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Applications of Evolutionary Algorithms

Application Areas of EAs

EAs are popular for their
 simplicity, 

 effectiveness, 

 robustness.

Holland: "It's best used in areas where you don't really have a good idea what the solution might 
be. And it often surprises you with what you come up with.“

Well suited for black-box optimization
 No information about what the optimal solution looks like, no information about how to go 

about finding it in a principled way.

 Very little information about what the optimized function looks like.

 Very little heuristic information to go on.

 Brute-force search is out of the question because of the huge search space.

Applications
 control, 

 engineering design, 

 image processing, 

 planning & scheduling, 

 VLSI circuit design,

 network optimization & routing problems,

 optimal resource allocation,

 marketing,

 credit scoring & risk assessment,

 and many others.
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Human-Competitive Results

John R. Koza et al.: What's AI Done for 
Me Lately? Genetic Programming's 
Human-Competitive Results.
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Six Post-2000 patented analog circuits

◼ John R. Koza et al.: What's AI Done for Me Lately? Genetic Programming's Human-Competitive 
Results.



Applications of Evolutionary Algorithms

Automated Design of Electrical Circuits

Automated “What You Want Is What You Get” process for circuit synthesis.

◼ Genetic programming used to synthesize both

 the structure/topology, and

 sizing (numerical component values)

for circuits that duplicate the patented inventions’ functionality.

◼ Method

 Starts from a high-level statement of a circuit’s desired behavior and 
characteristics and only minimal knowledge about analogue electrical circuits.

Then, a fitness measure is created that reflects the invention’s performance and 
characteristics – it specifies the desired time- or frequency-domain outputs, 
given various inputs.

 Employs a circuit simulator for analyzing candidate circuits, but does not rely 
on domain expertise or knowledge concerning the synthesis of circuits.
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Automated Design of Electrical Circuits

◼ Method

 For each problem, a test fixture consisting of appropriate hard-wired 
components (such as a source resistor or load resistor) connected to the input 
ports and desired output ports is used.

Test fixture
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WYWIWYG: Embryonic Electrical Circuit

The Mapping between Program Trees and Electrical Circuits

◼ The growth process used for electrical circuits begins with a very simple embryonic 
electrical circuit and builds a more complex circuit by progressively executing the 
functions in a circuit-constructing program tree. 

◼ The embryonic circuit used on a particular problem depends on the number of input 
signals and the number of output signals.

◼ The result of this process is 

 the topology of the circuit, 

 the choice of the types of components that are situated 
at each location within the topology, 

 and the sizing of the components.

◼ Component-creating function (inductor-, capacitor-, 
…creating functions)

◼ Connection-modifying function – series/parllel division function, delta-shaped 
composition
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WYWIWYG: Fitness Assignment

◼ Circuit-constructing program tree evaluation in the population begins with its 
execution. 

❑ This execution applies the functions in the program tree to the very simple 
embryonic circuit, thereby developing the embryonic circuit into a fully 
developed circuit.

❑ A netlist that identifies each component of the circuit, the nodes to which that 
component is connected, and the value of that component is then created.

◼ Circuit is then simulated using SPICE (an acronym for Simulation Program with 
Integrated Circuit Emphasis) to determine its behavior.

◼ Fitness measure may incorporate many characteristic or combination of 
characteristics of the circuit, including 

❑ the circuit's behavior in the time domain, 

❑ its behavior in the frequency domain, 

❑ its power consumption, 

❑ or the number, cost, or surface area of its components.
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GP Control Parameters Setup

◼ Population size: 640,000

◼ Pcrossover = 89%

◼ Pmutation = 1%

◼ Preproduction = 10%

◼ Maximum 200 nodes for each value-producing branch

◼ Parallel Parsytec computer system

❑ 64 x 80 MHz Power PC 601 processors arranged in a toroidal mesh

◼ Parallel GA

❑ deme size: 10,000

❑ 64 demes

❑ Migration rate: 2% 

Note, this is far from 
being a brute force 
search.
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Low-Voltage Balun Circuit

◼ A balun (balance/unbalance) circuit’s purpose is to produce two outputs from a 
single input

 each having half of the input’s amplitude;

 one output should be in phase with the input while the other should be 180
degrees out of phase with the input, and both should have the same DC offset.

◼ The fitness measure was based on 

 a frequency sweep analysis designed to measure the magnitude and phase of the 
circuit’s two outputs and

 a Fourier analysis designed to measure harmonic distortion.
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Genetically Evolved Low-Voltage Balun 
Circuit

◼ Evolved circuit is roughly a fourfold improvement over the patented circuit  
in terms of the fitness measure.

 It is superior both in terms of its frequency response and harmonic distortion.

Test fixture Evolved balun circuit

John R. Koza et al.: What's AI Done for Me Lately? Genetic 

Programming's Human-Competitive Results.
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Voltage-Current Conversion Circuit

◼ Voltage-current conversion circuit’s purpose is to take two voltages as input and to 
produce as output a stable current whose magnitude is proportional to the difference 
between the voltages.

◼ Fitness measure is based on four time-domain input signals.

◼ Genetically evolved circuit (entirely different than the patented circuit)

 has roughly 62 percent of the average (weighted) error of the patented circuit 
and

 outperformed the patented circuit on additional previously unseen test cases.

John R. Koza et al.: What's AI Done for Me Lately? Genetic 

Programming's Human-Competitive Results.
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Mixed Analog-Digital Register-Controlled 
Variable Capacitor

◼ Mixed analog-digital variable capacitor circuit has a capacitance controlled by the 
value stored in a digital register.

◼ Fitness measure was based on the error accumulated by 16 combinations of time-
domain test signals ranging over all eight possible values of a 3-bit digital register for 
two different analog input signals.

◼ The evolved circuit performs as well as the patented circuit.

Evolved circuit Patented circuit

John R. Koza et al.: What's AI Done for Me Lately? Genetic Programming's Human-Competitive Results.
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HUMIES

◼ Annual “HUMIES” awards for human-competitive results 
produced by genetic and evolutionary computation held at 
the Genetic and Evolutionary Computation Conference 
(GECCO)

◼ Entries present human-competitive results that have been produced by any form of 
genetic and evolutionary computation (including, but not limited to genetic 
algorithms, genetic programming, evolution strategies, evolutionary programming, 
learning classifier systems, grammatical evolution, gene expression programming, 
differential evolution, etc.) and that have been published in the open literature.

◼ Human-competitive results awarded in areas:
- Analog circuit design - Game strategies
- Quantum circuit design - Image processing
- Physics - Antenna design
- Digital circuits/programs - Classical optimization
- Chemistry - …

http://www.genetic-programming.org/combined.html
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2004 Human-Competitive Awards 
in Genetic and Evolutionary Computation 

http://www.genetic-programming.org/gecco2004hc.html

◼ $1500 – Gold

 Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: An Evolved Antenna for 
Deployment on NASA's Space Technology 5 Mission

 Lee Spector: Automatic Quantum Computer Programming: A Genetic 
Programming Approach

◼ $500 – Silver

 Alex Fukunaga: Evolving Local Search Heuristics for SAT Using GP

 Hod Lipson: How to Draw a Straight Line Using a GP: Benchmarking 
Evolutionary Design Against 19th Century Kinematic Synthesis

 Bijan Khosraviani, Raymond E. Levitt, John R. Koza: Organization Design 
Optimization Using Genetic Programming

◼ $500 – Bronze

 Adrian Stoica, Ricardo Zebulum, Didier Keymeulen, Michael Ian Ferguson, Vu 
Duong, Xin Guo: Taking evolutionary circuit design from experimentation to 
implementation: some useful techniques and a silicon demonstration
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The winner of Humies 2004

• Three nanosats (20in diameter).
• Measure effect of solar activity on 

the Earth's magnetosphere.

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson
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Evolved Antennas for Deployment on NASA’s
Space Technology 5 Mission

◼ Original ST5 Antenna Requirements

 Transmit:  8470 MHz

 Receive: 7209.125 MHz

 Gain:

>= 0dBic, 40 to 80 degrees

>= 2dBic, 80 degrees

>= 4dBic, 90 degrees

 50 Ohm impedance

 Voltage Standing Wave Ratio (VSWR):

< 1.2 at Transmit Freq

< 1.5 at Receive Freq

 Fit inside a 6” cylinder

◼ ST5 Quadrifilar Helical Antenna

 designed by a team of human 
designers

 won the contract

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive 
Results: Evolved Antennas for Deployment on NASA’s ST5 Misson
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Evolved Antenna 
for Space Technology 5 mission

◼ Branching EA: Antenna Genotype 

 Genotype is a tree-structured encoding that specifies the construction of a wire 
form

 Genotype specifies design of 1 arm in 3D-space:

rx f

f

f f

rz rx

f

2.5cm

5.0cm

Feed 

Wire

◼ Branching in genotype results in branching 
in wire form

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson
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Evolved Antenna 
for Space Technology 5 mission

◼ Branching EA: Antenna Construction Commands 

 forward(length radius)

 rotate_x(angle)

 rotate_y(angle)

 rotate_z(angle)

Forward() command can have 0,1,2, or 3 children.

Rotate_x/y/z() commands have exactly 1 child (always non-terminal).

◼ Fitness function (to be minimized):

F = VSWR_Score * Gain_Score * Penalty_Score

rx f

f

f f

rz rx

f
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Evolved Antenna 
for Space Technology 5 mission

◼ 1st Set of Genetically Evolved Antennas

Non-branching:

ST5-4W-03

Branching:

ST5-3-10

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson
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Evolved Antenna 
for Space Technology 5 mission

◼ 2nd Set of genetically evolved antennas for new mission requirements

EA 1 – Vector of Parameters EA 2 – Constructive Process

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson
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Evolved Antenna 
for Space Technology 5 mission

◼ Conclusion

 Meets mission requirements

 Better than conventional design

 Successfully passed space qualification

 First Evolved Hardware in Space when mission launched in 2005

◼ Direct competition: The antenna designed by the contracting team of human 
designers for the Space Technology 5 mission - which won the bid against several 
competing organizations to supply the antenna - did not meet the mission 
requirements while the evolved antennas did meet these requirements.

◼ Evolutionary design:

 Fast design cycles save time/money (4 weeks from start-to-first-hardware)

 Fast design cycles allow iterative “what-if”

 Can rapidly respond to changing requirements

 Can produce new types of designs

 May be able to produce designs of previously unachievable performance
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2007 Human-Competitive Awards 
in Genetic and Evolutionary Computation 

◼ http://www.genetic-programming.org/hc2007/cfe2007.html

◼ $5000 – Gold

 Steven Manos et al.: Evolutionary Design of Single-Mode Microstructured
Polymer Optical Fibres using an Artificial Embryogeny Representation

◼ $3000 – Silver

 Ami Hauptman, Moshe Sipper: Evolution of an Efficient Search Algorithm for 
the Mate-In-N Problem in Chess

◼ $1000 – Bronze

 Jaume Bacardit et al.: Automated Alphabet Reduction Method with 
Evolutionary Algorithms for Protein Structure Prediction

 Xavier Llorà et al.: Towards Better than Human Capability in Diagnosing 
Prostate Cancer Using Infrared Spectroscopic Imaging
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Evolutionary Design of Single-Mode 
Microstructured Polymer Optical Fibres

◼ Steven Manos, Leon Poladian, Maryanne Large: Evolutionary Design of 
Microstructured Polymer Optical Fibres using an Artificial Embryogeny 
Representation
reference: http://www.genetic-programming.org/hc2007/cfe2007.html

◼ Applications of optical fibres

 Long distance telecommunications

 Computer networks

 Automotive and aeronautical

 Electrical current measurement

 Temperature and strain sensing

 Medical (lasers and endoscopy)

◼ The behaviour of light depends on this 
internal structure

New functionality = more complex designs?

http://www.genetic-programming.org/hc2007/cfe2007.html
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Single-moded fibres

First mode (confined) Second mode (leaky)

◼ Single-moded fibres support the propagation of only the fundamental mode.

◼ These fibres are important in applications such as high-bandwidth communications, 
temperature sensing and strain sensing.

◼ By discovering fibres that don’t have a typical hexagonal design, we can start doing more 
interesting things with them. 

Typical hexagonal design

Single-moded operation

Standard design since 

the early 1990’s
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Evolved single-mode designs

All designs have confined fundamental modes with lc,1  10-1 dB/m, with losses more 
typically being lc,1  10-3 dB/m. 

The loss of the second mode lc,2>104 dB/m in all cases.

All single-moded, yet phenotypically different.
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Manufactured single-mode MPOF

◼ Evolved designs are simpler than previous designs, and easier to manufacture.

◼ Provided us with a rich set of never before seen single-moded microstructured fibre 
designs to investigate further.
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A different fitness function

◼ Highly multi-moded fibres designed for use in LANs and other short-distance high-
bandwidth applications.

‘GIMP 1’

‘GIMP 3’

Hand-designed fibre

Patented GA-designed
fewer holes, easier to 
manufacture.
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How to Draw a Straight Line Using a GP

◼ Hod Lipson: How to Draw a Straight Line Using a GP: Benchmarking Evolutionary
Design Against 19th Century Kinematic Synthesis

 This entry presents the application of genetic programming to the synthesis of 
compound 2D kinematic mechanisms, and benchmarks the results against one of 
the classical kinematic challenges of 19th century mechanical design.

◼ Test Case: The Straight Line Problem

 The straight-line problem seeks a kinematic mechanism that traces a straight line 
without reference to an existing straight line. 

 For example, a circle is easy, a line is a challenge!

line circle
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How to Draw a Straight Line Using a GP

◼ Some key straight-line mechanisms

See
http://kmoddl.library.cornell.edu

Silverster-Kempe’s
(1877)

Chebyshev
(1867)

Chebyshev
(1867)

Chebyshev-Evans 
(1907)

Peaucelier
(1873)

Robert
(1841)
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◼ Top down encoding of a mechanism

How to Draw a Straight Line Using a GP
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◼ Used GP with Top-down tree encoding and 2-bar or 4-bar embryo
 Population size: 100
 Crossover 90%
 Mutation 10% (Node positions, Operator types)

◼ Selection: Stochastic Universal Sampling

◼ Evaluation of an evolved straight-line mechanism
 The mechanism is actuated at an arbitrary handle and the aspect ratios of bounding boxes of 

node trajectories are measured. 

 One node of the evolved machine on the left traces a curve that is linear to 1:5300 accuracy. 

 The evolved mechanism on the right traces a curve that is linear to 1:28340 accuracy 

How to Draw a Straight Line Using a GP
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◼ A typical run – each dot represents an evaluated individual

How to Draw a Straight Line Using a GP
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Some results
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Some results

 

Infringes on Robert’s Linkage (1841) 
Published: Kempe A. B., (1877), How To Draw A Straight Line, London

Linearity 1:5300 
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Some results
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Some results

 

Linearity 1:28340
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2005 Human-Competitive Awards in 
Genetic and Evolutionary Computation cont. 

◼ $1000 – Silver

 Richard J. Terrile et al.: 

◼ Evolutionary Computation Technologies for the Automatic Design of 
Space Systems,

◼ Evolutionary Computation applied to the Tuning of MEMS gyroscopes,

◼ Multi-Objective Evolutionary Algorithms for Low-Thrust Orbit Transfer 
Optimization

◼ $500 – Bronze

 Moshe Sipper et al.: Attaining Human-Competitive Game Playing with 
Genetic Programming (Backgammon Players, Robocode Players, Chess 
Endgame)
Moshe Sipper: Evolved to win 
(http://www.moshesipper.com/evolved-to-win.html)

 Uli Grasemann, Risto Miikkulainen: Effective Image Compression using 
Evolved Wavelets

http://www.moshesipper.com/evolved-to-win.html
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Moshe Sipper: Evolved to Win 

Board games

 Checkers

 Chess endgames

 Backgammon 

Simulation games

 Robocode

 Robot Auto Racing Simulator

Puzzles

 Rush hour

 FreeCell
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GP used to evolve heuristics to guide staged deepening 
search for the hard game of FreeCell.

Trained and tested on 32,000 problems—known as 
Microsoft 32K—all solvable but one.

FreeCell requires an enormous amount of search, due 
both to long solutions and to large branching factors. 

Source: Elyasaf, A. at all.: Evolutionary Design of FreeCell Solvers. 2013

Learning Game Strategies: 
FreeCell

It remains out of reach for optimal heuristic search algorithms, such as variants of A*.

FreeCell remains intractable even when powerful enhancement techniques are employed, 
such as transposition tables and macro moves.

The previous top gun is the Heineman’s FreeCell solver

 Heineman’s staged deepening algorithm, based on a hybrid A* / hillclimbing search

 Heineman’s heuristic

solved 96% of Microsoft 32K.
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Automatically Finding Patches 
Using GP
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Automatically Finding Patches Using GP

Fully automated GP-based method for locating and repairing bugs in software

 Set of testcases consists of both 

◼ a set of negative testcases – that characterize a fault

◼ A set of positive testcases that encode functionality requirements.

 Special GP representation of evolved repaired programs.

◼ An abstract syntax tree (AST) including all of the statements in the program 
(CIL toolkit for manipulating C programs)

◼ A weighted path through the program – a list of pairs [statement, weight] 
where the weight is based on that statement’s occurences in the tescases.

 Genetic operators are restricted to AST nodes visited when executing the 
negative testcases.

 Genetic operators realize insertion, deletion, and swapping program 
statements and control flow.
Insertions based on the existing program structures are favored. 

 After a primary repair that passes all negative and positive testcases has been 
found, it is further minimized w.r.t. the number of differences between the 
original and repair program.
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Automatically Finding Patches Using GP

◼ Example: Euclid’s greatest common divisor
Weimer, W. et al.: Automatically Finding Patches Using Genetic Programming

Original program
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Automatically Finding Patches Using GP

◼ Example: Euclid’s greatest common divisor
Weimer, W. et al.: Automatically Finding Patches Using Genetic Programming

Original program Primary repair

generated given the bias towards modifying lines that are involved in producing the 
faults and the preference for insertions similar to existing code.
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Automatically Finding Patches Using GP

◼ Example: Euclid’s greatest common divisor
Weimer, W. et al.: Automatically Finding Patches Using Genetic Programming

Original program Primary repair

generated given the bias towards modifying lines that are involved in producing the 
faults and the preference for insertions similar to existing code.

After repair minimization
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Humies 2020

◼ Gold Award
 Lake A. Singh et al. Low-cost satellite constelations for nearly continuous global coverage.
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Humies 2021

◼ Gold Award

 Esteban Real, Chen Liang, David R. So, Quoc V. Le: AutoML-Zero: Evolving Machine 
Learning Algorithms From Scratch
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Humies 2021

◼ Silver Award
 Marco Virgolin, Ziyuan Wang, Tanja Alderliesten, Peter A. N. Bosman, et al.

◼ Surrogate-free machine learning-based organ dose reconstruction for pediatric
abdominal radiotherapy
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Evolutionary Design of Image 
Filters
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Evolutionary design of image filters

Can EA design an image filter which exhibits better filtering properties and lower 

implementation cost w.r.t. conventional solutions?

Target domain: filters suppressing shot noise, Gaussian noise, burst noise, edge 

detectors,  …
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Image filter in CGP 

9 x 8bits 1 x 8bits

• Array of programmable. 
elements (PE).

• No feedbacks.

• All I/O and connections on 
8 bits.

• PE over 8 bits:

• Minimum

• Maximum

• Average

• Constants

• logic operators

• shift

Sekanina L.: EvoAISP 2002
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• switching image filters

• 5 x 5 filtering window

Burst Noise Filtering
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AMF

CWMF

PWMAD

Image corrupted by 
5% impulse bursts 
noise.

evolved

VAŠÍČEK, BIDLO, SEKANINA: Evolution of efficient real-time non-linear image filters for FPGAs. Soft Computing. 17(11), 2013

Burst Noise Filtering



Facility Layout 
Design Support Tool



PROBLEM
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Facility Layout Optimization

Goal – find a layout optimal w.r.t. the given objective function

 minimize a size of the hall partition occupied by production lines

 minimize overall length of communications among connected production lines

Floorplanning – generally an NP-complete problem

 very hard solve to optimality

 computational complexity grows exponentially with the size of the problem

(meta)heurististics needed

 Local search

 Evolutionary algorithms

 Hybrid approaches = EA + LS

 NSGA-II
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◼ Problem: Floorplanning also known as 2D rectangle packing problem.

 Given: A set of N unoriented blocks (rectangles) with fixed dimensions.

 Goal: To place all blocks on a plane so that there is no overlap between any pair 
of rectangles and the bounding rectangular area is minimal (or the dead space is 
minimal).

◼ Prototype solution (floorplan) 

is encoded by B*-Tree non-slicing

representation.

Each tree is expressed by a linear 
string of symbols in a prefix not.

Optimization works on linear structs.

Ex.: Blocks {a, b, c, d, e, f} should be placed in a rectangular 
area so that the bounding rectangular area is minimal     
(or the dead space, shown in gray, is minimal).

floorplan B*-tree representation



Applications of Evolutionary Algorithms

Visualization of a POEMS run on data with 300 blocks.

By V. Hordějčuk.

VIDEO
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Input: Hall
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Input: Workstations

Mobility

◼ Free – position and rotation randomly initialized, both the position and rotation 
can change during the optimization process

◼ Limited – optimization starts from recommended position, rotation allowed

◼ Pinned – fixed position, rotation allowed

◼ Fixed – both the position and rotation are fixed for the whole optimization 
process
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Indirect Representation

Indirect representation – a priority list as a sequence of triples <id, r, h>

 id – workstation identifier

 r – workstation rotation

 h – constructive heuristic

expresses the order in which workstations will be inserted into the developed layout 
and the heuristic used to process each workstation.

Rotation

 0, 90, 180, horizontal/vertical mirroring

Constructive heuristics

 h1, h2

Example: [<ws6, 90, h1>, <ws6, 0, h2>, <ws6, -90, h1>, … , <ws3, 180, h2>]



Applications of Evolutionary Algorithms

Placement Heuristics

heuristic 1

1. Inside the bounding box.

2. To the right of the bounding box while minimizing the width of the bounding box.

heuristic 2

1. Inside the bounding box.

2. Below the bounding box while minimizing the height of the bounding box. 
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Objective: Minimize Space Used

Minimize a portion of the hall occupied by production lines (maximize available space).
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Objective: Minimize Connections

Minimize sum of the communication links among connected production lines (Euclidean 
distance, Hamming distance, …).
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Multi-Objective Optimization

Optimize both criteria simultaneously.
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Evolution of Modular Robot Gaits



Evolution of Modular Robot Gaits

◼ Design of an effective and efficient evolutionary-based system for automated 

generating of modular robot gaits:

 robots composed of a number of simple cubic-shaped robotic blocks,

 each block is endowed with slots (three of them on the main body and one is on the movable 

arm) that enable them to connect to each other and form more complex robots

◼ Approaches:

 Co-evolution of a single leg motion pattern and a coordination strategy

 HyperGP – HyperNEAT with CPPN replaced with GP

 GP with automatically defined functions

module modular robot simulation
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Applications of Evolutionary Algorithms

Elbow Walking, Cully et al. (2015)

 an algorithm that enables damaged robots to successfully adapt to the damage

 the evolution solves the case where all six feet touch the ground 0% of the time

Source: Lehman, J. at all.: The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary 

Computation and Artificial Life Research Communities. 2018
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Applications of Evolutionary Algorithms

Re-enabling Disabled Appendenges, Ecarlat and colleagues [85]

 The goal was to accumulate a wide variety of controllers, to move the cube onto the table, to grasp 
the cube, to launch it into a basket in front of the robot, …

 Then the robot’s gripper was crippled, preventing it from opening and closing, …

Source: Lehman, J. at all.: The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary 

Computation and Artificial Life Research Communities. 2018
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Applications of Evolutionary Algorithms

Evolution of Muscles and Bones, Cheney et al. [68]

 evolution to discover from scratch the benefit of complementary (opposing) muscle groups, 
similar to such muscle pairs in humans, e.g. biceps and triceps – and also to place them in a 
functional way

Source: Lehman, J. at all.: The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary 

Computation and Artificial Life Research Communities. 2018
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◼ Just an interesting game? Meet Xenobots!

https://en.wikipedia.org/wiki/Xenobot
https://www.youtube.com/watch?v=wL64jqYn4CE

