
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Cybernetics

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 1 / 48

A0M33EOA

Genetic Programming

Petr Pošı́k

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Heavilly using slides from Jiřı́ Kubalı́k, CIIRC CTU, with permission.

Introduction to Genetic Programming

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 2 / 48

Contents

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 3 / 48

■ Genetic Programming introduction

■ Solving the artificial ant by GP

■ Strongly typed GP

■ Initialization

■ Crossover operators

■ Automatically Defined Functions

Genetic Programming (GP)

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 4 / 48

GP shares with GA

■ the philosophy of survival and
reproduction of the fittest and

■ the analogy of naturally occurring
genetic operators.

GP differs from GA in

■ a representation,

■ genetic operators and

■ the scope of applications.

Structures evolved in GP are (usually trees) dynamically varying in size and shape,
representing an algorithm/computer program.

GA chromosome of fixed length:

GP trees:

Genetic Programming (GP): Application Domains

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 5 / 48

Applications

■ learning programs,

■ learning decision trees,

■ learning rules,

■ learning strategies,

■ . . .
Strategy for artificial ant

Arithmetic expression

Logic expression

GP: Representation

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 6 / 48

Many possible representations; here we focus on trees composed of

■ terminals:

■ inputs to the program (independent
variables),

■ real, integer or logical constants,

■ actions, . . .

and

■ non-terminals (functions):

■ arithmetic operators (+, -, *, /),

■ functions (sin, cos, exp, log),

■ logical functions (AND, OR, NOT),

■ conditional operators (If-Then-Else,
cond ? true : false),

■ . . .

Example: Tree representation of a
LISP S-expression
0.23 ∗ Z + X − 0.78

Closure property: each of the functions should be able to accept, as its argument, any
value that may be returned by any function and any terminal.

GP: Crossover

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 7 / 48

Subtree crossover

1. Randomly select a node (crossover
point) in each parent tree.

2. Create offspring by exchanging the
subtrees rooted at the crossover
nodes.

Crossover points do not have to be selected with uniform probability

■ Typically, the majority of nodes in the trees are leaves, because the average branching
factor (the number of children of each node) is ≥ 2.

■ To avoid swapping leave nodes most of the time, the widely used crossover scenario
chooses function nodes 90% of the time and leaves 10% of the time.

GP: Mutation

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 8 / 48

Subtree mutation

1. Randomly select a mutation point from the set of all nodes in the parent tree.

2. Replace the subtree rooted at the chosen node with a new randomly generated
subtree.

Point mutation

1. Randomly select a mutation point from the set of all nodes in the parent tree.

2. Replace the primitive stored in the selected node with a different primitive of the
same arity taken from the primitive set.

GP: Constant Creation

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 9 / 48

In many problems exact real-valued constants are required to be present in the correct
solution (evolved program tree) =⇒ GP must have the ability to create arbitrary
real-valued constants.

Ephemeral random constant (ERC) R is a special terminal.

■ Initialization:

■ Whenever an ERC is chosen for any endpoint of the tree during the initialization,
a random number of a specified data type in a specified range is generated and
attached to the tree at that point.

■ Each occurrence of this terminal symbol invokes a generation of a unique value.

■ After initialization:

■ Many different constants can be found in the trees.

■ These constants remain fixed during evolution.

■ Other constants can be evolved by mixing the existing subtrees, being driven by
the goal of improving the overall fitness.

■ The pressure of fitness function determines both the directions and the
magnitudes of the adjustments in numerical constants.

GP: Trigonometric Identity

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 10 / 48

Task: find an expression equivalent to cos(2x).

GP setup:

■ Terminal set: T = {x, 1}.

■ Function set: F = {+,−, ∗, %, sin}.

■ Training cases: 20 pairs (xi , yi), where xi are values evenly distributed in interval
(0, 2π).

■ Fitness: Sum of absolute differences between desired yi and the values returned by
generated expressions.

■ Stopping criterion: A solution found that gives the error less than 0.01.

Example of GP in Action: Trigonometric Identity

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 11 / 48

Run 1, 13th generation

(- (- 1 (* (sin x) (sin x))) (* (sin x) (sin x)))

which equals (after editing) to 1 − 2 sin2 x.

Run 2, 34th generation

(- 1 (* (* (sin x) (sin x)) 2))

which is another way of writing the same expression.

Run 3, 30th generation

(sin (- (- 2 (* x 2))

(sin (sin (sin (sin (sin (sin (* (sin (sin 1))

(sin (sin 1)))))))))))

■ The subtree sin(sin(... evaluates to 0.433.

■ The expression is thus sin(2 − 2x − 0.433).

■ 2 − 0.433
.
= π

2 .

■ The discovered identity is cos(2x) = sin(π

2 − 2x).

GP: Symbolic Regression

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 12 / 48

Task: find a function that fits the training data evenly sampled from interval 〈−1.0, 1.0〉,
f (x) = x5 − 2x3 + x.

GP setup:

■ Terminal set T = {x}.

■ Function set F = {+,−, ∗, %, sin, cos}.

■ Training cases: 20 pairs (xi , yi), where xi are values evenly distributed in interval
〈−1, 1〉.

■ Fitness: Sum of errors calculated over all (xi , yi) pairs.

■ Stopping criterion: A solution found that gives the error less than 0.01.

GP: Symbolic Regression

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 12 / 48

Task: find a function that fits the training data evenly sampled from interval 〈−1.0, 1.0〉,
f (x) = x5 − 2x3 + x.

GP setup:

■ Terminal set T = {x}.

■ Function set F = {+,−, ∗, %, sin, cos}.

■ Training cases: 20 pairs (xi , yi), where xi are values evenly distributed in interval
〈−1, 1〉.

■ Fitness: Sum of errors calculated over all (xi , yi) pairs.

■ Stopping criterion: A solution found that gives the error less than 0.01.

Besides the desired function other
three were found

■ with a very strange behavior
outside the interval of training
data,

■ though optimal with respect to
the defined fitness.

Artificial Ant Problem

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 13 / 48

Santa Fe trail

■ 32 × 32 grid with 89 food pieces.

■ Obstacles

■ 1×, 2× strait,

■ 1×, 2×, 3× right/left.

Ant capabilities

■ detects the food right in front of him
in direction he faces.

■ actions observable from outside

■ MOVE: makes a step and eats a
food piece if there is some,

■ LEFT: turns left,

■ RIGHT: turns right,

■ NO-OP: no operation.

Goal: find a strategy that navigates an ant through the grid so that it finds all the food
pieces in the given time (600 time steps).

Artificial Ant Problem: GP Approach

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 14 / 48

Terminals (ant actions):

■ T = {MOVE, LEFT, RIGHT}.

Functions:

■ conditional IF-FOOD-AHEAD: food detection, 2 arguments,

■ unconditional PROG2, PROG3: sequence of 2/3 actions.

Ant repeats the program until time runs out (600 time steps) or all the food has been eaten.

Typical solutions in the initial population:

■ (PROG2 (RIGHT) (LEFT))

completely fails to find and eat any food.

■ (IF-FOOD-AHEAD (LEFT) (RIGHT))

does nothing useful either.

■ (PROG2 (MOVE) (MOVE))

finds a few pieces of food by chance.

Artificial Ant Problem: GP Approach (cont.)

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 15 / 48

More interesting solutions from the initial population:

■ Quilter performs systematic
exploration of the grid:

(PROG3 (RIGHT)

(PROG3 (MOVE) (MOVE) (MOVE))

(PROG2 (LEFT) (MOVE)))

Quilter performance

■ Tracker perfectly tracks the food until
the first obstacle occurs, then it gets
trapped in an infinite loop.

(IF-FOOD-AHEAD (MOVE) (RIGHT))

Tracker performance

Artificial Ant Problem: GP Approach (cont.)

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 16 / 48

■ Avoider perfectly avoids food!!!

(I-F-A (RIGHT)

(I-F-A (RIGHT)

(PROG2 (MOVE) (LEFT))))

Avoider performance

Average fitness in the initial population is 3.5.

Artificial Ant Problem: GP result

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 17 / 48

In generation 21, the following solution was found:

(IF-FOOD-AHEAD (MOVE)

(PROG3 (LEFT)

(PROG2 (IF-FOOD-AHEAD (MOVE)

(RIGHT))

(PROG2 (RIGHT)

(PROG2 (LEFT)

(RIGHT))))

(PROG2 (IF-FOOD-AHEAD (MOVE)

(LEFT))

(MOVE))))

■ It navigates the ant so that it eats all 89 food pieces in the given time.

■ The program solves every trail with obstacles of the same type as occur in Santa Fe
trail.

Compare the computational complexity with the GA approach!!!

GA approach: 65.536 × 200 = 13 × 106 trials.
GP approach: 500 × 21 = 10.500 trials.

Syntax-preserving GP: Evolving Fuzzy-rule based Classifier

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 18 / 48

Classifier consists of fuzzy if-then rules of type

If (x1 is medium) and (x3 is large) then class = 1 with c f = 0.73

■ Linguistic terms: small, medium small, medium, medium large, large.

■ Fuzzy membership functions: approximate the confidence in that the crisp value is
represented by the linguistic term.

Three rules connected by OR

Blind crossover and mutation operators can produce incorrect trees that do not represent valid
rule base.

■ Obviously due to the fact that the
closure property does not hold here.

■ What can we do?

Syntax-preserving GP: Strongly Typed GP

GP Intro

• Contents

• Applications

• Representation

• Crossover

• Mutation

• Constants

• Trig. identity

• Ant

• Fuzzy rules

• STGP

GP Operators

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 19 / 48

Strongly typed GP: crossover and mutation explicitly use the type information:

■ every terminal has a type,

■ every function has types for each of its arguments and a type for its return value,

■ the genetic operators are implemented so that they do not violate the type constraints
=⇒ only type correct solutions are generated.

Example: Given the representation as specified below, consider that we chose IS node
(with return type 1) as a crossing point in the first parent. Then, the crossing point in the
second parent must be either IF or AND node.

STGP can be extended to more complex type systems – multi-level and polymorphic
higher-order type systems.

GP Operators

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 20 / 48

GP Initialisation: Requirements

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 21 / 48

GP needs a good tree-creation algorithm to create

■ trees for the initial population and

■ subtrees for subtree mutation.

Required characteristics:

■ Computationally light; optimally linear in tree size.

■ User control over expected tree size.

■ User control over specific node appearance in trees.

GP Initialisation: Simple Methods

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 22 / 48

D is the maximum initial depth of trees, typically between 2 to 6.

Full method:

■ Each branch has depth d = D.

■ Nodes at depth d < D randomly
chosen from function set F.

■ Nodes at depth d = D randomly
chosen from terminal set T.

Grow method:

■ Each branch has depth d ≤ D.

■ Nodes at depth d < D randomly
chosen from F ∪ T.

■ Nodes at depth d = D randomly
chosen from T.

Ramped half-and-half:

■ Grow & full method each deliver half of the initial population.

■ A range of depth limits is used to ensure that trees of various sizes and shapes are
generated.

GP Initialisation: Simple Methods

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 23 / 48

Characteristics of Grow and Full methods:

■ No size parameter: they do not allow the user to create a population with a desired
size distribution.

■ No way to define the expected probabilities of certain nodes appearing in trees.

■ They do not give the user much control over the tree shapes generated.

GP Initialization: Probabilistic Tree-Creation Method

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 24 / 48

Probabilistic tree-creation method:

■ An expected desired tree size can be defined.

■ Probabilities of occurrence of individual functions and terminals within the
generated trees can be defined.

■ Fast – running in time near-linear in tree size.

Notation:

■ T denotes a newly generated tree.

■ D is the maximal depth of a tree.

■ Etree is the expected tree size of T.

■ F is a function set divided into terminals T and nonterminals N.

■ p is the probability that an algorithm will pick a nonterminal.

■ b is the expected number of children to nonterminal nodes from N.

■ g is the expected number of children to a newly generated node in T.

g = pb + (1 − p)(0) = pb

GP Initialization: Probabilistic Tree-Creation Method 1

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 25 / 48

PTC1 is a modification of Grow that

■ allows the user to define probabilities of appearance of functions within the tree,

■ gives user a control over expected desired tree size, and guarantees that, on average,
trees will be of that size,

■ does not give the user any control over the variance in tree sizes.

Given

■ maximum depth bound D,

■ function set F consisting of N and T,

■ expected tree size, Etree,

■ probabilities qt and qn for each t ∈ T
and n ∈ N,

■ arities bn of all nonterminals n ∈ N,

the probability, p, of choosing a
nonterminal over a terminal according to

p =
1 − 1

Etree

∑n∈N qnbn

PTC1(depth d)

Returns: a tree of depth d ≤ D
1 if (d = D) return a terminal from T

(by qt probabilities)
2 else if (rand < p)
3 choose a nonterminal n from N

(by qn probabilities)
4 for each argument a of n
5 fill a with PTC1(d + 1)
6 return n
7 else return a terminal from T

(by qt probabilities)

Probabilistic Tree-Creation Method PTC1: Proof of p

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 26 / 48

■ The expected number of nodes at depth d is Ed = gd for g ≥ 0 (the expected number
of children to a newly generated node).

■ Etree is the sum of Ed over all levels of the tree, that is

Etree =
∞

∑
d=0

Ed =
∞

∑
d=0

gd

From the geometric series, for g ≥ 0

Etree =

{ 1
1−g , if g < 1

∞, if g ≥ 1.

The expected tree size Etree (we are interested in the case that Etree is finite) is
determined solely by g, the expected number of children of a newly generated node.

■ Since g = pb, given a constant, nonzero b (the expected number of children of a
nonterminal node from N), a p can be picked to produce any desired g.

Thus, a proper value of g (and hence the value of p) can be picked to determine any
desired Etree.

Probabilistic Tree-Creation Method PTC1: Proof of p

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 27 / 48

■ From

Etree =
1

1 − pb

we get

p =
1 − 1

Etree

b

After substituting ∑n∈N qnbn for b we get

p =
1 − 1

Etree

∑n∈N qnbn
.

■ User can bias typical ”bushiness” of a tree by adjusting the occurrence probabilities of
nonterminals with large fan-outs and small fan-outs, respectively.

Example: Nonterminal A has four children branches, nonterminal B has two children
branches.

pA > pB pA < pB

GP: Selection

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 28 / 48

Fitness-proportionate roulette wheel selection or tournament selection are commonly
used.

Greedy over-selection:

■ Recommended for complex problems that require large populations (> 1000).

■ Increases the selection probability of the fitter individuals in the population.

■ Algorithm:

■ Rank population by fitness and divide it into two groups:

■ group I: the fittest individuals that together account for x% of the sum of
fitness values in the population,

■ group II: remaining less fit individuals.

■ 80% of the time an individual is selected from group I in proportion to its fitness;
20% of the time, an individual is selected from group II.

■ For population size = 1000, 2000, 4000, 8000, x = 32%, 16%, 8%, 4%.
(%’s come from a rule of thumb.)

Example: Effect of greedy over-selection for the 6-multiplexer problem

Population size I(M,i,z) without over-selection I(M,i,z) with over-selection
1,000 343,000 33,000
2,000 294,000 18,000
4,000 160,000 24,000

GP: Crossover Operators

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 29 / 48

Standard crossover operators used in GP (subtree crossover) are designed to ensure just
the syntactic closure property.

■ On the one hand, they produce syntactically valid children from syntactically valid
parents.

■ On the other hand, the only semantic guidance of the search is from the fitness
measured by the difference of behavior of the whole programs and the target
behavior.

This is very different from real programming practice where you pay attention to
changes in semantics of individual parts of the program.

To remedy this deficiency in GP, genetic operators making use of the semantic
information has been introduced:

■ Semantically Driven Crossover (SDC) [BJ08]

■ Semantic Aware Crossover (SAC) [UHO09]

[BJ08] Lawrence Beadle and Colin Johnson. Semantically driven crossover in genetic programming. In Jun Wang, editor, Proceedings of the
IEEE World Congress on Computational Intelligence, CEC 2008, pages 111–116, Hong Kong, 2008. IEEE Computational Intelligence
Society, IEEE Press.

[UHO09] Nguyen Quang Uy, Nguyen Xuan Hoai, and Michael O’Neill. Semantic aware crossover for genetic programming: The case for
real-valued function regression. In EuroGP, volume 5481 of Lecture Notes in Computer Science, pages 292–302. Springer, 2009.

GP: Semantically Driven Crossover

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 30 / 48

■ Applied to Boolean domains.

■ The semantic equivalence between parents and their children is checked by
transforming the trees to reduced ordered binary decision diagrams (ROBDDs).
Trees are considered semantically equivalent if and only if they reduce to the same
ROBDDs.

This eliminates two types of introns (code that does not contribute to the fitness of
the program):

■ Unreachable code: (IF A1 D0 (IF A1 (AND D0 D1) D1))

■ Redundant code: AND A1 A1

GP: Semantically Driven Crossover (cont.)

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 31 / 48

Ensuring semantic diversity:

■ If the children are semantically equivalent to their parents w.r.t. their ROBDD
representation then the crossover is repeated until semantically non-equivalent
children are produced.

SDC was reported useful in increasing GP performance as well as reducing code bloat
(compared to GP with standard subtree crossover):

■ SDC significantly reduces the depth of programs (smaller programs).

■ SDC yields better results - an average maximum score and the standard deviation of
score are significantly higher than the standard GP; SDC is performing wider search.

GP: Semantic Aware Crossover

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 32 / 48

■ Applied to real-valued domains.

■ Determining semantic equivalence between two real-valued expressions is NP-hard.

■ Approximate semantics are calculated:

■ Compared expressions are measured against a random set of points sampled
from the domain.

■ Two trees, T1 and T2, are considered semantically equivalent if the output of the
two trees on the random sample set S are close enough, subject to a parameter ε

called semantic sensitivity, i.e., if

∑
x∈S

|T1(x)− T2(x)| < ε.

■ Equivalence checking is used both for individual trees and subtrees.

■ Constraint crossover: encourage exchanging subtrees with different semantics.

■ While the two subtrees chosen for exchange are semantically equivalent, the
operator tries to choose different subtrees.

GP: Semantic Aware Crossover

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 33 / 48

Effects of semantic guidance on the crossover (SAC):

■ SAC is more semantic exploratory than standard GP. It carries out much fewer
semantically equivalent crossover events than standard GP crossover.

■ SAC is more fitness constructive than standard GP: the percentage of crossover
events generating a better child from its parents is significantly higher in SAC.

■ SAC increases the number of successful runs in solving a class of real-valued
symbolic regression problem.

■ SAC increases the semantic diversity of population.

Automatically Defined Functions: Motivation

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 34 / 48

Hierarchical problem-solving (”divide and conquer”):

■ The solution to an overall problem may be found by decomposing it into smaller and
more tractable subproblems such that

■ the solutions of subproblems are reused many times in assembling the solution to the
overall problem.

Automatically Defined Functions [Koz94]: idea similar to reusable code represented by
subroutines in programming languages.

■ The reuse eliminates the need to ”reinvent the wheel” on each occasion when a
particular sequence of steps may be useful.

■ Subroutines are reused with different instantiation of dummy variables.

■ The reuse makes it possible to exploit a problem’s modularities, symmetries and
regularities.

■ Code encapsulation – protection from crossover and mutation.

■ Simplification – less complex code, easier to evolve.

■ Efficiency – acceleration of the problem-solving process (i.e., the evolution).

[Koz94] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA, USA, 1994.

Automatically Defined Functions: Structure of Programs with ADFs

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 35 / 48

Function defining branches (ADFs): each ADF resides in a separate function-defining
branch.

Each ADF

■ can have zero, one or more formal
parameters (dummy variables),

■ belongs to a particular individual
(program) in the population,

■ may be called by the program’s
result-producing branch(es) or other
ADFs.

Typically, the ADFs are invoked with
different instantiations of their dummy
variables.

Result-producing branch (RPB): the ”main” program (can be one or more).

Remarks:

■ The RPBs and ADFs can have different function and terminal sets.

■ ADFs as well as RPBs undergo the evolution through the crossover and mutation
operations.

ADF: Tree Example for Symb. Regression of Real-valued Functions

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 36 / 48

ADF: Symbolic Regression of Even-Parity Functions

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 37 / 48

Even-n-parity function of n Boolean arguments:

■ Return true if the number of true arguments is even; return false otherwise.

■ The function is uniquely specified by the value of the function for each of the 2n

possible combinations of its n arguments.

Exmaple: Even-3-parity: the truth table has 23 = 8 rows.

D2 D1 D0 Output

0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Even-3-Parity Function: Blind Search vs. Simple GP

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 38 / 48

Experimental setup:

■ Function set: F = {AND, OR, NAND, NOR}

■ The number of internal nodes fixed to 20.

■ Blind search – randomly samples 10,000,000 trees

■ GP without ADFs

■ Population size M = 50.

■ A run is terminated as soon as it produces a correct solution.

■ Total number of trees generated 10,000,000.

Results: number of times the correct function appeared in 10,000,000 generated trees:

Blind search 0
GP without ADFs 2

Effect of using larger populations in GP:

Population size 50 100 200 500 1000
Ind. processed per solution 999,750 665,923 379,876 122,754 20,285

The performance advantage of GP over blind search increases with population size; it
demonstrates the importance of a proper choice of the population size.

Observed GP Performance Parameters

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 39 / 48

Performance measures:

■ P(M, i): cumulative probability of success for all the generations between generation
0 and i, where M is the population size.

■ I(M, i, z): number of individuals that need to be processed in order to yield a solution
with probability z (here z = 99%).

For the desired probability z of finding a solution by generation i at least once in R
runs the following holds

z = 1 − [1 − P(M, i)]R.

Thus, the number R(z) of independent runs required to satisfy the success predicate
by generation i with probability z = 1 − ε is

R(M, z, i) =

(

log ε

log(1 − P(M, i))

)

.

And

I(M, i, z) = M · i · R(M, z, i).

GP without ADFs: Even-4-Parity Function

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 40 / 48

GP without ADFs on even-4-parity problem (based on 60 independent runs)

■ Cumulative probability of success, P(M, i), is 35% and 45% by generation 28 and 50,
respectively.

■ The most efficient is to run GP up to the generation 28 – if the problem is run through
to generation 28, processing a total of

4, 000 × 29 generations × 11 runs = 1, 276, 000

individuals is sufficient to yield a solution with 99% probability.

GP without ADFs: Even-4-Parity Function

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 41 / 48

An example of solution with 149 nodes.

GP with ADFs: Even-4-Parity Function

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 42 / 48

GP with ADFs on even-4-parity problem (based on 168 independent runs)

■ Cumulative probability of success, P(M, i), is 93% and 99% by generation 9 and 50,
respectively.

■ If the problem is run through to generation 9, processing a total of
4,000 × 10 gener × 2 runs = 80,000
individuals is sufficient to yield a solution with 99% probability.

This is a considerable improvement in performance compared to the performance of GP
without ADFs.

GP with ADFs: Even-4-Parity Function

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 43 / 48

An example of solution with 74 nodes.

■ ADF0 defined in the first branch implements
two-argument XOR function (odd-2-parity
function).

■ Second branch defines three-argument
ADF1. It has no effect on the performance of
the program since it is not called by the
value-producing branch.

■ VPB implements a function equivalent to
ADF0 (ADF0 D0 D2) (EQV D3 D1)

GP with Hierarchical ADFs

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 44 / 48

Hierarchical form of ADFs: any function can call upon any other already-defined function.

■ Hierarchy of function definitions where any function can be defined in terms of any
combination of already-defined functions.

■ All ADFs have the same number of dummy arguments. Not all of them have to be
used in a particular function definition.

■ VPB has access to all of the already defined functions.

Setup of the GP with hierarchical ADFs:

■ ADF0 branch
Functions: F={AND, OR, NAND, NOR}
Terminals: A2 = {ARG0, ARG1, ARG2}

■ ADF1 branch
Functions: F = {AND, OR, NAND, NOR, ADF0}
Terminals: A3 = {ARG0, ARG1, ARG2}

■ Value-producing branch
Functions: F={AND, OR, NAND, NOR, ADF0, ADF1}
Terminals: T4 = {D0, D1, D2, D3}

GP with Hierarchical ADFs: Even-4-Parity Function

GP Intro

GP Operators

• Initialization

• Full and grow

• PTC

• PTC1

• Selection

• Crossover

• SDC

• SAC

• ADF

• Performance

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 45 / 48

An example of solution with 45 nodes.

■ ADF0 defines a two-argument XOR function
of variables ARG0 and ARG2 (it ignores
ARG1).

■ ADF1 defines a three-argument function that
reduces to the two-argument equivalence
function of the form
(NOT (ADF0 ARG2 ARG0))

■ VPB reduces to
(ADF0 (ADF1 D1 D0) (ADF0 D3 D2))

Value-producing branch

Summary

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 46 / 48

Learning outcomes

GP Intro

GP Operators

Summary

• Learning outcomes

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 47 / 48

After this lecture, a student shall be able to

■ explain the main differences between GA and GP, and name typical application areas
for GP;

■ describe the representation that GP uses, including the associated crossover and
mutation operators;

■ explain how GP deals with real-valued constants in evolved solutions;

■ explain two different ways how GP deals with the possibility that a crossover or
mutation operator results in an invalid offspring;

■ describe solution initialization methods used in GP (full, grow, ramped half-n-half,
PTC);

■ explain greedy over-selection operator and why it was invented;

■ motivate and describe the semantic crossover operators;

■ explain ”automatically defined functions” and motivate them;

Reading

GP Intro

GP Operators

Summary

• Learning outcomes

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 48 / 48

[Koz94] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge, MA, USA, 1994.

[PLM08] Riccardo Poli, William B. Langdon, and Nicholas F. Mcphee. A Field Guide to
Genetic Programming. Lulu Enterprises, UK Ltd, March 2008.

	GP Intro
	Contents
	Applications
	Representation
	Crossover
	Mutation
	Constants
	GP: Trigonometric Identity
	Ant
	Fuzzy rules
	STGP

	GP Operators
	Initialization
	Full and grow
	PTC
	PTC1
	Selection
	Crossover
	SDC
	SAC
	ADF
	Performance

	Summary
	Learning outcomes

	pdclock.48:
	pdclock.47:
	pdclock.46:
	pdclock.45:
	pdclock.44:
	pdclock.43:
	pdclock.42:
	pdclock.41:
	pdclock.40:
	pdclock.39:
	pdclock.38:
	pdclock.37:
	pdclock.36:
	pdclock.35:
	pdclock.34:
	pdclock.33:
	pdclock.32:
	pdclock.31:
	pdclock.30:
	pdclock.29:
	pdclock.28:
	pdclock.27:
	pdclock.26:
	pdclock.25:
	pdclock.24:
	pdclock.23:
	pdclock.22:
	pdclock.21:
	pdclock.20:
	pdclock.19:
	pdclock.18:
	pdclock.17:
	pdclock.16:
	pdclock.15:
	pdclock.14:
	pdclock.13:
	pdclock.12:
	pdclock.11:
	pdclock.10:
	pdclock.9:
	pdclock.8:
	pdclock.7:
	pdclock.6:
	pdclock.5:
	pdclock.4:
	pdclock.3:
	pdclock.2:
	pdclock.1:
	pdclock.0:

