic Energy — Current Circuits

()
M, =M, 47T”]ff ‘r_r1 dvav,

Mutual-Inductance IH]

Self-Inductance IH]

°
°
A RAG o
Li 47r(_)72 ff ‘ 1 dViaVi O
" ®

r —r
i i
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Mutual Inductance — Thin Current Loop

. = !B@. (r)-ds,

Magnetic flijx induced by i-th
current through j-th current

W)
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Magnetic Materials

e Material response is due to magnetic dipole moments
e Magnetic moment comes from spin or orbital motion of an electron
e [Magnetic field tends to align magnetic moments

e Magnetic field induces magnetic dipoles with density M (7“) [A'm_l]

Number of dipoles
in unitary volume
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Magnetic Field of a Dipole

Dipole is assumed at
the origin

Magnetic dipole
moment

st

Magnetic dipole approximates infinitesimally small current loop
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Field Produced by Magnetized Matter

A<T):,uofM(r’)x(r—r’)dV/:MOEﬁM(r’)de’ MOIV’XM(T’)dV/

3 / —|_ /
/‘ 47rS, ‘r—r‘ 47TV, ‘r—r‘

Only applies at infinitely
sharp boundary Potential of volumetric

(unrealistic) current density

This formula holds very well outside the matter and, curiously, it also well approximates the field inside
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Magnetic Intensity

Magnetic Intensity [A : m_ll

Only free current
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Linear Isotropic Magnetic Materials

Relative permeability

)=

M) = x, (1) [ B(r) = s (r) ) = (o)

/ /

Magnetic susceptibility Permeability

o

All the complicated structure of matter reduces to a simple scalar quantity

MAGNETOSTATICS Electromagnetic Field Theory 1

70 / XXX CTU-FEE in Prague, Department of Electromagnetic Field ge.g}zm @




Fields in Presence of Magnetic Material

V-A(r)=0

Coulomb(’s) gauge

Not a function of
coordinates

Poisson’s equation holds only when permittivity does not depend on coordinates
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Magnetic Material Boundaries

Normal
pointing to
region (1)
Both conditions are needed for unique solution
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Magnetostatic Energy in Magnetic Material
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Magnetic Materials

Paramagnetic — small positive susceptibility
(small attraction — linear)

Diamagnetic — small negative susceptibility
(small repulsion — linear)

Ferromagnetic — “large positive susceptibility
(large attraction — nonlinear)

MAGNETOSTATICS
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Ferromagnetic Materials

e Spins are ordered within domains

e MMagnetization is a non-linear function of field intensity

e Magnetization curve — Hysteresis, Remanence

e Susceptibility can only be defined as local approximation

e Above Curie('s) temperature ferromagnetism disappears

Exact calculations are very difficult — use simplified models (soft material, permanent magnet)
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Faraday(’s) Law

0P Time variation of
- E magnetic flux

Minus sign is called
Lenz(‘s) law

Time variation in magnetic field produces electric field that tries to counter the change in
magnetic flux (electromotive force)
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Lenz(’s) Law

The current created by time variation of magnetic flux is directed so
as to oppose the flux creating it.
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Electromagnetic Field and Motion

Moving frame Laboratory frame V=

/ P[]

QUASISTATICS
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Time Varying RL Circuits

In a loop At a junction

On an

On a resistor )
inductor

Circuit laws are valid as long as time variations are not too fast
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Time Varying Potentials

Potential
calibration

V-A (r, t) = —0lp (r, t)

In time varying fields scalar potential becomes redundant
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Source and Induced Currents

Those are fixed, not
reacting to fields
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Diffusion Equation

Material parameters are assumed
independent of coordinates
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Maxwell(’s)-Lorentz(’s) Equations

Equations of motion

V X H(r,t) = J(rﬂg) + (9D(r,t) / for fields

ot

Equation of motion

V-B (r, t) =0 for particles
V. D(rt) = p(r.) /

f(r,t) = p(r,t)E(r,t) —I—J(r,t)xB(r,t)
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Boundary Conditions
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Electromagnetic Potentials

Lorentz(‘s)
calibration

V- A(r,t) = —J,ugo(r,t) — el

8g0(r,t)
ot
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Wave Equation

Material parameters are assumed
independent of coordinates
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Poynting(’s)-Umov(’s) Theorem

Power passing the
bounding envelope Energy storage

_[E-J def(ExH)-dSnLL[J‘EranL%% [s\E\2+u\H\2]dv

source

AN N

Power supplied Heat losses
by sources

V 14

Energy balance in an electromagnetic system
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Linear Momentum Carried by Fields

Volume integration considerably change
the meaning of Poynting(’s) vector

This formula is only valid in vacuum. In material media things are more tricky. O
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Angular Momentum Carried by Fields

This formula is only valid in vacuum. In material media things are more tricky.
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Frequency Domain

F(r,t)ER F(r,w)E(C

Spatial derivatives are

untouched
Time derivatives reduce to
algebraic multiplication
®
[
®
®
Frequency domain helps us to remove explicit time derivatives O
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Phasors

Reduced frequency domain representation
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Maxwell(’s) Equations — Frequency Domain

We assume linearity of material relations
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Wave Equation — Frequency Domain

Helmholtz(‘s) equation
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Heat Balance in Time-Harmonic Steady State

Valid for general periodic steady state

Cycle mean

_f<E'Jsource>dV= »f<EXH>'dS+L[<U‘E‘2>dV

V
2

A

E|l dV

source

—%fRe[E-j* ]dV:%fRe[Exﬂ*]-dS—F%fa

14 14

Valid for time-harmonic steady state
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Plane Wave

Unitary vector representing
the direction of propagation

Electric and magnetic fields
are mutually orthogonal

Electric and magnetic fields
are orthogonal to
propagation direction

®
®
Wave-number ‘
o

The simplest wave solution of Maxwell('s) equations O
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Plane Wave Characteristics
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Vacuum

General isotropic
material
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Cycle Mean Power Density of a Plane Wave

Power propagation coincides with
phase propagation
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